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AN ESTIMATE FOR THE PROBABILITY OF DEPENDENT EVENTS

ARTŪRAS DUBICKAS

Abstract. In this note we prove an estimate for the probability that none of several
events will occur provided that some of those events are dependent. This estimate (essen-
tially due to Filaseta, Ford, Konyagin, Pomerance and Yu) can be applied to coverings of
Z by systems of congruences, coverings of Z

d by lattices and similar problems. Although
this result is similar to the Lovász local lemma, it is independent of it. We will also prove
a corollary in the style of the local lemma and show that in some situations our lower
bound is stronger than that given by the Lovász lemma. As an illustration, we shall make
some computations with an example considered earlier by Chen.

1. Introduction

Let (Ω,F , P) be a probability space. Throughout, we shall use the notation Ec = Ω\E for
every event E. If the events E1, . . . , Eℓ are all independent of one another (more precisely,
e.g., for every j = 2, . . . , ℓ, the events Ej and ∪j−1

i=1Ei are independent), then

P(∩ℓ
k=1E

c
k) = P(Ec

1)P(Ec
2) . . . P(Ec

ℓ) =

ℓ∏

k=1

(1 − P(Ek)).

This implies that if P(Ek) < 1 for each k, then there is a positive probability that none
of the events E1, . . . , Eℓ will occur. The Lovász local lemma (Erdős and Lovász, 1975)
gives the same conclusion when the mutual independence of events is replaced by their
‘rare’ dependence. The ‘symmetric’ version of the local lemma states that if P(Ek) 6 p for
every k = 1, . . . , ℓ, where each of the events Ek is independent of all other events except
for at most d of them, then P(∩ℓ

k=1E
c
k) > 0 provided that ep(d + 1) 6 1. See, for instance,

(Alon and Spencer, 2000), (Chen, 1997) for more precise and more general versions of this
statement, although, in general, the constant e which occurs in this inequality cannot be
replaced by any smaller constant (Shearer, 1985). There are many useful applications of
the Lovász local lemma in combinatorics, graph theory, number theory as well as in other
fields of mathematics, statistics and computer science (Czumaj and Scheideler, 2000),
(Deng, Stinson and Wei, 2004), (Dubickas, 2008), (Grytczuk, 2007), (Scott and Sokal,
2006), (Srinivasan, 2006), (Szabó, 1990).

Recently, in a paper of Filaseta, Ford, Konyagin, Pomerance and Yu (2007) devoted
to the study of covering systems of congruences, another lower bound for the quantity
P(∩ℓ

k=1E
c
k), where some of the events Ei and Ej are dependent, was obtained. Although

2000 Mathematics Subject Classification. 60A99, 60C05, 11B25.
Key words and phrases. dependent events, Lovász local lemma, covering systems.

1

* Manuscript



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
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their lemma (see Lemma 2.1 in (Filaseta et al., 2007)) is given in terms of densities of
covering systems, a corresponding probabilistic statement asserts that

P(∩ℓ
k=1E

c
k) >

ℓ∏

k=1

(1 − P(Ek)) −
∑

16i<j6ℓ
Ei,Ej dependent

P(Ei)P(Ej) (1)

if E1, . . . , Eℓ are events in a probability space with the property that if Ek is independent
individually of the events Ej1, . . . , Ejt

, then it is independent of every event in the sigma
algebra generated by Ej1 , . . . , Ejt

(see Remark 2 in (Filaseta et al., 2007)).
Indeed, let rk, nk, k = 1, 2, . . . , ℓ, be a collection of pairs of integers, where nk > 2

and rk ∈ {0, 1, . . . , nk − 1}. Here nk, k = 1, 2, . . . , ℓ, are not necessarily distinct, but
ri 6= rj if ni = nj . Let N be the least common multiple of the numbers n1, . . . , nℓ. Put
Ω = {1, 2, . . . , N}. Suppose that the sigma algebra F consists of all 2N subsets of Ω, and
that the distribution is uniform, namely, P(n) = 1/N for every n ∈ Ω. Assume that Ek is
the event that an integer n ∈ Ω belongs to the residue class rk (mod nk). It is easy see that
the events Ei and Ej are dependent if and only if gcd(ni, nj) > 1. Note that the density of
integers (in Z) which are not of the form rk (mod nk), where k = 1, . . . , ℓ, is equal to the
probability P(∩ℓ

k=1E
c
k). Using P(Ek) = |Ek|/|Ω| = 1/nk, one derives from (1) Lemma 2.1

of (Filaseta et al., 2007) stating that this density is at least

ℓ∏

k=1

(1 − 1/nk) −
∑

16i<j6ℓ
gcd(ni,nj)>1

1/(ninj).

In this note, we shall prove the following:

Theorem 1. Let Ej , j = 1, 2, . . . , ℓ, be events in a probability space (Ω,F , P) such that if,

for every j = 2, . . . , ℓ, the event Ej is independent of each of the events Ek1
, . . . , Ekt

, where

k1, . . . , kt are some indices of the set {1, 2, . . . , j−1}, then the events Ej and Ek1
∪· · ·∪Ekt

are also independent. Set Fj = ∪∗

i<jEi, where the union is taken over every index i < j for

which the events Ei and Ej are dependent. Then

P(∩ℓ
k=1E

c
k) >

ℓ∏

k=1

(1 − P(Ek)) −
ℓ∑

j=2

P(Ej)(1 − P(Ej+1)) . . . (1 − P(Eℓ))P(Fj). (2)

Clearly, P(Fj) 6
∑

∗

i<j P(Ei), where the sum is taken over every i < j for which the

events Ei and Ej are dependent. So (2) implies that

P(∩ℓ
k=1E

c
k) >

ℓ∏

k=1

(1 − P(Ek)) −
∑

16i<j6ℓ
Ei,Ej dependent

P(Ei)P(Ej)(1 − P(Ej+1)) . . . (1 − P(Eℓ)). (3)

From (1 − P(Ej+1)) . . . (1 − P(Eℓ)) 6 1, we see that (3) yields (1).
Note that (2) is stronger than (3) and (1). In fact, F c

j = ∩∗

i<jE
c
i , where the intersection

is taken over every index i < j for which the events Ei and Ej are dependent. Writing in
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(2)

P(Fj) = 1 − P(F c
j ) = 1 − P(∩∗

i<jE
c
i ),

one can estimate each P(Fj) from above, using an estimate on P(∩∗

i<jE
c
i ) from below, as

in (2). The latter intersection contains strictly less than j 6 ℓ terms, so one can continue
in this way step by step.

Corollary 2. Let E1, . . . , Eℓ be events in a probability space (Ω,F , P) satisfying the con-

dition of Theorem 1, and let α and β be two positive real numbers satisfying

α(eβ − 1) 6 1. (4)

If each event is independent of all the other events except for at most d of them and

P(Ej) 6 p for every j = 1, . . . , ℓ, where p 6 min{α/d, 1 − e−β/ℓ}, then there is a nonzero

probability that none of the events occur.

Note that if p = max16j6ℓ P(Ej) < 1/ℓ, then

P(∩ℓ
k=1E

c
k) = 1 − P(∪ℓ

k=1Ek) > 1 −
ℓ∑

k=1

P(Ek) > 1 − ℓp > 0.

If p 6 1/(e(d + 1)), then P(∩ℓ
k=1E

c
k) > 0, by the Lovász local lemma. The same conclusion

P(∩ℓ
k=1E

c
k) > 0 follows from Corollary 2, if, say, ℓ = 14, d = 5, p = 0.08. In this case,

ep(d + 1) > 1.3 and ℓp = 1.12 > 1, so neither the trivial bound nor the Lovász local
lemma are applicable. Even the stronger version of Lovász local lemma given by p(1 +
1/d)d(d + 1) 6 1 (see (3.1) in (Chen, 1997)) is not applicable, because 0.08(1 + 1/5)56 =
1.1943 · · · > 1. However, taking α = 0.43 and β = 0.2 in Corollary 2, we see that the
conditions (4) and p 6 min{α/d, 1 − e−β/ℓ} hold, because 0.43(e1.2 − 1) = 0.9976 · · · < 1
and 0.08 < min{0.43/5, 1 − e−1.2/14} = 0.0821 . . . . So, for this choice of parameters, we
have P(∩14

k=1E
c
k) > 0.

The proofs of Theorem 1 and Corollary 2 are given in the next section. We stress that
our proof is just a probabilistic interpretation of a number-theoretic argument given in
(Filaseta et al., 2007), although the inequality (2) is slightly stronger than (1) and the
condition of the theorem is weaker. One may expect that the inequalities (1)− (3) can be
applied not only to covering systems of congruences of Z as in Theorem 1 of (Filaseta et
al., 2007), but also to covering systems of lattices that cover (or do not cover) the lattice
Z

d, where d is a positive integer, and also in some situations similar to those, where the
Lovász local lemma is applicable.

We remark that in most applications of the local lemma the condition of Theorem 1
(and that of Corollary 2) that the pairwise independence of events implies their union-wise
independence is satisfied, so these statements can be applied. In order to establish mutual
independence one can use, for example, a so-called Mutual Independence Principle stated
on p. 41 in (Molloy and Reed, 2002), which asserts that if X = X1, . . . , Xm is a sequence
of random experiments and E1, . . . , Eℓ is a set of events, where each Ek is determined by
Gk ⊆ X, and Gk ∩ (Gk1

, . . . , Gkt
) = ∅, then Ek is mutually independent of {Ek1

, . . . , Ekt
}.
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In conclusion, we shall give three simple examples. The first uses covering systems of
congruences and shows that in some cases the inequality (2) is sharp, although (1) and
(3) are not. The second shows how Theorem 1 can be applied to covering systems of Z

d

by lattices. The third example is taken from Chen’s paper (1997). It is given in (Chen,
1997) to demonstrate that a better version of the Lovász local lemma beats all the previous
bounds. We show that the bound (3) is even stronger for the same choice of probabilities
and the same ‘dependency digraph’.

2. Proofs

Proof of Theorem 1: The inequality (2) clearly holds for ℓ = 1, because P(Ec
1) = 1 −

P(E1). Suppose that it holds for ℓ = l − 1, namely,

P(∩l−1
k=1E

c
k) >

l−1∏

k=1

(1 − P(Ek)) −
l−1∑

j=2

P(Ej)(1 − P(Ej+1)) . . . (1 − P(El−1))P(Fj). (5)

Set Bj = ∩k6jE
c
k. Clearly, Bl = Bl−1∩Ec

l , so Bl ⊆ Bl−1 and P(Bl−1) = P(Bl)+P(Bl−1∩El).
Let J(j) be the subset of all indices of the set {1, 2, . . . , j− 1} for which the events Ej and
Ei, where i is a fixed element of J(j), are independent. Let I(j) = {1, 2, . . . , j − 1} \ J(j),
so that Fj = ∪i∈I(j)Ej. By the condition of the theorem, the events El and ∪i∈J(l)Ei are
independent, so the events El and Ω \ ∪i∈J(l)Ei = ∩i∈J(l)E

c
i are also independent. Hence,

using Bl−1 ⊆ ∩i∈J(l)E
c
i , we deduce that

P(Bl−1 ∩ El) 6 P(∩i∈J(l)E
c
i ∩ El) = P(∩i∈J(l)E

c
i )P(El).

Note that ∩i∈J(l)E
c
i is contained in the union of Bl−1 and Fl, so P(∩i∈J(l)E

c
i ) 6 P(Bl−1)+

P(Fl). It follows that

P(Bl−1) = P(Bl) + P(Bl−1 ∩ El) 6 P(Bl) + P(El)(P(Bl−1) + P(Fl)),

giving
P(Bl) > P(Bl−1)(1 − P(El)) − P(El)P(Fl).

Since Bl−1 = ∩l−1
k=1E

c
k, inserting (5) into the right hand side of this inequality, we find that

P(Bl) = P(∩l
k=1E

c
k) is at least

l∏

k=1

(1 − P(Ek)) − P(El)P(Fl) − (1 − P(El))
l−1∑

j=2

P(Ej)(1 − P(Ej+1)) . . . (1 − P(El−1))P(Fj),

which is equal to

l∏

k=1

(1 − P(Ek)) −
l∑

j=2

P(Ej)(1 − P(Ej+1)) . . . (1 − P(El))P(Fj).

So (2) holds for ℓ = l. This completes the proof of the theorem by induction. �

Proof of Corollary 2: Without loss of generality we may increase each P(Ej) to p, so
assume that P(Ej) = p for every j = 1, . . . , ℓ. Note that each Ej is independent of the

event ∪
(d)
i<jEi, where (d) means that at most d elements of the union are omitted (those



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

AN ESTIMATE FOR THE PROBABILITY OF DEPENDENT EVENTS 5

dependent with Ej), so for each fixed j the sum on the right hand side of (3) contains at
most d elements. Hence, in order to show that P(∩ℓ

k=1E
c
k) > 0, by (3), it suffices to prove

the inequality

(1 − p)ℓ > dp2(1 + (1 − p) + (1 − p)2 + · · ·+ (1 − p)ℓ−2). (6)

The right hand side of (6) is strictly smaller than

dp2(1 + (1 − p) + (1 − p)2 + · · · + (1 − p)ℓ−1) = dp21 − (1 − p)ℓ

1 − (1 − p)
= dp(1 − (1 − p)ℓ).

Dividing both sides of (6) by (1−p)−ℓ, we see that P(∩ℓ
k=1E

c
k) > 0 if dp((1−p)−ℓ −1) 6 1.

From p 6 1−e−β/ℓ it follows that (1−p)−ℓ 6 eβ, hence (1−p)−ℓ−1 6 eβ−1. Moreover, we
have pd 6 α. Multiplying these two inequalities and using (4), we obtain dp((1−p)−ℓ−1) 6

α(eβ − 1) 6 1, which is the required inequality. �

3. Examples

Suppose that E1, E2, E3 are the events that n ∈ Ω = {1, 2, . . . , 15} belongs to the the
residue classes 1 (mod 3), 1 (mod 5) and 8 (mod 15), respectively. Then Ec

1 ∩ Ec
2 ∩ Ec

3 is
the event that n ∈ Ω is one of the numbers 2, 3, 5, 9, 12, 14, 15. It follows that

P(Ec
1 ∩ Ec

2 ∩ Ec
3) = 7/15.

The events E1 and E2 are independent, whereas the events E1 and E3 (and also E2 and E3)
are dependent. Clearly, P(E1) = 1/3, P(E2) = 1/5, P(E3) = 1/15. Note that F3 = E1∪E2,
so

P(F3) = P(E1) + P(E2) − P(E1 ∩ E2) = 1/3 + 1/5 − 1/15 = 7/15.

Thus the right hand side of (2) is equal to

(1−P(E1))(1−P(E2))(1−P(E3))−P(E3)P(F3) = (1−1/3)(1−1/5)(1−1/15)−7/225 = 7/15.

So we have an equality in (2). In other words, 7/15 is the density of integers which do not
belong to the arithmetic progressions 3k1 + 1, 5k2 + 1, 15k3 + 8, where k1, k2, k3 ∈ Z. The
right hand sides of both (1) and (3) are equal to

(1 − P(E1))(1 − P(E2))(1 − P(E3)) − P(E1)P(E3) − P(E2)P(E3) = 104/225,

which is 0.46222 · · · < 0.466666 · · · = 7/15.

Next, suppose that m, d and qij > 2, where 1 6 i 6 m and 1 6 j 6 d, are positive
integers. Let rij ∈ {0, 1, . . . , qij − 1}, and let Λi = (qi1Z + ri1, . . . , qidZ + rid), i = 1, . . . , m,
be some m lattices in Z

d. Suppose that, for every j = 1, . . . , d, the numbers q1j , . . . , qmj are
pairwise coprime. Set Qk = qk1qk2 . . . qkd for k = 1, . . . , m. We claim that, for any s lattices
of the form Lt = (Q1Z + mt1, . . . , QdZ + mtd), t = 1, . . . , s, where mtj ∈ {0, 1, . . . , Qj − 1},
the lattices Λ1, . . . , Λm, L1, . . . , Ls do not cover Z

d if

s < (Q1 − 1)(Q2 − 1) . . . (Qm − 1). (7)

Indeed, by the same argument as in the introduction, we can describe Ei as the event that a
point in Z

d belongs to the lattice Λi for i = 1, . . . , m. Let Em+1 be the event that a point in
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Z
d belongs to the union L1∪· · ·∪Ls. The events Ei and Ej are independent if 1 6 i < j 6 m,

whereas the events Ei and Em+1 are dependent for each i = 1, . . . , m. Clearly, P(Ei) = 1/Qi

for i = 1, . . . , m and P(Em+1) 6 s/(Q1 . . . Qm). Since Fm+1 = ∪m
i=1Ei, we have

1 − P(Fm+1) = 1 − P(∪m
i=1Ei) = P(∩m

i=1E
c
i ) =

m∏

i=1

(1 − P(Ei)) = (1 − 1/Q1) . . . (1 − 1/Qm).

Assume that Z
d ⊆ Λ1 ∪ . . .Λm ∪ L1 ∪ . . . Ls. Then P(Ec

1 ∩ · · · ∩ Ec
m+1) = 0. Thus (2) with

ℓ = m + 1 implies that

(1 − 1/Q1)(1 − 1/Q2) . . . (1 − 1/Qm)(1 − P(Em+1)) 6 P(Em+1)P(Fm+1)

= P(Em+1)(1 − (1 − 1/Q1)(1 − 1/Q2) . . . (1 − 1/Qm)).

Hence (1 − 1/Q1)(1 − 1/Q2) . . . (1 − 1/Qm) 6 P(Em+1). Using P(Em+1) 6 s/(Q1 . . . Qm),
we deduce that s > (Q1 − 1)(Q2 − 1) . . . (Qm − 1), contrary to (7).

Finally, we shall consider Example 1 of (Chen, 1997), where the events E1, . . . , E7 have
a dependency digraph

D = {(1, 2), (1, 3), (2, 1), (2, 4), (2, 5), (3, 1), (3, 6), (3, 7), (4, 2), (5, 2), (6, 3), (7, 3)}

∪{(i, i) : 1 6 i 6 7}.

This means that, for each i = 1, . . . , 7, the event Ei is mutually independent of the events
{Ej : (i, j) /∈ D}. Assume, in addition, that Ei is independent of ∪j<i,(i,j)/∈DEj , so that
Theorem 1 is applicable.

As in (3.13) of (Chen, 1997), suppose first that pi = P(Ei) are given by

(p1, p2, p3, p4, p5, p6, p7) = (1/9, 9/64, 9/64, 1/8, 1/8, 1/8, 1/8).

It was observed in (Chen, 1997) that the above mentioned symmetric version of the Lovász

lemma is inapplicable. The trivial bound P(∩7
k=1E

c
k) > 1 −

∑7
k=1 pi gives

P(∩7
k=1E

c
k) > 31/288 = 0.1076 . . . .

The improved version of the Lovász lemma (see Theorem 1 and (3.16) in (Chen, 1997))
yields

P(∩7
k=1E

c
k) > 0.1456 . . . .

However, our inequality (3) gives

P(∩7
k=1E

c
k) >

7∏

k=1

(1 − pk) − p1p2(1 − p3)(1 − p4)(1 − p5)(1 − p6)(1 − p7)

−p1p3(1 − p4)(1 − p5)(1 − p6)(1 − p7) − p2p4(1 − p5)(1 − p6)(1 − p7)

−p2p5(1 − p6)(1 − p7) − p3p6(1 − p7) − p3p7

= 46745849/150994944 = 0.3095 . . . ,

which is better.
Another choice p1 = p2 = · · · = p7 = p = 27/256 (see (3.17) in (Chen, 1997)) with

the same dependency digraph D as above gave the following lower bounds on P(∩7
k=1E

c
k):
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0.1334 . . . , 0.2617 . . . and 0.3507 . . . (see (3.18) and (3.19) in (Chen, 1997)). Once again,
a simple computation shows that our bound (3)

P(∩7
k=1E

c
k) > (1 − p)7 − p2((1 − p)5 + (1 − p)4 + (1 − p)3 + (1 − p)2 + (1 − p) + 1)

= 114529002852169/281474976710656 = 0.4068 . . .

gives a slightly better numerical value.

This research was supported in part by the Lithuanian State Studies and Science Foun-
dation. The author thanks a referee for pointing out several inaccuracies and supplying
with a useful reference.

References

Alon, N., Spencer, J., 2000. The Probabilistic Method. Wiley-Interscience, New York, 2nd ed.
Chen, J., 1997. Revisit the Lovász local lemma. J. Theoret. Probab. 10, 747-758.
Czumaj, A., Scheideler, C., 2000. Coloring nonuniform hypergraphs: a new algorithmic approach to the general
Lovász local lemma. Random Structures and Algorithms. 17, 213-237.
Deng, D., Stinson, D.R., Wei, R., 2004. The Lovász local lemma and its applications to some combinatorial arrays.
Des. Codes Cryptogr. 32, 121-134.
Dubickas, A., 2008. An approximation by lacunary sequence of vectors, Combin. Probab. Comput. (to appear).
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