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Stochastic orderings for discrete random variables

A Giovagnoli, University of Bologna,Italy
H.P. Wynn, London School of Economics, UK

December 3, 2007

Abstract

A number of application areas of statistics make direct use of stochastic orderings.
Here the special case of discrete distributions is covered. For a given partial ordering
� one can define the class of all �-order preserving functions x � y ⇒ g(x) ≤ g(y).
Stochastic orderings may be defined in terms of �: X �st Y ⇔ EXg(X) ≤ EY g(Y )
for all order-preserving g. Alternatively they may be defined directly in terms of a
class of functions F : X �st Y ⇔ EXg(X) ≤ EY g(Y ) for all f ∈ F . For discrete
distributions Möbius inversions plays a useful part in the theory and there are algebraic
representations for the standard ordering ≤ for integer grids. In the general case, based
on F , the notion of a dual cone is useful. Several examples are presented.

1 Introduction

Stochastic orderings and order preserving functions have a long history with perhaps the
most famous being those associated with the Gini coefficient. Some general works are Shaked
and Shanthikumar (1994) [13] and Müller and Stoyan (2002) [11] . Sub-areas include group
invariant ordering: Marshall and Olkin (1979) [10], Eaton (1980)[3] and Giovagnoli and
Wynn (1985) [5] and orderings related to association and dependence measures: Joe (1987)
[8] and Haberman (1982) [7]. Applications are to general statistical theory, particularly
testing: Bickel and Lehmann (1975) [1] and risk and insurance, eg Artzner et al (1999)[2].

One approach is to begin with a non-stochastic ordering betweeen variables, consider
the class of order preserving functions, and then make the variables stochastic and, via ex-
pectations, extend the ordering to random variables. These are sometimes called “integral”
stochastic orderings and this is the starting point of the present paper.

Most of the existing literature focuses on real (continuous) univariate or multivariate
random variables. There is less work on stochastic orderings for discrete random variables.
We try to give a general theory that includes a large class of examples. Although one
can consider some results for discrete random variables as specialisations of the continuous
theory, there are nice features of the discrete case which can be used for some closer analysis,
particularly the use of Möbius inversion.
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2 Partial orderings and order-preserving functions

2.1 Lattices

We shall consider a partially ordered set X , which is finite unless otherwise stated. We
shall use X both as the base set of the partial ordering and the support of a probability
distribution.

Definition 1 By a partial ordering on the base set X we mean a relationship � which
satisfies

1. for any x ∈ X , x � x,

2. for x, y ∈ X , x � y and y � x implies x = y,

3. for x, y, z ∈ X , x � y and y � z implies x � z.

In this paper z ≺ y will mean z � y, z 6= y. In some of the examples X will be specialised
to the product set

S = N1 × · · · ×Nd

where Ni = {0, . . . , ni−1}. We shall call the entrywise order x ≤ y ⇔ xi ≤ yi, (i = 1, . . . d)
the standard order on the discrete rectangular grid.

Definition 2 A total ordering on X is a partial ordering � with the the additional condition
that for any x, y ∈ X either x � y or y � x

Definition 3 For two partial orderings �σ,�τon X we shall say that �σ is a refinement
of �τ if for all x, y ∈ X

x �τ y ⇒ x �σ y.

In the following schematic array we have d = 2 and n1 = n2 = 4. We represent the total
order S by the location of the numbers 1 to 16 from the lower left hand corner, representing
the point (0, 0), to the top right hand corner, representing (3, 3).

7 11 15 16
4 8 12 14
2 6 10 13
1 3 5 9

We see that this total order is a refinement of the standard ordering. Taking any pair x, y
with x ≤ y we see that y is allocated a larger number than x.

We can define generalized upper and lower quadrants in X

Definition 4 A generalized upper quadrant is a subset of X of the form

Qu
x0

= {y ∈ X : x0 � y}

for a given x0 in X . Similarly, a generalized lower quadrant is

Ql
x0

= {y ∈ X : y � x0}
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We shall consider partial orderings such that for any two elements x,y there is always a
“minimal element” x∧ y such that x∧ y � x, x∧ y � y and if z � x, z � y, then z � x∧ y.
Similarly for a “maximal element” x ∨ y: thus the set X equipped with partial order �
becomes a lattice. The following holds

Remark 1. The intersection of generalized upper (lower) quadrants is an upper (lower)
quadrant, since

Qu
x ∩Qu

y = Qu
x∨y

Ql
x ∩Ql

y = Ql
x∧y

The term ideal is used in lattice theory, but we prefer quadrant because of its geometric
interpretation in the case of S defined above.

A more general notion is upper and lower sets.

Definition 5 A set U ⊆ X is an upper set if for all x ∈ U and all y ∈ X , if x � y, then
y ∈ U . Similarly for a lower set L.

It is straightforward to see that all upper (lower) quadrants are upper (lower) sets, but
not conversely.

Remark 2 A set U ∈ X is an upper set if and only if it is a union of upper quadrants;
that is to say there is a set I∗ such that

U = ∪x∈I∗Q
u
x

Similarly a lower set is a union of lower quadrants.

2.2 Order preserving functions

Definition 6 Given a partial ordering �, a �-preserving function g on X is one which
satisfies

x � y ⇒ g(x) ≤ g(y)

for all x, y ∈ X . A �-decreasing function is one which satisfies

x � y ⇒ g(x) ≥ g(y)

for all x, y ∈ X .

The characterisation of order preserving functions is a key result. We first need a definition.

Definition 7 For any set U ⊆ X we define the indicator functions

δU (x) =
{

1 if x ∈ U
0 otherwise

Theorem 1 Let U be the collection of all upper sets. A real function φ(x) is ≺-order
preserving if and only if there are constants α0 and αU ≥ 0 such that

φ(x) = α0 +
∑
U∈U

αUδU (x) (1)
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Proof. If φ(x) is expressible in the given form then it is clearly order preserving since each
δU (x) is order preserving from Remark 2 above.

In the other direction we proceed by construction in the case when all φ(x) values are
distinct. The proof is easily adapted for the case of “ties”. Let φ(x) be a �-increasing
function. Label the x to be increasing by increasing φ(x):

φ(x0) < φ(x1) < . . . < φ(xn−1)

For any xi ∈ X define
Uxi = {y ∈ X : φ(xi) ≤ φ(y)}.

Since the total ordering induced by φ(x) is a refinement of �, every Uxi is an upper set:

xi � y ⇒ φ(xi) ≤ φ(y) ⇒ y ∈ Uxi

Set α0 = φ(x0) and
αi = φ(xi)− φ(xi−1), i = 1, . . . , n− 1,

and αU = 0 for all other U ∈ U . Then the construction is

α0 +
n−1∑
i=1

αiUxi(xj) =
{

φ(x0) for j = 0
φ(x0) +

∑j
i=1 {φ(xi)− φ(xi−1)} = φ(xi) for j = 0, 1, ...n− 1

This completes the proof.

3 Stochastic orderings

Order preserving functions with respect to a partial ordering lead naturally to a certain
type of stochastic ordering. Let X and Y be two random variables defined with respect to
the same base measure on X . We shall use the notation pX(x) = Pr{X = x} and for a
subset A ⊂ X we shall sometimes write pX(A) = Pr{X ∈ A}. It is convenient to take the
base measure as uniform. We define a partial ordering � as above.

Definition 8 For two random variables X, Y on X , and a partial ordering, �, on X we
define an integral stochastic orderings of Type I as the stochastic ordering �stby

X �st Y ⇔ EX{g(X)} ≤ EY {g(Y )}

for all �-preserving functions g on X .

The characterisation of order preserving functions in Theorem 2 gives a characterisation of
all �st.

Theorem 2 For a partial ordering � on X and random variables X, Y we have X �st Y
if and only if for all upper sets U ⊆ X

Pr{X ∈ U} ≤ Pr{Y ∈ U}

4
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Proof. Using the characterisation (1) we have

EX{φ(X)} = α0 +
∑
U∈U

αUpX(U)

If pX(U) ≤ pY (U) then it follows, since all αU ≥ 0, that EX{φ(X) ≤ EY {φ(Y )}. The
converse follows by recalling that the indicator functions δU (x) are order preserving.

The dual ordering �̃ is given by

x�̃y ⇔ y � x

(the authors find it confusing to write �).

Definition 9 For two random variables X, Y on X and � on X define the dual Type I
integral stochastic �-ordering by

X�̃st
Y ⇔ EX{g(X)} ≤ EY {g(Y )}

for all �-decreasing functions g on X .

We obtain the characterisation of �̃st as in Theorem 1, by replacing upper sets by lower
sets.

Type I stochastic ordering is a special case of a more general type of integral stochastic
ordering based on some class of functions F .

Definition 10 For two random variables X, Y on X and � on X we define integral stochas-
tic orderings of Type II as the stochastic ordering �st by

X �st Y ⇔ EX{g(X)} ≤ EY {g(Y )}

for all function g in some class F .

For this more general class the characterisation of the ordering in terms of the probability
function p(x) or the cdf F (x) may be harder. There is an important technique for doing
this, in some cases, which is that of dual cones. We shall return to this later.

4 Möbius inversion

Let � be a partial ordering on a lattice X . Define the zeta function to be

ζ(x, y) =
{

1 if x � y
0 otherwise

(2)

(see for example [6]). Define the Möbius function µ by µ(x, x) = 1 and

µ(x, y) = −
∑

x�z≺y

µ(x, z). (3)

Möbius inversion gives the inversion of functions of a particular kind on X .

5
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Theorem 3 (Möbius inversion) For functions f, g on S such that

g(x) =
∑
z�x

f(z) =
∑
z∈S

ζ(z, x)f(z)

we have
f(x) =

∑
z�x

µ(z, x)g(z). (4)

Thus, µ is the inverse of ζ: let

δ(x, y) =
{

1, if x = y
otherwise

,

then ∑
x�z�y

µ(x, z) =
∑
z∈S

µ(x, z)ζ(z, y) = δ(x, y)

Definition 11 The cumulative distribution function (cdf) relative to � is

FX(x) = Pr{X � x} = Pr{X ∈ Ql
x}

and the dual cdf is
F̃X(x) = Pr{x � X} = Pr{X ∈ Qu

x}

Since
F (x) =

∑
z�x

pX(z) =
∑
z�x

ζ(z, x)pX(z),

Equation (??) gives
pX(x) =

∑
z�x

F (z)µ(z, x).

The above formulae have duals

pX(x) =
∑
z�x

µ̃(z, x)F̃X(x). (5)

It is a little easier to use a matrix notation at this stage. Thus, with a suitable ordering of
elements of S, we define the elements of [p] and [F ] for the vector of values of functions f
and F consistent with the ordering. Similarly, we can think of ζ and µ as matrices [ζ] and
[µ]. Then

[µ] = [ζ]−1

and the equation
[F ] = [ζ][p] (6)

gives, from Theorem 3
[p] = [µ][F ] (7)

6
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We have analogous formulae for the dual[
F̃

]
= [ζ̃][p],

[p] = ˜[µ] ˜[F ]

where ζ̃ and µ̃ is for the dual ordering �̃. Moreover, if we keep the order of the elements
in the matrix rows and columns as in the � ordering, the duals are obtained by taking the
transpose:

[µ̃] = [ζ̃]−1 = [ζ]T−1 = [µ]T .

It is useful to be able to switch between F and F̃ :

[F̃ ] = [ζ̃][µ][F ] = [ζ]T [µ][F ] = ([µ]T )−1[µ][F ]

4.1 Cone ordering

Using the above representations stochastic ordering, �st, can be represented as a matrix
cone ordering. We recall that a cone C in Rd with apex at the origin is a set with the
property

u ∈ C ⇒ ρu ∈ C

for any scalar ρ ≥ 0. Define the cone ordering

u �C v ⇔ v − u ∈ C

This is a generalisation of the standard ordering for which the cone is the non-negative
quadrant in Rd : {u : u ≥ 0}. The columns of a d×m matrix generate a cone by taking all
non-negative linear combinations.

Starting with the representation in Theorem 2 we collect together all the statements
that PrX(U) ≤ PrY (U) for all U ∈ U into a single matrix inequality:

A[pX ] ≤ A[pY ].

This can be written
A([pY ]− [pX ]) ≥ 0.

This, in turn, says that
[pY ]− [pX ] ∈ C∗(A)

the dual cone to the cone formed by the columns of A. From Möbius inversion we also have
a cone for F

[FY ]− [FX ] ∈ C∗(A[µ]).

The dual cone idea is useful for characterising some cases of Type II integral stochastic
orderings. This is when the class of function F is itself defined by a collection of linear
inequalities. These may be derived from the original lattice representation, as in the case
of Type I ordering above or directly in Rd.

7



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

As a small example consider the restriction of the so-called convex ordering on the non-
negative integers: N = {0, 1, . . . , N − 1} . Discrete convexity can be defined in terms of
second differences:

F = {f : f(i)− 2f(i + 1) + f(i + 2) ≥ 0, i = 0, 1, . . . , N − 3}

This can be written in matrix form: A[f ] ≥ 0.
Consider any ordering which has such a representation. From Definition 10, and using

[pX ] and [pY ] for the vector of probabilities for X and Y , the required condition for X ≺st Y
is

[pX ]T [f ] ≥ A[pY ]T [f ] ≥ 0 ⇔ ([pY ]− [pX ])T [f ] ≥ 0,

for all [f ] : A[f ] ≥ 0. These condition says that [f ] ∈ C∗(A), the dual cone of C(A) and
that [pY ]− [pX ] ∈ C∗∗(A) = C(A). Thus without computing C∗(A) we can characterise the
ordering in terms of constraints on the differences:

[d] = [pY ]− [pX ] = AT [α]

for some [α] ≥ 0.
Much of the effort of characterising the ordering reduces to a minimal representation,

which is equivalent to finding the extreme generators of the cone C(A); some of the rows
of A may be redundant. In the above example of convexity the representation, in terms of
the components of the differences [d], is

d0 = α0, d1 = −2α0+α1, . . . , di = αi−2−2αi−1+αi, . . . , δN−2 = dN−2−2αN−1, dN−1 = αN−1

The condition is that differences of probabilities are the backward second differences of the
nonnegative αi sequence.

Where there is a natural partial ordering the cone conditions on the [d] induce cone
conditions on D = [FY ]− [FX ] which we can write

[D] = [ζ][d] = [ζ]AT [α].

In the convex case we have the representation in terms of first differences:

D0 = α0, D1 = α1 − α0, . . . , Di = αi − αi−1, . . . , DN−2 = −αN−1, DN−1 = 0.

5 Algebra for (Z+)d

Because of its importance in many fields we study in more detail the infinite integer lattice
(Z+)d, namely the set of all non-negative integer d-vectors and the standard ordering ≤.
We show how to “algebraize” the problem.

We use a dummy variable x = (x1, . . . , xd) and code α (Z+)d by the monomial

xα = xα1
1 · · ·xαd

d .

8
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A set V ⊂ (Z+)d, or equivalently its indicator function δV (x) can be represented by a
(multivariate) polynomial generating function

V (x) =
∑
α∈V

xα

We first note that (
Z+

)d (x) =
1∏d

i=1(1− xi)

For upper and lower quadrants algebraically we have:

Ql
α(x) =

∑
0≤β≤α

xβ =
d∏

i=1

1− xαi+1
i

1− xi

and
Qu

α(x) =
∑
β≥α

xβ =
xα∏d

i=1(1− xi)

Motivation is provided by the identity in one-dimension:

1 + x + x2 + . . . + xn−1 =
1− xn

1− x
=

1
1− x

− xn+1

1− x

The left hand side of this identity is V (x) where V = {0, 1, . . . , n− 1}. The right hand side
has a term xn in the numerator, with an exponent one more than the largest exponent of
the left had side. This is expressed as the difference between the generating function of the
upper quadrant, in this case a integer “line” starting at n + 1, and that of Z+.

Möbius inversion is the relation between a single xα and the generating function for the
lower quadrant Ql

α given by the expansion of the numerator in

xα =
xα

∏d
i=1(1− xi)∏d

i=1(1− xi)

We are now in a position to describe the upper sets algebraically. This development is
partly based on Giglio and Wynn (2005) [4], in the context of system reliability. For two
vectors α, α′ ∈ Z+

α ∨ α′ =
(
max(α1, α

′
1), . . . ,max(αd, α

′
d)

)
.

The relation Qu
α ∩Qu

α′ = Qu
α∨α′ carries over to the generating functions:

Qu
α ∩Qu

α′(x) = Qu
α∨α′(x)

Now consider an upper quadrant Uα = ∪α∈U∗Qu
α. We can use an inclusion-exclusion

to obtain the generating function U(x). First index the elements of U∗ in some order:
α(1), . . . , α(|U∗|). Then the inclusion-exclusion lemma is:

U =
∑

i

Uu
α1
−

∑
i6=j

Uu
αi
∩ Uu

αj
+ . . .

9
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which can be written

U(x) =
∑

i

Uu
αi

(x)−
∑
i6=j

Uu
αi∨αj

(x) + . . .

The key construction in this section is to form a special polynomial WU∗(x) which holds the
term such as αi ∨ αj in the above expansion, together with the sign given by the inclusion-
exclusion. Thus

WU∗(x) =
∑

i

xαi −
∑
i6=j

xαi∨αj + . . .

In the algebraic theory this is called the Taylor polynomial.

Theorem 4 For an upper set U = ∪α∈U∗Qu
α and associated Taylor polynomial WU∗(x) the

following identity holds

U c(x) =
1−WU∗(x)∏d

i=1(1− xi)
,

where U c = Z+ \ U .

We do not give a formal proof of this but a simple example will make the identity clear.
Let d = 2 and U∗ = {(3, 0), (2, 1), (0, 2)}. Then

WU∗(x) = x3
1 + x2

1x2 + x2
2 − x3

1x2 − x2
1x

2
2 − x3

1x
2
2 + x3

1x
2
2 = x3

1 + x2
1x2 + x2

2 − x3
1x2 − x2

1x
2
2

Notice the redundancy in the inclusion-exclusion lemma. The formula in Theorem 4 gives

1 + x1 + x2 + x2
1 + x1x2 =

1− (x3
1 + x2

1x2 + x2
2 − x3

1x2 − x2
1x2)

(1− x1)(1− x2)

In general and using a compact notation we have

U c(x) =
(
Z+

)d (x)− U(x)

The formula in Theorem 4 becomes

U c(x) =
(
Z+

)d (x)(1−W (x))

Eliminating U c(x) we have
U(x) = W (x)

(
Z+

)d (x)

Again this can be verified for the example. In essence the proof of Theorem 4 is an elabo-
ration of this formula. These formulae lead to an algebraic characterisation of the standard
≤ and ≤st-orderings.

Definition 12 The generating function (gf) of a function g(x) on Z+ is defined to be

g∗(s) =
∑
α≥0

g(α)sα

10
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We also obtain a formula for the generating function of an order preserving function.
Thus, for a ≤-preserving function φ(x) with characterisation φ(x) = α0 +

∑
U∈U αUδU (x)

of Theorem 1,

φ∗(s) = α0 +
∑
U∈U

αUU(s) = α0 +

{∑
U∈U

αUWU (s)

}(
Z+

)d (s)

This follows simply by recalling that the generating function of an upper quadrant Qu
α is

Qu
α(x).

5.1 Moments

We now take x ∈ (Z+)d and consider the matrix indexed by x and α

ξ(x, α) = xα

Consider x as a support point of a random variable X and let the general α-moment be
mα = E(Xα), then in the matrix notation:

[m] = [ξ]T f = [ξ]T [µ][F ]

This gives another equivalent condition to stochastic ordering, in terms of moments:

[mY ]− [mX ] = [ξ]T [µ][α]

for [α] ≥ 0. This says that [mY ]− [mX ] lies in the cone generated by the columns of [ξ]T [µ].
Thus, because of the linear relationship between [Mα] and [p] for both Type I and II we can
express stochastic orderings in terms of moments. In the infinite support case it is known
that moments do not necessarily determine distributions, so we must restrict to the finite
support case or take care with convergence.

6 Examples

Example 1. The standard ordering on S = {0, ..., n − 1}. The stochastic ordering is the
standard univariate stochastic ordering

X ≤st Y ⇔ FY (z) ≤ FX(z) ⇔ F̃X(z) ≤ F̃Y (z),

for all z ∈ S. Here the stochastic ordering and its dual are equivalent since F̃ (z) = 1 −
F (z − 1). The extension to the multivariate case S = N1 × · · · ×Nd has been dealt with in
Section 5.

Example 2. Lexicographic total ordering ≺τ . In this case we fix an order of the variables
(dimensions). For ease of explanation take the standard order. Then favouring the earlier
entries we have in S = N1 × · · · ×Nd

(0, 0, . . . , 0, ) ≺τ (1, 0, . . . , 0) ≺τ . . . ≺τ (n1, 0, . . . , ) ≺τ

(n1, 1, . . . , 0) ≺τ . . . ≺τ (n1, n2, 0, . . . , 0) ≺τ . . . ≺τ

(n1, n2, . . . , nd − 1) ≺τ (n1, . . . , nd)

11



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

The table below shows the order of the entries for when d = 2 and n1 = n2 = 4

13 14 15 16
9 10 11 12
5 6 7 8
1 2 3 4

The general statement is that x � y if and only if the first nonegative entry in y − x is
positive. The stochastic version considers (for X and Y ), the probability that the first non-
zero entry of X − z (or Y − z) is positive. We could name this the lexigraphic stochastic
ordering.

Example 3. We give an example of Type II integral stochastic ordering which cannot
naturally be represented as Type I ordering, namely the supermodular stochastic order-
ing. Define, for a finite lattice the class of real supermodular functions namely functions
satisfying

F = {f : f(x ∧ y) + f(x ∨ y)− f(x)− f(y) ≥ 0},

for all x, y in the lattice X , where ∧ and ∨ are the join and meet on the lattice. For a recent
paper on this case see Promislow and Young (2005) [13]. This leads to a special matrix A as
in the discussion in Subsection 4.1. The dual cone analysis there leads to a representation,
similar in spirit to the convex function case. Each row of A has two ones and two minus
ones corresponding to the condition, and there is one such row for every pair (x, y) in the
lattice. Let α(x, y) ≥ 0 be the weighting for such a row. The representation is: for each z
in the lattice:

d(z) = pY (z)− pX(z) =
∑
(x,y)

α(x, y){δ(x ∧ y, z) + δ(x ∨ y, z)− δ(x, z)− δ(y, z)},

where the sum is over distinct pairs (x, y), ie every pair is visited once. As before we can
induce an ordering on the cdf’s: which is neatly express by simply replacing the δ functions
by ζ functions:

D(z) = FY (z)− FX(z) =
∑
(x,y)

α(x, y){ζ(x ∧ y) + ζ(x ∨ y)− ζ(x)− ζ(y)}

Example 4. In generalising univariate to multivariate orderings one is naturally led
to the “quadrant orderings”. We can express these in terms of the cdf’s, F , for the lower
quadrant and F̃ for the upper quadrant ordering. Thus the lower quadrant ordering is

X ≺Q Y ⇔ FX(z) ≤ FY (z)

for all z in the lattice. The task is to express this as a Type II ordering by finding the class
F in Definition 10. We use the dual cone argument in reverse. Since the condition on the
distributions is

[FX ]− [FY ] = [ζ][d] ≥ 0,

12
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we see that the function class is

[f ] = [ζ]T [α] = [ζ̃][α]

for [α] ≥ 0. This shows that f is the upper accumulation of a non-negative function and
we can find the conditions on f by Möbius inversion:

[µ̃][f ] = [µ]T [f ] = [α] ≥ 0

In summary, the class of function F for lower quadrant ordering is the cone of all positive
multiples all upper quadrant cdf’s. In some sense this is a canonical case of a cone ordering
in which Möbius inversion performs operation of computing the relevant dual cone.
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