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Introduction

In this paper, we consider the following problem: given a graph G, how many colours do we need to colour the edges of G in such a way that every cycle gets "many" colours?

Of course, the answer to this question depends on the precise meaning of "many". If we require that each cycle γ of length l of G gets l colours, i.e., every cycle is rainbow, then the minimum number of colours needed is equal to the maximum size of a block of G, as two edges of G belong to a common cycle if and only if they belong to the same block. If we require that every cycle gets at least 2 colours, i.e., every colour class induces a forest, then the minimum number of colours needed is the arboricity Arb(G) of G, and its determination is solved by the well-known Nash-Williams' theorem we recall now.

Denote by V (G) and E(G) the vertex set and the edge set of G. Also denote by |G| = |V (G)| (resp. G = |E(G)|) the order of G (resp. size). For A ⊆ V (G) denote by G[A] the subgraph of G induced by A. By Nash-Williams' theorem [START_REF] St | Edge-disjoint spanning trees of finite graphs[END_REF][START_REF]Decomposition of finite graphs into forests[END_REF], the arboricity of a graph G is given by the formula:

Arb(G) = max A⊆V (G),|A|>1 G[A] |A| -1 . (1) 
Here we consider a generalization of these two extreme cases. A general form of our problem is captured by the following:

Given an unbounded non-decreasing function f : N → N and an integer p, what is the minimum number N f (G, p) of colours needed to colour the edges of a graph G in such a way that each cycle γ gets at least min(f (|γ|), p + 1) colours?

Thus for p = 1 and f (n) ≥ 2 we get N f (G, p) = Arb(G). For an arbitrary graph G, it is usually difficult to determine N f (G, p). Our interest is to find upper bound for N f (G, p) in terms of other graph parameters, and upper bound for N f (G, p) for some nice classes of graphs and/or for some nice special functions f . Many colouring parameters are bounded for proper minor closed classes of graphs. It is natural to ask for which functions f is N f (G, p) bounded for any proper minor closed class C of graphs. We shall prove (Lemma 1) that if f (2 p-1 ) > p -1 for some value of p then there is a (quite small) minor closed class of graphs C, such that N f (G, p) is unbounded. On the other hand, we prove (Corollary 6) that if f (x) ≤ ⌈log 2 x⌉ for all x then N f (G, p) is not only bounded on proper minor closed classes of graphs, but actually bounded on a class C if and only if C has bounded expansion (to be defined in Section 3).

Next we consider the special function f (x) = x. For this special function, the parameter N f (G, p + 1) is denoted as Arb p (G) and is called the generalized p-arboricity of G. So Arb p (G) is the number of colours needed if we require that each cycle of G gets at least p + 1 colours or is rainbow if its length is smaller than p + 1. Note that if p = 1, then Arb p (G) is the arboricity Arb(G) of G. We shall relate the generalized p-arboricities of a graph to the density of its shallow topological minors. Toward this end we define the following notions, which are analogous to those defined in [START_REF]Grad and classes with bounded expansion I. decompositions[END_REF] and [START_REF]From sparse graphs to nowhere dense structures: Decompositions, independence, dualities and limits[END_REF]. The main difference is that here we consider multigraphs.

Let G be a multigraph and let r be a half integer. A multigraph H is a shallow topological minor of G at depth r if a ≤ 2r-subdivision of H is a subgraph of G. We denote by G r the class of the multigraphs which are shallow topological minors of G at depth r. Hence we have Notice that the class G 0 is exactly the monotone closure of G, that is the class of all the subgraphs of G.

We denote by ∇ / r (G) the maximum density of a graph in G r, that is:

∇ / r (G) = max H∈G r H |H| . (2) 
In this paper, we will give lower and upper bounds for Arb p (G) based on ∇ / p-1 2 (G)). For p = 1, notice that it is an easy consequence of Nash-Williams' Theorem that

⌈ ∇ / 0 (G)⌉ ≤ Arb 1 (G) ≤ 2⌈ ∇ / 0 (G)⌉.
In this paper, we shall show (Theorem 15) that for any positive integer p, there is a polynomial P p such that for any graph G,

∇ / p-1 2 (G) 1/p ≤ Arb p (G) ≤ P p ( ∇ / p-1 2 (G)). ( 3 
)
The paper is organized as follows: In Section 2, we consider the key case of graphs with bounded tree-depth. In particular, we establish that if f (2 p-1 ) > p -1 for some value of p then there is a minor closed class of graphs C (namely the class of graphs with tree-depth at most p) such that N f (G, p) is unbounded. In Section 3, we prove that if, for some unbounded non-decreasing function f and each fixed integer p, the value N f (G, p) is bounded for graphs in a class C, then the class C has bounded expansion. We prove also that, conversely, if C has bounded expansion and f 0 (x) = ⌈log 2 x⌉ then sup G∈C N f0 (G, p) is bounded for each integer p. In Section 4, we establish (3), which is the main result of this paper. For the sake of improving the readability of this paper, the proofs of two difficult lemmas used in Section 4 are actually postponed to Section 5. In Section 6 we consider a dual version of the problem.

Longest Cycles and Tree-Depth

Let us recall some definitions. The height of a rooted forest is the maximum number of vertices in a path from a root to a leaf. The closure of a forest F is the graph on V (F ) in which xy is an edge if and only if x is an ancestor of y or y is an ancestor of x. The tree-depth td(G) of a graph G is the minimum height of a rooted forest F such that G is a subgraph of its closure.

In this section we establish how the concept of tree-depth introduced in [START_REF]Tree depth, subgraph coloring and homomorphism bounds[END_REF] is related to the length of the longest cycle of a graph. It will follow that if f (2 p-1 ) > p-1 for some value of p then there is a minor closed class of graphs C on which N f (G, p) is unbounded. Lemma 1. Let p be an integer such that the function f satisfies f (2 p-1 ) > p -1. Let C be the class of graphs with tree-depth at most p.

Then N f (G, p) is unbounded on C.
Proof. Let N be an arbitrarily large integer. Let G be the closure of a rooted complete q-ary tree Y of height p, where q = N ( p 2 ) + 1. Let r be the root of Y . Given a leaf v of Y , there are N ( p 2 ) ways to colour the edges of the subgraph of G induced by v and its ancestors with N colours, and let φ(v) ∈ {1, . . . , N ( p 2 ) } be the encoding of this colouration corresponding to the leaf vertex v. For non leaf vertices v we define φ(v) by induction on the descending height as the majority value of φ(x) among the children of v. The root r has at least ⌈q/N ( p 2 ) ⌉ = 2 sons v with φ(v) = φ(r). Inductively, the root r is the root of a complete binary subtree Y ′ of Y , all vertices of which have the same φ-value as r. The closure of Y ′ contains a cycle γ of length 2 p-1 , and this cycle gets at most p -1 colours (see Fig 2). As min(f (|γ|), p) = p we conclude that N f (G, p) > N and thus N f (G, p) is unbounded. Remark that the proof of Lemma 1 is a variant of an old trick of R. Goldblatt. Lemma 1 shows that we cannot expect N f (G, p) to be bounded on proper minor closed classes of graphs if f (x) > ⌈log 2 x⌉. In Section 3, we shall show that if f (x) ≤ ⌈log 2 x⌉ then N f (G, p) are not only bounded on proper minor closed classes of graphs, but actually bounded on a class C if and only if C has bounded expansion. This provides yet another characterization of this robust notion.

We now prove that the connection with tree-depth shown in Lemma 1 is actually deeper in the sense that a 2-connected graph has no long cycles if and only if it has a small tree-depth. (Note that 2-connectivity has to be assumed.) Lemma 2. Let G be 2-connected graph and let L be the maximum length of a cycle in G. Then

1 + ⌈log 2 L⌉ ≤ td(G) ≤ L -1 2 + 2.
Proof. The first inequality is a consequence of the monotonicity of tree-depth and the exact values of tree-depth for cycles: td(C n ) = 1 + ⌈log 2 n⌉. The remaining of the proof will concern the second inequality. Consider a Depth-First Search tree Y of G and let r be the root of Y . Let h = height(Y ). For a vertex x let level(x) be the height of x in Y . The rooted tree Y naturally defines a partial order by x y if x belongs to the tree-path from r to y. A basic property of DFS-trees is that two adjacent vertices are always comparable with respect to (DFS-trees have no cross edges), so that G ⊆ Clos(Y ) thus td(G) ≤ h.

For a vertex x, let low(x) be the smallest vertex y (with respect to ) which is adjacent by an edge not in Y to a vertex z x. Notice that such a vertex exists as G is 2-connected and that for x = r it holds low(x) ≺ x. Moreover, if low(x) = r, the fact that low(x) is not a cut-vertex of G implies that there exists y such that low(y) ≺ low(x) ≺ y ≺ x.

Let P = (v 1 = r, . . . , v h ) be a longest root-to-leaf path of Y . We inductively define indexes a 1 , b 1 , . . . , a k , b k ∈ {1, . . . , h} as follows: let a 1 = h and let v b1 = low(v a1 ). For i ≥ 1, if b i = 1 then let v bi+1 be the minimum low of a vertex z such that v bi ≺ z ≺ v ai , let v ai+1 be such that v bi ≺ v ai+1 ≺ v ai and low(a i+1 ) = b i+1 , and let e i be a non-tree edge linking some w v ai and v bi . This process stops at some value k such that b

k = 1. Notice that a i+2 b i for 1 ≤ i ≤ k -2.
Let γ i be the fundamental cycle of e i and let γ be the symmetric difference of all the γ i 's. Then γ is a cycle and each edge of P ∪ {e 1 , . . . , e k } belongs to 2 of the cycles

γ 1 , . . . , γ k , γ. Hence 2(h+k -1) ≤ |γ 1 |+• • •+|γ k |+|γ| ≤ (k +1)L, i.e. h ≤ k+1
2 (L-2)+2 (see Fig. 2).

Moreover, γ contains at least two tree edges (either k = 1 and γ = γ 1 or k > 1 and then It is not clear whether the quadratic bound of Lemma 2 is tight. We propose the following problem (compare with [START_REF] Kenkre | A bound on the chromatic number using the longest odd cycle length[END_REF] where the chromatic number of a graph is bounded using the length of the largest odd cycle).

a 2 < a 1 and b k < b k-1 ) thus L ≥ |γ| ≥ k + 2 hence k ≤ L -2. Altogether, we obtain h ≤ L-1 2 + 2. v b 5 = r v a 1 = v h v b 1 v a 2 v b 2 v a 3 v a 5 = v b 3 v a 4 v b 4
Problem 1. For a 2-connected graph G, denote by L(G) the length of the longest cycle in G.

Does there exist a constant C such that for every 2-connected graph the following inequality holds: td(G) ≤ C L(G)?

Classes of graphs with bounded expansion

Classes with bounded expansion have been introduced in [START_REF] Nešetřil | The grad of a graph and classes with bounded expansion[END_REF][START_REF]Linear time low tree-width partitions and algorithmic consequences[END_REF][START_REF]Grad and classes with bounded expansion I. decompositions[END_REF] and are based on the boundedness of graph invariants similar to ∇ / r (G).

We denote [START_REF]Grad and classes with bounded expansion I. decompositions[END_REF][START_REF]From sparse graphs to nowhere dense structures: Decompositions, independence, dualities and limits[END_REF] by G ▽ r (resp. G ▽ r) the class of the simple graphs which are shallow minors (resp. simple shallow topological minors) of G at depth r, and we denote by

∇ r (G) (resp. ∇ r (G)) the maximum density of a graph in G ▽ r (resp. in G ▽ r), that is: ∇ r (G) = max H∈G ▽ r H |H| ∇ r (G) = max H∈G ▽ r H |H| . (4) 
Notice that the main difference between the definition of ∇ / r (G) and the one of ∇ r (G) stands in the way parallel edges are handled.

A class C has bounded expansion if sup G∈C ∇ r (G) is bounded for each value of r. It is obvious that ∇ r (G) ≥ ∇ r (G). However, it has been proved by Dvořák [START_REF] Dvořák | Asymptotical structure of combinatorial objects[END_REF][START_REF]On forbidden subdivision characterizations of graph classes[END_REF] that for each integer r, ∇ r (G) is bounded by a polynomial function of ∇ r (G). Hence a class C has bounded expansion if and only if sup G∈C ∇ r (G) is bounded . Theorem 3. Let f : N → N be an unbounded non-decreasing function with f (x) ≤ x and let g : N → N be defined by

g(p) = max{i, f (i) ≤ p}.
Then for every graph G and every integer r we have:

∇ r (G) ≤ N f (G, 2r + 1) 2r+1 g(2r + 1) 2 .
Proof. Let N = N f (G, 2r + 1) and let c : E(G) → [N ] be a colouring of the edges of G such that each cycle γ gets at least min(f (|γ|), 2r + 2) colours. For a subset I ∈ [N ] 2r+1 of 2r + 1 colours, let G I be the subgraph of G whose edges are coloured by colours in I. Then the maximum length of a cycle of G I is g(2r + 1). According to Lemma 2, blocks of G I have tree-depth at most g(2r+1)-1

2 + 2. Let K ∈ G ▽ r be such that K /|K| = ∇ r (G), let x 1 , . . . , x k be the roots of trees T 1 , . . . , T k of height at most r (corresponding to vertices h 1 , . . . , h k of K) and H ⊆ G[V (T 1 ) ∪ • • • ∪ V (T k )] be such that K ∼ = H/(E(T 1 ) ∪ • • • ∪ E(T k )).
If h i and h j are adjacent in K then there exists in H a path P i,j of length at most 2r + 1 linking x i and x j . Denote by A i,j a subset of 2r + 1 colours such that all the edges of P i,j have their colour in A i,j . For I ∈ [N ] 2r+1 , let H I be subgraph of H containing the edges of the paths P i,j for which A i,j = I. Let K I be the corresponding subgraph of K. As the blocks of H I are included in blocks of G I , they have tree-depth at most

g(2r+1)-1 2 
+2. As tree-depth is minor monotone, this bound also applies to the blocks of K I . Observe that a graph of tree depth k has density at most k -1, because if all edges are oriented from higher level end vertex to lower level end vertex, then each vertex has out-degree at most k -1. It follows that

K I /|K| ≤ K I /|K I | ≤ g(2r+1)-1 2 + 1
. By summing up over the possible choices of I we obtain

K /|K| ≤ N 2r + 1 g(2r + 1) -1 2 + 1 ≤ N f (G, 2r + 1) 2r+1 g(2r + 1) 2 .
Corollary 4. Let C be a class of graph and let f : N → N be an unbounded non-decreasing function with f (x) ≤ x.

If sup G∈C N f (G, r) < ∞ for every r ∈ N then C has bounded expansion.

Theorem 5. Let f 0 (x) = ⌈log 2 x⌉ and let r be an integer. There exists a polynomial P r such that for every graph G it holds

N f0 (G, r) ≤ P r ( ∇ 2 r (G)).
Proof. According to [START_REF] Zhu | Colouring graphs with bounded generalized colouring number[END_REF] there exists for each p ∈ N a polynomial Q p such that every graph G has a vertex colouring c :

V (G) → [Q p ( ∇ 2 p-1 (G))
] such that the subgraph induced by any i ≤ p colours has tree-depth at most i. Let p = r + 1 and let P r (X) =

Qr+1(X) 2 
. The graph G admits a vertex-colouring c :

V (G) → [Q r+1 ( ∇ 2 r (G))
] such that the subgraph induced by any i ≤ r + 1 colours has tree-depth at most i. Colour each edge {x, y} of G by the set {c(x), c(y)} (hence using P r ( ∇ 2 r (G)) colours). Let γ be a cycle of G with i ≤ r colours. By construction, the vertices of γ use at most i + 1 ≤ r + 1 colours hence td(γ) ≤ i + 1, thus |γ| ≤ 2 i . It follows that every cycle γ of G gets at least min(r + 1, f 0 (|γ|) colours.

Corollary 6. Let C be a class of graphs. Then the following are equivalent:

1. There exists non-decreasing unbounded f :

N → N such that ∀p ∈ N, sup G∈C N f (G, p) < ∞ 2. Let f 0 (x) = ⌈log 2 x⌉. Then ∀p ∈ N, sup G∈C N f0 (G, p) < ∞

the class C has bounded expansion.

Notice that the second condition is tight, according to Lemma 1.

Bounds on Arb p (G)

The lower bound

∇ / p-1 2 (G) 1/p
for Arb p (G) is easy.

Lemma 7. Let G be a graph and let p be a positive integer. Then (Arb p (G)) p is greater than or equal to the maximum arboricity of a multigraph H such that G contains a ≤ (p -1)-subdivision of H, that is, The upper bound is more involved. First, we introduce the admittedly rather technical definition of fraternal completion of oriented multigraphs.

(Arb p (G)) p ≥ max{Arb(H), H ∈ G p-1 2 } ≥ ∇ / p-1 2 (G). ( 5 
A digraph G is fraternally oriented if (x, z) ∈ E( G) and (y, z) ∈ E( G) implies (x, y) ∈ E( G) or (y, x) ∈ E( G). This concept was introduced by Skrien [START_REF] Skrien | A relationship between triangulated graphs, comparability graphs, proper interval graphs, proper circular arc graphs, and nested interval graphs[END_REF] and a characterization of fraternally oriented digraphs having no symmetrical arcs has been obtained by Gavril and Urrutia [START_REF] Gavril | An algorithm for fraternal orientation of graphs[END_REF], who also proved that triangulated graphs and circular arc graphs are all fraternally orientable graphs.

In the context of multigraphs, this notion may be extended as follows:

Definition 1. Let G be a directed multigraph and let a be a positive integer. A fraternal completion of G of depth a is a triple f = ((E 1 , . . . , E a ), w, κ), where

• E 1 = E( G)
is the arc set of G; for each 2 ≤ i ≤ a, E i is the arc set of a multigraph having V ( G) as its vertex set; for every 1 ≤ i < j ≤ a, E i ∩ E j = ∅ (although different arcs of E i and E j may have the same head and tail);

• for e ∈ 1≤i≤a E i , the weight w(e) of e is the integer i ∈ [a] such that e ∈ E i ;

• κ : 1<i≤a E i → 1≤i≤a E i 2 is such that for every e ∈ 1<i≤a E i with κ(e) = (f, g) we have tail(f ) = tail(g) w(e) = w(f ) + w(g)
tail(e) = tail(f ) head(e) = tail(g) head(f ) = head(g);

• conversely, for every i, j ∈ N, f ∈ E i and g ∈ E j such that i + j ≤ a, tail(f ) = tail(g) and head(f ) = head(g) there exists a unique e ∈ E i+j such that κ(e) ∈ {(f, g), (g, f )}.

We also define the arc set E f of the fraternal completion f by E f = 1≤i≤a E i (notice that E f includes no loop) and define a = depth(f) as the depth of f. A fraternal completion

f ′ = ((E ′ 1 , . . . , E ′ a ′ ), w ′ , κ ′ ) of G extends another fraternal completion f = ((E 1 , . . . , E a ), w, κ) of G (or is an extension of f) if • a ′ = depth(f ′ ) > a = depth(f), • for every 1 ≤ i ≤ depth(f) we have E ′ i = E i ,
• the restrictions of κ and κ ′ to E f coincide.

We now state an easy lemma of fraternal completions: Lemma 8. For every oriented multigraph G and every positive integer a,

• G has a unique fraternal completion of depth 1 defined by E 1 = E( G),

• every fraternal completion f of depth a has an extension of depth a + 1.

Proof. The first item is direct from the definition.

For the second item, let f = ((E 1 , . . . , E a ), w, κ) be a fraternal completion of G of depth a. Consider an arbitrary numbering ν of E f . Define

E a+1 = {e f,g : (f, g) ∈ E 2 f , w(f ) + w(g) = a + 1, ν(f ) < ν(g),
tail(f ) = tail(g), and head(f ) = head(g)},

where e f,g is an arc with tail(e f,g ) = tail(f ) and head(e f,g ) = tail(g); define the mapping κ ′ : 1≤i≤a+1 E i → E f by κ ′ (e) = κ(e) if w(e) ≤ a and κ ′ (e f,g ) = (f, g) for e f,g ∈ E a+1 ; also define w ′ : E f ∪ E a+1 by w ′ (e) = i e ∈ E i . Then f ′ = ((E 1 , . . . , E a+1 , w ′ , κ ′ ) is obviously an extension of f of depth a + 1.

Suppose f = ((E 1 , . . . , E a ), w, κ) is a fraternal completion of G of depth a. We associate to each arc e ∈ E f a walk W (e) of G defined as follows:

• If w(e) = 1 then W (e) is the walk e,

• Otherwise, if κ(e) = (f, g) then W (e) is the walk W (f ) followed by the reverse W (g) of the walk W (g), what we denote by

W (e) = W (f ) • W (g).
This way, each arc e of E f is associated a walk W (e) in G of length w(e) which has the same endpoints as e. An arc e ∈ E f is called simple if W (e) is a path. Let G be a directed multigraph, let f = ((E 1 , . . . , E a ), w, κ) be a fraternal completion of G of depth a. Let ≺ be the partial order on E f defined by transitivity from the conditions κ(e) = (f, g) =⇒ f ≺ e and g ≺ e.

Notice that if e ∈ E f and f ∈ E 1 we have e f if and only if f belongs to the walk W (e).

For i = 1, 2, . . . , a, let H i (resp. H ≤i ) be the multigraphs with vertex set V ( G) and arc set E i (resp. j≤i E j ). In particular, G = H 1 . For arcs e 1 , e 2 of G and a fraternal completion f = ((E 1 , . . . , E a ), w, κ) of G of depth a of G, say that a pair (e 1 , e 2 ) ∈ E 2 1 is a conflict if there exists arcs f 1 e 1 and f 2 e 2 and a directed path of length at most a of H ≤a starting with f 1 and ending at one of the endpoints of f 2 (notice that we allow

f 1 = f 2 ). Lemma 9. Assume G is an orientation of G, f is a fraternal completion of G of depth a. Assume that c : E( G) → [N ]
is a colouration of the edges of G such that for every conflict (e 1 , e 2 ) we have c(e 1 ) = c(e 2 ). Then every cycle γ gets at least min(|γ|, a + 1) colours.

Proof. Assume for contradiction that there exist in G a cycle γ = (v 1 , . . . , v |γ| ) which gets less than min(|γ|, a + 1) colours. We say a sequence (e 1 , e 2 , . . . , e q+1 ) of simple arcs in E f is admissible if the W (e i ) are pairwise arc-disjoint and form consecutive subpaths of γ and e 1 , . . . , e q form a directed path of H ≤a .

Choose an admissible sequence (e 1 , e 2 , . . . , e q+1 ) in such a way that i w(e i ) is maximal and then that q is minimum. Without loss of generality, we may assume that for 1 ≤ i ≤ q we have e

i = (v ai , v ai+1 ) with 1 = a 1 < a 2 < • • • < a q+1 ≤ |γ|.
First we show that q+1 i=1 w(e i ) ≥ min(a + 1, |γ|). Assume for contradiction that q+1 i=1 w(e i ) < min(a + 1, |γ|). Then e q+1 has v aq+1 and v aq+2 as endpoints with a q+1 < a q+2 < |γ| (actually we have a q+2 = i w(e i ) -1). Let g be the arc of G linking v aq+2 to the next vertex of γ. According to the maximality of i w(e i ), the sequence (e 1 , . . . , e q+1 , g) is not admissible hence e 1 , . . . , e q+1 is not a directed path, that is: e q+1 = (v aq+2 , v aq+1 ). As w(e q ) + w(e q+1 ) ≤ i w(e i ) ≤ a there exists an arc f in E f such that κ(f ) = (e q , e q+1 ) (see Fig 3). The arc f is clearly simple (W (f ) = W (e q )W (e q+1 ) or W (f ) = W (e q+1 )W (e q )). If κ(f ) = (e q , e q+1 ) then (e 1 , . . . , e q-1 , f, g) is admissible, and

q-1 i=1 w(e i ) + w(f ) + w(g) = q+1 i=1 w(e i ) + w(g) > q+1 i=1 w(e i ),

what contradicts the maximality of

i w(e i ). Otherwise, κ(f ) = (e q+1 , e q ). Then, (e 1 , . . . , e q-1 , f ) is an admissible sequence such that q-1 i=1 w(e i ) + w(f ) = q+1 i=1 w(e i ), what contradicts the minimality of q (for given i w(e i )).

Thus i W (e i ) = q+1 i=1 w(e i ) ≥ min(a + 1, |γ|).
By assumption, the cycle γ which gets less than min(|γ|, a+1) colours hence there exist

f 1 , f 2 ∈ i W (e i ) such that c(f 1 ) = c(f 2 ). Let b 1 , b 2 be such that f 1 ∈ W (e b1
) and f 2 ∈ W (e b2 ). Without loss of generality we assume b 1 ≤ b 2 . As f 1 e b1 , f 2 e b2 and as there exists by construction a (maybe empty) directed path of length at most a of H ≤a starting with e b1 and ending at one of the endpoints of e b2 we deduce that (f 1 , f 2 ) is a conflict, contradicting the hypothesis that c(f 1 ) = c(f 2 ).

To prove that Arb p (G) ≤ P p ( ∇ / p-1 2 (G)) for some polynomial P p , it suffices to find a fraternal completion f of an orientation G of G of depth p so that each edge e of G is in conflicts with at most P p ( ∇ / p-1 2 (G)) other edges. We shall see that this problem can be reduced to finding a fraternal completion with bounded in-degrees. Toward this end, let

C(f) =    j ∆ -( H ij ) : j i j < depth(f)    .
Lemma 10. For every arc e of G we have

{f ∈ E f : f e} ≤ C(f).
Proof. For each f e, there is a sequence of arcs g 1 , g 2 , . . . , g t in f such that g 1 = e, g t = f and g i covers g i-1 in ≺. So it suffices to show that for any g e with w(f ) = i, for any j > i, there are at most ∆ -( H j-i ) arcs g ′ with w(g ′ ) = j such that g ′ covers g in ≺. This is so because the number of such arcs g ′ is at most the number of arcs f ′ such that κ(g ′ ) ∈ {(g, f ′ ), (f ′ , g)} and hence at most the number of arcs f ′ with head(f ′ ) = head(g) in H j-i , which is at most ∆ -( H j-i ).

Lemma 11. For every arc e 2 of G there exist at most 3pC(f Proof. According to Lemma 10 there exists at most C(f) arcs f 2 ∈ p i=1 E i such that f 2 e 2 . Given an arc f 2 of H ≤p there exist at most (∆ -(

)(max(2, ∆ -( H p )) a arcs e 1 of G such that (e 1 , e 2 ) is a conflict. . . . γ e 1 e 2 e q e q+1 v a 1 v a 2 v a q v a q+1 v a q+2 f g
H p )-1)(1+• • •+∆ -( H p ) p-1 ) = ∆ -( H p ) p -1 arcs f 1 such
that there exists in H ≤p a directed path of length at most p starting with f 1 and ending at the head of f 2 . Similarly we have at most 1+• • •+∆ -( H p ) p arcs f 1 such that there exists in H p a directed path of length at most p starting with f 1 and ending at the tail of f 2 . Hence for each f 2 we have at most 3 max(2, ∆ -( H p ) p possibilities for f 1 . As there are |W (f 1 )| ≤ a arcs e 1 such that f 1 e 1 , we conclude. Lemma 12. Let Q 1 (X), . . . , Q p (X) be polynomials, and let P p be the polynomial defined by:

P p (X) = 6p(2 + Q p (X)) p ij <p j Q ij (X) + 1. ( 6 
)
Let G be a multigraph with a fraternal completion f of depth p such that

∀1 ≤ i ≤ p, ∆ -( H i ) ≤ Q i ( ∇ / (p-1)/2 (G)). ( 7 
)
Then Arb p (G) ≤ P p ( ∇ / p-2 2 (G)). ( 8 
)
(Of course, the polynomial P p depends on polynomials Q 1 , . . . , Q p . This dependence will be clear from the context.) 11

Proof. According to Lemma 11 and Lemma 9, G has a colouration of its edges by at most P p ( ∇ / (p-1)/2 (G)) colours such that every cycle γ gets at least min(p+1, |γ|) colours, that is Arb p (G)

≤ P p ( ∇ / p-1 2 (G)).
By Lemma 12, to prove that for some polynomial P p , Arb p (G)

≤ P p ( ∇ / p-1 2 (G)), it
suffices to prove that one can find a fraternal completion f of an orientation G of G of depth p so that ∆ -( H i ) is bounded by some polynomial function

Q i of ∇ / p-1 2 (G).
The construction of such a fraternal completion f is easy: Let H i be the underlying graph of H i . By definition, H 1 = G and for i = 1, 2, . . . , p -1, H i+1 is uniquely determined by H j for j = 1, 2, . . . , i. For i = 1, 2, . . . , p, we orient the edges of H i to obtain H i so that ∆ -( H i ) = ⌈ ∇ / 0 (H i )⌉. This defines a fraternal completion f of an orientation G of G of depth p. In the following, we shall show that for this fraternal completion f, ∆ -( H i ) is bounded by some polynomial function of ∇ / p-1 2 (G).

For i = 1, 2, . . . , p, let T i be the (i -1)-subdivision of the underlying graph

H i of H i . Hence H i ∈ T i ( i-1 2 ). In particular, H 1 = T 1 = G.
For integer m, let G • m be the multigraph with vertex set V (G) × [m] where {(x, i), (y, j)} is an edge of G • m of multiplicity k if and only if {x, y} is an edge of G of multiplicity k. In the following section, we shall prove the following two lemmas.

Lemma 13. Let G be a multigraph, let m be a positive integer and let r be a positive half-integer. Then

∇ / r (G • m) ≤ (2r(m -1) + 1) ∇ / r (G) + m 2 ∇ / 0 (G) + m -1. (9) 
Lemma 14. For every integer p ≥ 2, there is a polynomial

N p such that T p is a subgraph of G • N p ( ∇ / p-2 2 (G)).
From these lemmas will then follow the main result of this paper:

Theorem 15. For each integer p there exists a polynomial P p such that for every multigraph G it holds

∇ / p-1 2 (G) 1/p ≤ Arb p (G) ≤ P p ( ∇ / p-1 2 (G)).
In particular, Arb p and ∇ / p-1

2
are two polynomially equivalent multigraph invariants.

Proof. The inequality ∇ / p-1 2 (G) (G)).

Proofs of Lemmas 13 and 14

Proof of Lemma 13. The vertices of K • m are the pairs (v, i), v a vertex of G and 1 ≤ i ≤ m. The every vertex v of G, we say that (v, i) and (v, j) are twins in G • m and we denote by π the projection of G • m into G which maps (v, i) to v.

Let S be a subgraph of G • m which is (≤ 2r)-subdivision of a multigraph H such that

∇ / r (G • m) = H |H| .
Choose S with the minimal number of vertices.

A path of S corresponding to an edge of H is called a branch. The vertices of S corresponding to vertices of H are called principal vertices. The other vertices of S are subdivision vertices.

Let S 0 be the graph obtained from S by deleting all the branches which are not subdivided and let H 0 be the corresponding subgraph of H (S 0 is a (≤ 2r)-subdivision of H 0 and every branch of S 0 is a path of length at least 2). Then we have

H ≤ H 0 + m 2 G[π(V (H))] hence H |H| ≤ H 0 |H| + m 2 G[π(V (H))] |π(V (H))| . Thus ∇ / r (G • m) ≤ H 0 |H 0 | + m 2 ∇ / 0 (G).
First notice that no branch of S(H) contains two twin vertices, except if the branch is a single edge path linking two twin vertices (otherwise we can shorten the branch without changing H and |H|, see Fig 4). We define the multigraph H 1 and its (≤ 2r)-subdivision S 1 by the following procedure: Start with H 1 = H 0 and S 1 = S 0 . Then, for each subdivision vertex v ∈ S 1 having a twin which is a principal vertex of S 1 , delete the branch of S 1 containing v and the corresponding edge of H 1 . In this way, we delete at most (m -1)|H 0 | edges of H 1 . Thus

H1 |H1| ≥ H0
|H0| -(m -1) and S 1 is such that no subdivision vertex is a twin of a principal vertex.

Given H 1 we construct the conflict graph C of H 1 as follows: the vertex set of C is the edge set of H 1 and the edges of C are the pairs of edges {e 1 , e 2 } such that one of the subdivision vertices of the branch corresponding to e 1 is a twin of one of the subdivision vertex of the branch corresponding to e 2 . Note that graph C has maximum degree at most 2r(m -1) hence it is (2r(m -1) + 1)-colourable. Let H 2 be the subgraph of H 1 induced by a monochromatic set of edges of H 1 of size at least |H2| . Let S 2 be the corresponding subgraph of S 1 . If v is a principal vertex of S 2 , then two edges incident to v cannot have their other endpoints equal or twins (because of the colouration). Let S 3 = π(S 2 ) be the projection of S 2 on G. Because of the above colouration, S 3 is a (≤ 2r) subdivision of H 2 . Hence

∇ / r (G) ≥ H 2 |H 2 | ≥ H 1 (2r(m -1) + 1)|H 1 | ≥ H 0 (2r(m -1) + 1)|H 0 | - m -1 2r(m -1) + 1
and the result follows.

Proof of Lemma 14 Let f = ((E 1 , . . . , E p ), w, κ) be a fraternal completion of G of depth p constructed in such a way that for i = 1, 2, . . . , p, ∆ -(

H i ) = ∇ / 0 (H i ). G H ≤9 1 1 1 1 1 2 4 2 2 3 w(h) = 4 w(g) = 3 w(f ) = 7 9 T 2 e1 e2 e3 e4 e5 
Figure 5: Example of graphs defined by a fraternal completions. On the left, the graph G. In the middle, arcs of a fraternal completion of depth 9 form the multigraph H ≤9 ; here, κ(f ) = (g, h); the walk W (h) = (e 1 e 2 e 4 e 5 ) associated to h is simple but the walk W (f ) = (e 3 e 4 e 5 e 5 e 4 e 2 e 1 ) associated to f is not. On the right, the 1-subdivision of the arcs in E 2 define the undirected multigraph T 2 .

In the following, we shall prove that for 2 ≤ a ≤ p there is a polynomial N a such that the graph T a can be injectively embedded into a blowing G

• N a ( ∇ / a-2 2 (G)) of G.
Observe that if this is true for a = 2, . . . , i, then by using Lemma 13, we can conclude that there is a polynomial

P i such that ∇ / 0 (H i ) ≤ P i ( ∇ / i-1 2 (G)).
By definition, for a ≥ 1, T a is obtained from the empty graph on V (G) by adding, for each arc e = xy in E a , an induced path of length a connecting x and y. Each arc e = xy in E a corresponds to a walk W (e) in G of length a from x to y. By sending the induced x-y-path of length a in T a to the corresponding walk in G connecting x and y, we obtain a homomorphism, say f , from T a to G. However, f is not an embedding, as many vertices of T a may have the same image. Indeed, V (T a ) is the union of V (G) and a set of |E(T a )|(a -1) added vertices which are the interior vertices of the walks W (e). If for some integer m, each vertex v of G is contained in at most m -1 of the walks W (e) as an interior vertex, then T a embeds into G • m, as we can assign to each vertex in f 

(x) = x+1 2 + 1, T 2 embeds into G • N 2 ( ∇ / 0 (G)).
Assume now that the polynomial N i is defined for i = 2, . . . , a -1 and T i embeds into G • N i ( ∇ / i-2 2 (G)). Each arc e = xy ∈ E a corresponds to two arcs g ∈ E i and g ′ ∈ E j with i + j = a, with g = xz and g ′ = yz for some z. A vertex v is an interior vertex of the walk W (e) if and only if either v = z or v is an interior vertex of W (g) or W (g ′ ). By our definition of the fraternal completion, v has in-degree at most ∆ -( H i ) = ⌈ ∇ / 0 (H i )⌉ in H i . By induction hypothesis and the observation above, ∇ / 0 (H i ) ≤ P i ( ∇ / i-1 2 (G)) for some polynomial P i . This implies that for some polynomial Q, each vertex v has in-degree at most d = Q( ∇ / a-2 2 (G)) in H ≤(a) . So for each vertex v of G, there are at most d 2 pairs of arcs g, g ′ for which there is an edge e = xy in E a with k(e) = (g, g ′ ). For an edge e = xy ∈ E a , we say a vertex v is the transfer vertex of W (e) if k(e) = (g, g ′ ), g = (x, v) and g ′ = (y, v). An interior vertex of W (e) is either a transfer vertex of W (e) or an interior vertex of g for some g ∈ E i where i ≤ a -1.

By induction hypothesis, there is a polynomial Z such that a vertex v appears at most Z( ∇ / a-3 2 (G)) times as an interior vertex of a walk W (g) for g ∈ ∪ a-1 i=1 E i . For each g ∈ E i for some i ≤ a -1, there are at most 2d edges e ∈ E a such that k(e) = (g, g ′ ) or k(e) = (g ′ , g). Therefore, each vertex v appears at most 

The Dual Version

The problem addressed in this paper can be considered in the more general context of matroids: Problem 2. Let M be a matroid and let p be an integer. What is the minimum number Arb p (M) needed to colour the elements of M in such a way that each circuit γ gets at least min(|γ|, p + 1) colours?

It would be interesting to find a natural class of matroids for which Arb ⋆ p (M) is uniformly bounded. For graphs this leads to the following problem: Problem 3. Let G be a graph and let p be an integer. What is the minimum integer N = Arb ⋆ p (G) such that the edge set of G may be coloured using N -colours in such a way that each cut ω gets at least min(|ω|, p + 1) colours?

It is maybe interesting that the dual version of our problem may present different aspects. The well known theorem of Erdős [START_REF] Erdős | Graph theory and probability[END_REF] which asserts that there exists a graph of order at least n, girth at least g and chromatic number at least 2N + 1. As the chromatic number of a graph is bounded by χ(G) ≤ 2Arb(G) + 1 we get that there exist graphs with arbitrarily large girth and arboricity (hence arbitrarily large Arb p ). The notion

Figure 1 :

 1 Figure 1: The closure of Y ′ contains a cycle γ of length 2 p-1 , and this cycle gets exactly p -1 colours

Figure 2 :

 2 Figure 2: Illustration of the proof of Lemma 2. Cotree edge e i links va i (or one of its symmetric difference of the γ i 's

)

  Proof. Let c be an edge colouring of G with a set J of Arb p (G) colours such that every cycle C of G gets at least min(|C|, p + 1) colours. Assume that G includes a ≤ (p -1)subdivision S of a multigraph H. Colour each edge e of H by the set X of colours used by the edges of the path of length at most p in G corresponding to e in S. The total number of colours used by edges of H is at most the number of ≤ p-subsets of the J, which is less than (Arb p (G)) p . If (Arb p (G)) p < Arb(H), then H has a monochromatic cycle, each edge being coloured by a set X of at most p colours. Then the corresponding cycle C of G uses at most |X| < p + 1 colours and has length at least 2|X|, contradicting the colouring assumption. Thus (Arb p (G)) p ≥ Arb(H).

Figure 3 :

 3 Figure 3: Illustration for the proof of Lemma 9.

Figure 4 :

 4 Figure 4: If a branch contains twin vertices, we shorten it.

H1

  2r(m-1)+1 . So H1 |H1| ≤ (2r(m -1) + 1) H2

  -1 (v) a distinct vertex of {v} × [m] in G • m as its image. Let us consider the case a = 2. By our construction, G has ∆ -( G) = ⌈ ∇ / 0 (G)⌉ Each arc e = xy in E 2 corresponds to a walk of the form (x, v, y), where (x, v) and (y, v) are arcs of G. Let d = ⌈ ∇ / 0 (G)⌉ = ∆ -( G). Then v is an interior vertex of a walk W (e) for e = xy in E 2 if and only if (x, v) and (y, v) are arcs of G. Hence v is contained in at most d 2 walks W (e) as a an interior vertex. Therefore for N 2

d 2 + 2 ( 2 ( 2 ( 2 ( 2 ( 2 (

 2222222 2d × Z( ∇ / a-2 G)) times as an interior vertex of W (e) for e ∈ E a . As d = Q( ∇ / a-2 G)) and ∇ / a-3 G) ≤ ∇ / a-2 G), with N a (x) = Q(x) 2 + 2Q(x)Z(x), each vertex appears at most N a ( ∇ / a-2 G)) -1 timesas an interior vertex of W (e) for some e ∈ E a . Therefore with m = N a ( ∇ / a-2 G)), T a embeds into G • m. This completes the proof of Lemma 14.
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dual to "G has girth at least k" (i.e. every cycle of G has length at least k) is "G is k-edge connected" (i.e. every edge cut of G has size at least k). However, there does not exist graphs with arbitrarily edge-connectivity and Arb ⋆ p . Precisely:

Proposition 16. Let G be a graph and let p be an integer.

, and there exists infinitely many (2p + 1)-edge connected graphs such that Arb ⋆ p (G) ≥ p + 2;

Proof. The first item is a consequence of [START_REF] Kundu | Bounds on the number of disjoint spanning trees[END_REF] where it is proved that a 2n-edge connected graph has at least n pairwise edge-disjoint spanning trees. 

The upper bound of the second item is similarly obtained by doubling each edge of G (thus obtaining a (4p+2)-edge connected multigraph) and considering 2p+1 edge-disjoint spanning trees of this new multigraph G ′ , and colouring each edge e of G by the set of (at most two) colours assigned to the two edges of G ′ corresponding to e. The lower bound is obtained by considering non-complete (2p + 1)-regular (2p + 1)-edge connected graphs G: if Arb p (G) = p + 1 would hold then each colour class would include a spanning tree and hence G ≥ (p + 1)(|G| -1) would hold.

The last item follows from the following construction. For integers L, p let C (p)

L be the multigraph obtained from a cycle of length L by replacing each edge by p parallel edges (see Fig. 6). The graph C (p) L is (2p)-edge connected. However, Arb p (C (p) L ) ≥ L 1/p as if each cut gets at least p + 1 colours then no two group of parallel edges can be coloured by the same set of colours.