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Abstract

The arboricity of a graph G is the minimum number of colours needed to colour the
edges of G so that every cycle gets at least two colours. Given a positive integer p, we
define the generalized p-arboricity Arbp(G) of a graph G as the minimum number of
colours needed to colour the edges of a multigraph G in such a way that every cycle C
gets at least min(|C|, p + 1) colours. In the particular case where G has girth at least
p + 1, Arbp(G) is the minimum size of a partition of the edge set of G such that the
union of any p parts induce a forest. If we require further that the edge colouring be
proper, i.e., adjacent edges receive distinct colours, then the minimum number of colours
needed is the generalized p-acyclic edge chromatic number of G. In this paper, we relate
the generalized p-acyclic edge chromatic numbers and the generalized p-arboricities of a
graph G to the density of the multigraphs having a shallow subdivision as a subgraph of
G.
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1. Introduction

In this paper, we consider the following problem: given a graph G, how many colours
do we need to colour the edges of G in such a way that every cycle gets “many” colours?
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Of course, the answer to this question depends on the precise meaning of “many”. If we
require that each cycle γ of length l of G gets l colours, i.e., every cycle is rainbow, then
the minimum number of colours needed is equal to the maximum size of a block of G, as
two edges of G belong to a common cycle if and only if they belong to the same block.
If we require that every cycle gets at least 2 colours, i.e., every colour class induces a
forest, then the minimum number of colours needed is the arboricity Arb(G) of G, and
its determination is solved by the well-known Nash-Williams’ theorem we recall now.

Denote by V (G) and E(G) the vertex set and the edge set of G. Also denote by
|G| = |V (G)| (resp. ‖G‖ = |E(G)|) the order of G (resp. size). For A ⊆ V (G) denote by
G[A] the subgraph of G induced by A. By Nash-Williams’ theorem [7, 8], the arboricity
of a graph G is given by the formula:

Arb(G) = max
A⊆V (G),|A|>1

⌈
‖G[A]‖

|A| − 1

⌉
. (1)

Here we consider a generalization of these two extreme cases. A general form of our
problem is captured by the following:

Given an unbounded non-decreasing function f : N → N and an integer p,
what is the minimum number Nf (G, p) of colours needed to colour the edges
of a graph G in such a way that each cycle γ gets at least min(f(|γ|), p+ 1)
colours?

Thus for p = 1 and f(n) ≥ 2 we get Nf (G, p) = Arb(G). For an arbitrary graph G, it is
usually difficult to determine Nf (G, p). Our interest is to find upper bound for Nf (G, p)
in terms of other graph parameters, and upper bound for Nf (G, p) for some nice classes
of graphs and/or for some nice special functions f .

Many colouring parameters are bounded for proper minor closed classes of graphs. It
is natural to ask for which functions f is Nf (G, p) bounded for any proper minor closed
class C of graphs. We shall prove (Lemma 1) that if f(2p−1) > p − 1 for some value
of p then there is a (quite small) minor closed class of graphs C, such that Nf (G, p) is
unbounded. On the other hand, we prove (Corollary 6) that if f(x) ≤ ⌈log2 x⌉ for all x
then Nf (G, p) is not only bounded on proper minor closed classes of graphs, but actually
bounded on a class C if and only if C has bounded expansion (to be defined in Section 3).

Next we consider the special function f(x) = x. For this special function, the param-
eter Nf (G, p + 1) is denoted as Arbp(G) and is called the generalized p-arboricity of G.
So Arbp(G) is the number of colours needed if we require that each cycle of G gets at
least p + 1 colours or is rainbow if its length is smaller than p + 1. Note that if p = 1,
then Arbp(G) is the arboricity Arb(G) of G. We shall relate the generalized p-arboricities
of a graph to the density of its shallow topological minors. Toward this end we define
the following notions, which are analogous to those defined in [12] and [13]. The main
difference is that here we consider multigraphs.

Let G be a multigraph and let r be a half integer. A multigraph H is a shallow
topological minor of G at depth r if a ≤ 2r-subdivision of H is a subgraph of G. We
denote by G ˜P r the class of the multigraphs which are shallow topological minors of G
at depth r. Hence we have

G ∈ G ˜P 0 ⊆ G ˜P

1
2 ⊆ · · · ⊆ G ˜P r ⊆ . . . .
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Notice that the class G ˜P 0 is exactly the monotone closure of G, that is the class of all
the subgraphs of G.

We denote by ∇̃/r(G) the maximum density of a graph in G ˜P r, that is:

∇̃/r(G) = max
H∈G ˜

P r

‖H‖

|H|
. (2)

In this paper, we will give lower and upper bounds for Arbp(G) based on ∇̃/ p−1

2

(G)).

For p = 1, notice that it is an easy consequence of Nash-Williams’ Theorem that
⌈ ∇̃/0(G)⌉ ≤ Arb1(G) ≤ 2⌈ ∇̃/0(G)⌉. In this paper, we shall show (Theorem 15) that
for any positive integer p, there is a polynomial Pp such that for any graph G,

(
∇̃/ p−1

2

(G)
)1/p

≤ Arbp(G) ≤ Pp( ∇̃/ p−1

2

(G)). (3)

The paper is organized as follows: In Section 2, we consider the key case of graphs
with bounded tree-depth. In particular, we establish that if f(2p−1) > p − 1 for some
value of p then there is a minor closed class of graphs C (namely the class of graphs with
tree-depth at most p) such that Nf (G, p) is unbounded. In Section 3, we prove that
if, for some unbounded non-decreasing function f and each fixed integer p, the value
Nf (G, p) is bounded for graphs in a class C, then the class C has bounded expansion.
We prove also that, conversely, if C has bounded expansion and f0(x) = ⌈log2 x⌉ then
supG∈C Nf0(G, p) is bounded for each integer p. In Section 4, we establish (3), which is
the main result of this paper. For the sake of improving the readability of this paper,
the proofs of two difficult lemmas used in Section 4 are actually postponed to Section 5.
In Section 6 we consider a dual version of the problem.

2. Longest Cycles and Tree-Depth

Let us recall some definitions. The height of a rooted forest is the maximum number
of vertices in a path from a root to a leaf. The closure of a forest F is the graph on V (F )
in which xy is an edge if and only if x is an ancestor of y or y is an ancestor of x. The
tree-depth td(G) of a graph G is the minimum height of a rooted forest F such that G is
a subgraph of its closure.

In this section we establish how the concept of tree-depth introduced in [11] is related
to the length of the longest cycle of a graph. It will follow that if f(2p−1) > p−1 for some
value of p then there is a minor closed class of graphs C on which Nf (G, p) is unbounded.

Lemma 1. Let p be an integer such that the function f satisfies f(2p−1) > p− 1. Let C
be the class of graphs with tree-depth at most p. Then Nf (G, p) is unbounded on C.

Proof. Let N be an arbitrarily large integer. Let G be the closure of a rooted complete

q-ary tree Y of height p, where q = N(p2) + 1. Let r be the root of Y . Given a leaf

v of Y , there are N(p2) ways to colour the edges of the subgraph of G induced by v

and its ancestors with N colours, and let φ(v) ∈ {1, . . . , N(p2)} be the encoding of this
colouration corresponding to the leaf vertex v. For non leaf vertices v we define φ(v) by
induction on the descending height as the majority value of φ(x) among the children of

v. The root r has at least ⌈q/N(p2)⌉ = 2 sons v with φ(v) = φ(r). Inductively, the root
3



r is the root of a complete binary subtree Y ′ of Y , all vertices of which have the same
φ-value as r. The closure of Y ′ contains a cycle γ of length 2p−1, and this cycle gets at
most p − 1 colours (see Fig 2). As min(f(|γ|), p) = p we conclude that Nf (G, p) > N
and thus Nf (G, p) is unbounded.

Figure 1: The closure of Y ′ contains a cycle γ of length 2p−1, and this cycle gets exactly p− 1 colours

Remark that the proof of Lemma 1 is a variant of an old trick of R. Goldblatt.
Lemma 1 shows that we cannot expect Nf (G, p) to be bounded on proper minor closed
classes of graphs if f(x) > ⌈log2 x⌉. In Section 3, we shall show that if f(x) ≤ ⌈log2 x⌉
thenNf (G, p) are not only bounded on proper minor closed classes of graphs, but actually
bounded on a class C if and only if C has bounded expansion. This provides yet another
characterization of this robust notion.

We now prove that the connection with tree-depth shown in Lemma 1 is actually
deeper in the sense that a 2-connected graph has no long cycles if and only if it has a
small tree-depth. (Note that 2-connectivity has to be assumed.)

Lemma 2. Let G be 2-connected graph and let L be the maximum length of a cycle in
G. Then

1 + ⌈log2 L⌉ ≤ td(G) ≤

(
L− 1

2

)
+ 2.

Proof. The first inequality is a consequence of the monotonicity of tree-depth and the
exact values of tree-depth for cycles: td(Cn) = 1 + ⌈log2 n⌉.

The remaining of the proof will concern the second inequality.
Consider a Depth-First Search tree Y of G and let r be the root of Y . Let h =

height(Y ). For a vertex x let level(x) be the height of x in Y . The rooted tree Y
naturally defines a partial order � by x � y if x belongs to the tree-path from r to y.
A basic property of DFS-trees is that two adjacent vertices are always comparable with
respect to � (DFS-trees have no cross edges), so that G ⊆ Clos(Y ) thus td(G) ≤ h.

For a vertex x, let low(x) be the smallest vertex y (with respect to�) which is adjacent
by an edge not in Y to a vertex z � x. Notice that such a vertex exists as G is 2-connected
and that for x 6= r it holds low(x) ≺ x. Moreover, if low(x) 6= r, the fact that low(x) is
not a cut-vertex of G implies that there exists y such that low(y) ≺ low(x) ≺ y ≺ x.

Let P = (v1 = r, . . . , vh) be a longest root-to-leaf path of Y . We inductively define
indexes a1, b1, . . . , ak, bk ∈ {1, . . . , h} as follows: let a1 = h and let vb1 = low(va1

). For
i ≥ 1, if bi 6= 1 then let vbi+1

be the minimum low of a vertex z such that vbi ≺ z ≺ vai
,
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let vai+1
be such that vbi ≺ vai+1

≺ vai
and low(ai+1) = bi+1, and let ei be a non-tree

edge linking some w � vai
and vbi . This process stops at some value k such that bk = 1.

Notice that ai+2 � bi for 1 ≤ i ≤ k − 2.
Let γi be the fundamental cycle of ei and let γ be the symmetric difference of all

the γi’s. Then γ is a cycle and each edge of P ∪ {e1, . . . , ek} belongs to 2 of the cycles
γ1, . . . , γk, γ. Hence 2(h+k−1) ≤ |γ1|+ · · ·+ |γk|+ |γ| ≤ (k+1)L, i.e. h ≤ k+1

2 (L−2)+2
(see Fig. 2).

Moreover, γ contains at least two tree edges (either k = 1 and γ = γ1 or k > 1 and
then a2 < a1 and bk < bk−1) thus L ≥ |γ| ≥ k + 2 hence k ≤ L − 2. Altogether, we
obtain h ≤

(
L−1
2

)
+ 2.

vb5 = r

va1 = vh

vb1

va2

vb2

va3

va5 = vb3

va4

vb4

e2

e4

e1

e3

e5

γ2 γ

Figure 2: Illustration of the proof of Lemma 2. Cotree edge ei links vai
(or one of its symmetric difference

of the γi’s

It is not clear whether the quadratic bound of Lemma 2 is tight. We propose the
following problem (compare with [5] where the chromatic number of a graph is bounded
using the length of the largest odd cycle).

Problem 1. For a 2-connected graph G, denote by L(G) the length of the longest cycle
in G.

Does there exist a constant C such that for every 2-connected graph the following
inequality holds:

td(G) ≤ C L(G)?
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3. Classes of graphs with bounded expansion

Classes with bounded expansion have been introduced in [9, 10, 12] and are based on

the boundedness of graph invariants similar to ∇̃/r(G).
We denote [12, 13] by G▽ r (resp. G ▽̃ r) the class of the simple graphs which are

shallow minors (resp. simple shallow topological minors) of G at depth r, and we denote

by ∇r(G) (resp. ∇̃r(G)) the maximum density of a graph in G▽ r (resp. in G ▽̃ r), that
is:

∇r(G) = max
H∈G▽ r

‖H‖

|H|
∇̃r(G) = max

H∈G ▽̃ r

‖H‖

|H|
. (4)

Notice that the main difference between the definition of ∇̃/r(G) and the one of ∇̃r(G)
stands in the way parallel edges are handled.

A class C has bounded expansion if supG∈C ∇r(G) is bounded for each value of r. It

is obvious that ∇r(G) ≥ ∇̃r(G). However, it has been proved by Dvořák [1, 2] that for

each integer r, ∇r(G) is bounded by a polynomial function of ∇̃r(G). Hence a class C

has bounded expansion if and only if supG∈C ∇̃r(G) is bounded .

Theorem 3. Let f : N → N be an unbounded non-decreasing function with f(x) ≤ x
and let g : N → N be defined by

g(p) = max{i, f(i) ≤ p}.

Then for every graph G and every integer r we have:

∇r(G) ≤ Nf (G, 2r + 1)2r+1g(2r + 1)2.

Proof. Let N = Nf (G, 2r + 1) and let c : E(G) → [N ] be a colouring of the edges of G

such that each cycle γ gets at least min(f(|γ|), 2r + 2) colours. For a subset I ∈
(

[N ]
2r+1

)

of 2r+ 1 colours, let GI be the subgraph of G whose edges are coloured by colours in I.
Then the maximum length of a cycle of GI is g(2r + 1). According to Lemma 2, blocks

of GI have tree-depth at most
(
g(2r+1)−1

2

)
+ 2.

Let K ∈ G▽ r be such that ‖K‖/|K| = ∇r(G), let x1, . . . , xk be the roots of trees
T1, . . . , Tk of height at most r (corresponding to vertices h1, . . . , hk of K) and H ⊆
G[V (T1) ∪ · · · ∪ V (Tk)] be such that K ∼= H/(E(T1) ∪ · · · ∪ E(Tk)).

If hi and hj are adjacent in K then there exists in H a path Pi,j of length at most
2r+1 linking xi and xj . Denote by Ai,j a subset of 2r+1 colours such that all the edges

of Pi,j have their colour in Ai,j . For I ∈
(

[N ]
2r+1

)
, let HI be subgraph of H containing

the edges of the paths Pi,j for which Ai,j = I. Let KI be the corresponding subgraph
of K. As the blocks of HI are included in blocks of GI , they have tree-depth at most(
g(2r+1)−1

2

)
+2. As tree-depth is minor monotone, this bound also applies to the blocks of

KI . Observe that a graph of tree depth k has density at most k− 1, because if all edges
are oriented from higher level end vertex to lower level end vertex, then each vertex has
out-degree at most k − 1. It follows that ‖KI‖/|K| ≤ ‖KI‖/|KI | ≤

(
g(2r+1)−1

2

)
+ 1. By

summing up over the possible choices of I we obtain

‖K‖/|K| ≤

(
N

2r + 1

)((
g(2r + 1)− 1

2

)
+ 1

)
≤ Nf (G, 2r + 1)2r+1g(2r + 1)2.
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Corollary 4. Let C be a class of graph and let f : N → N be an unbounded non-decreasing
function with f(x) ≤ x.

If supG∈C Nf (G, r) < ∞ for every r ∈ N then C has bounded expansion.

Theorem 5. Let f0(x) = ⌈log2 x⌉ and let r be an integer. There exists a polynomial Pr

such that for every graph G it holds

Nf0(G, r) ≤ Pr( ∇̃2r (G)).

Proof. According to [15] there exists for each p ∈ N a polynomial Qp such that every

graph G has a vertex colouring c : V (G) → [Qp( ∇̃2p−1(G))] such that the subgraph
induced by any i ≤ p colours has tree-depth at most i. Let p = r + 1 and let Pr(X) =(
Qr+1(X)

2

)
. The graph G admits a vertex-colouring c : V (G) → [Qr+1( ∇̃2r (G))] such that

the subgraph induced by any i ≤ r + 1 colours has tree-depth at most i. Colour each
edge {x, y} of G by the set {c(x), c(y)} (hence using Pr( ∇̃2r (G)) colours). Let γ be a
cycle of G with i ≤ r colours. By construction, the vertices of γ use at most i+1 ≤ r+1
colours hence td(γ) ≤ i+1, thus |γ| ≤ 2i. It follows that every cycle γ of G gets at least
min(r + 1, f0(|γ|) colours.

Corollary 6. Let C be a class of graphs. Then the following are equivalent:

1. There exists non-decreasing unbounded f : N → N such that

∀p ∈ N, sup
G∈C

Nf (G, p) < ∞

2. Let f0(x) = ⌈log2 x⌉. Then

∀p ∈ N, sup
G∈C

Nf0(G, p) < ∞

3. the class C has bounded expansion.

Notice that the second condition is tight, according to Lemma 1.

4. Bounds on Arbp(G)

The lower bound
(
∇̃/ p−1

2

(G)
)1/p

for Arbp(G) is easy.

Lemma 7. Let G be a graph and let p be a positive integer. Then (Arbp(G))p is greater
than or equal to the maximum arboricity of a multigraph H such that G contains a
≤ (p− 1)-subdivision of H, that is,

(Arbp(G))p ≥ max{Arb(H), H ∈ G ˜P

(
p−1
2

)
} ≥ ∇̃/p−1

2

(G). (5)

Proof. Let c be an edge colouring of G with a set J of Arbp(G) colours such that every
cycle C of G gets at least min(|C|, p+ 1) colours. Assume that G includes a ≤ (p− 1)-
subdivision S of a multigraph H. Colour each edge e of H by the set X of colours used
by the edges of the path of length at most p in G corresponding to e in S. The total
number of colours used by edges of H is at most the number of ≤ p-subsets of the J ,

7



which is less than (Arbp(G))p. If (Arbp(G))p < Arb(H), then H has a monochromatic
cycle, each edge being coloured by a set X of at most p colours. Then the corresponding
cycle C of G uses at most |X| < p+1 colours and has length at least 2|X|, contradicting
the colouring assumption. Thus (Arbp(G))p ≥ Arb(H).

The upper bound is more involved. First, we introduce the admittedly rather technical
definition of fraternal completion of oriented multigraphs.

A digraph ~G is fraternally oriented if (x, z) ∈ E( ~G) and (y, z) ∈ E( ~G) implies (x, y) ∈

E( ~G) or (y, x) ∈ E( ~G). This concept was introduced by Skrien [14] and a characterization
of fraternally oriented digraphs having no symmetrical arcs has been obtained by Gavril
and Urrutia [4], who also proved that triangulated graphs and circular arc graphs are all
fraternally orientable graphs.

In the context of multigraphs, this notion may be extended as follows:

Definition 1. Let ~G be a directed multigraph and let a be a positive integer. A fraternal
completion of ~G of depth a is a triple f = ((E1, . . . , Ea), w, κ), where

• E1 = E( ~G) is the arc set of ~G; for each 2 ≤ i ≤ a, Ei is the arc set of a multigraph

having V ( ~G) as its vertex set; for every 1 ≤ i < j ≤ a, Ei ∩ Ej = ∅ (although
different arcs of Ei and Ej may have the same head and tail);

• for e ∈
⋃

1≤i≤a Ei, the weight w(e) of e is the integer i ∈ [a] such that e ∈ Ei;

• κ :
⋃

1<i≤a Ei →
(⋃

1≤i≤a Ei

)2
is such that for every e ∈

⋃
1<i≤a Ei with κ(e) =

(f, g) we have

tail(f) 6= tail(g)

w(e) = w(f) + w(g)

tail(e) = tail(f)

head(e) = tail(g)

head(f) = head(g);

• conversely, for every i, j ∈ N, f ∈ Ei and g ∈ Ej such that i + j ≤ a, tail(f) 6=
tail(g) and head(f) = head(g) there exists a unique e ∈ Ei+j such that κ(e) ∈
{(f, g), (g, f)}.

We also define the arc set Ef of the fraternal completion f by Ef =
⋃

1≤i≤a Ei (no-
tice that Ef includes no loop) and define a = depth(f) as the depth of f. A frater-

nal completion f′ = ((E′
1, . . . , E

′
a′), w′, κ′) of ~G extends another fraternal completion

f = ((E1, . . . , Ea), w, κ) of ~G (or is an extension of f) if

• a′ = depth(f′) > a = depth(f),

• for every 1 ≤ i ≤ depth(f) we have E′
i = Ei,

• the restrictions of κ and κ′ to Ef coincide.

We now state an easy lemma of fraternal completions:

8



Lemma 8. For every oriented multigraph ~G and every positive integer a,

• ~G has a unique fraternal completion of depth 1 defined by E1 = E( ~G),

• every fraternal completion f of depth a has an extension of depth a+ 1.

Proof. The first item is direct from the definition.
For the second item, let f = ((E1, . . . , Ea), w, κ) be a fraternal completion of ~G of

depth a. Consider an arbitrary numbering ν of Ef. Define

Ea+1 = {ef,g : (f, g) ∈ E2
f , w(f) + w(g) = a+ 1, ν(f) < ν(g),

tail(f) 6= tail(g), and head(f) = head(g)},

where ef,g is an arc with tail(ef,g) = tail(f) and head(ef,g) = tail(g); define the mapping
κ′ :

⋃
1≤i≤a+1 Ei → Ef by κ′(e) = κ(e) if w(e) ≤ a and κ′(ef,g) = (f, g) for ef,g ∈ Ea+1;

also define w′ : Ef ∪ Ea+1 by w′(e) = i if e ∈ Ei. Then f′ = ((E1, . . . , Ea+1, w
′, κ′) is

obviously an extension of f of depth a+ 1.

Suppose f = ((E1, . . . , Ea), w, κ) is a fraternal completion of ~G of depth a. We

associate to each arc e ∈ Ef a walk W (e) of ~G defined as follows:

• If w(e) = 1 then W (e) is the walk e,

• Otherwise, if κ(e) = (f, g) then W (e) is the walk W (f) followed by the reverse
W (g) of the walk W (g), what we denote by W (e) = W (f) ·W (g).

This way, each arc e of Ef is associated a walk W (e) in ~G of length w(e) which has the
same endpoints as e. An arc e ∈ Ef is called simple if W (e) is a path.

Let ~G be a directed multigraph, let f = ((E1, . . . , Ea), w, κ) be a fraternal completion

of ~G of depth a. Let ≺ be the partial order on Ef defined by transitivity from the
conditions

κ(e) = (f, g) =⇒ f ≺ e and g ≺ e.

Notice that if e ∈ Ef and f ∈ E1 we have e � f if and only if f belongs to the walk
W (e).

For i = 1, 2, . . . , a, let ~Hi (resp. ~H≤i) be the multigraphs with vertex set V ( ~G) and

arc set Ei (resp.
⋃

j≤i Ej). In particular, ~G = ~H1. For arcs e1, e2 of ~G and a fraternal

completion f = ((E1, . . . , Ea), w, κ) of ~G of depth a of ~G, say that a pair (e1, e2) ∈ E2
1 is

a conflict if there exists arcs f1 � e1 and f2 � e2 and a directed path of length at most
a of ~H≤a starting with f1 and ending at one of the endpoints of f2 (notice that we allow
f1 = f2).

Lemma 9. Assume ~G is an orientation of G, f is a fraternal completion of ~G of depth
a. Assume that c : E( ~G) → [N ] is a colouration of the edges of ~G such that for every
conflict (e1, e2) we have c(e1) 6= c(e2). Then every cycle γ gets at least min(|γ|, a + 1)
colours.

Proof. Assume for contradiction that there exist in ~G a cycle γ = (v1, . . . , v|γ|) which
gets less than min(|γ|, a+ 1) colours. We say a sequence (e1, e2, . . . , eq+1) of simple arcs

9



in Ef is admissible if the W (ei) are pairwise arc-disjoint and form consecutive subpaths

of γ and e1, . . . , eq form a directed path of ~H≤a.
Choose an admissible sequence (e1, e2, . . . , eq+1) in such a way that

∑
i w(ei) is max-

imal and then that q is minimum. Without loss of generality, we may assume that for
1 ≤ i ≤ q we have ei = (vai

, vai+1
) with 1 = a1 < a2 < · · · < aq+1 ≤ |γ|.

First we show that
∑q+1

i=1 w(ei) ≥ min(a + 1, |γ|). Assume for contradiction that∑q+1
i=1 w(ei) < min(a+ 1, |γ|). Then eq+1 has vaq+1

and vaq+2
as endpoints with aq+1 <

aq+2 < |γ| (actually we have aq+2 =
∑

i w(ei) − 1). Let g be the arc of ~G linking
vaq+2

to the next vertex of γ. According to the maximality of
∑

i w(ei), the sequence
(e1, . . . , eq+1, g) is not admissible hence e1, . . . , eq+1 is not a directed path, that is: eq+1 =
(vaq+2

, vaq+1
). As w(eq) + w(eq+1) ≤

∑
i w(ei) ≤ a there exists an arc f in Ef such that

κ(f) = (eq, eq+1) (see Fig 3). The arc f is clearly simple (W (f) = W (eq)W (eq+1) or
W (f) = W (eq+1)W (eq)). If κ(f) = (eq, eq+1) then (e1, . . . , eq−1, f, g) is admissible, and∑q−1

i=1 w(ei) + w(f) + w(g) =
∑q+1

i=1 w(ei) + w(g) >
∑q+1

i=1 w(ei), what contradicts the
maximality of

∑
i w(ei). Otherwise, κ(f) = (eq+1, eq). Then, (e1, . . . , eq−1, f) is an

admissible sequence such that
∑q−1

i=1 w(ei) + w(f) =
∑q+1

i=1 w(ei), what contradicts the
minimality of q (for given

∑
i w(ei)).

Thus
∣∣⋃

i W (ei)
∣∣ =

∑q+1
i=1 w(ei) ≥ min(a + 1, |γ|). By assumption, the cycle γ which

gets less than min(|γ|, a+1) colours hence there exist f1, f2 ∈
⋃

i W (ei) such that c(f1) =
c(f2). Let b1, b2 be such that f1 ∈ W (eb1) and f2 ∈ W (eb2). Without loss of generality
we assume b1 ≤ b2. As f1 � eb1 , f2 � eb2 and as there exists by construction a (maybe

empty) directed path of length at most a of ~H≤a starting with eb1 and ending at one of
the endpoints of eb2 we deduce that (f1, f2) is a conflict, contradicting the hypothesis
that c(f1) = c(f2).

To prove that Arbp(G) ≤ Pp( ∇̃/ p−1

2

(G)) for some polynomial Pp, it suffices to find a

fraternal completion f of an orientation ~G of G of depth p so that each edge e of G is in
conflicts with at most Pp( ∇̃/ p−1

2

(G)) other edges. We shall see that this problem can be

reduced to finding a fraternal completion with bounded in-degrees. Toward this end, let

C(f) =
∑




∏

j

∆−( ~Hij ) :
∑

j

ij < depth(f)



 .

Lemma 10. For every arc e of ~G we have
∣∣{f ∈ Ef : f � e}

∣∣ ≤ C(f).

Proof. For each f � e, there is a sequence of arcs g1, g2, . . . , gt in f such that g1 = e,
gt = f and gi covers gi−1 in ≺. So it suffices to show that for any g � e with w(f) = i, for

any j > i, there are at most ∆−( ~Hj−i) arcs g
′ with w(g′) = j such that g′ covers g in ≺.

This is so because the number of such arcs g′ is at most the number of arcs f ′ such that
κ(g′) ∈ {(g, f ′), (f ′, g)} and hence at most the number of arcs f ′ with head(f ′) = head(g)

in ~Hj−i, which is at most ∆−( ~Hj−i).

Lemma 11. For every arc e2 of ~G there exist at most 3pC(f)(max(2,∆−( ~Hp))
a arcs e1

of ~G such that (e1, e2) is a conflict.
10



. . .

γ

e1

e2

eq

eq+1

va1

va2

vaq

vaq+1

vaq+2

f

g

Figure 3: Illustration for the proof of Lemma 9.

Proof. According to Lemma 10 there exists at most C(f) arcs f2 ∈
⋃p

i=1 Ei such that

f2 � e2. Given an arc f2 of ~H≤p there exist at most (∆−( ~Hp)−1)(1+· · ·+∆−( ~Hp)
p−1) =

∆−( ~Hp)
p − 1 arcs f1 such that there exists in ~H≤p a directed path of length at most p

starting with f1 and ending at the head of f2. Similarly we have at most 1+· · ·+∆−( ~Hp)
p

arcs f1 such that there exists in ~Hp a directed path of length at most p starting with

f1 and ending at the tail of f2. Hence for each f2 we have at most 3max(2,∆−( ~Hp)
p

possibilities for f1. As there are |W (f1)| ≤ a arcs e1 such that f1 � e1, we conclude.

Lemma 12. Let Q1(X), . . . , Qp(X) be polynomials, and let Pp be the polynomial defined
by:

Pp(X) = 6p(2 +Qp(X))p
( ∑

∑
ij<p

∏

j

Qij (X)

)
+ 1. (6)

Let G be a multigraph with a fraternal completion f of depth p such that

∀1 ≤ i ≤ p, ∆−( ~Hi) ≤ Qi( ∇̃/(p−1)/2(G)). (7)

Then
Arbp(G) ≤ Pp( ∇̃/p−2

2

(G)). (8)

(Of course, the polynomial Pp depends on polynomials Q1, . . . , Qp. This dependence will
be clear from the context.)

11



Proof. According to Lemma 11 and Lemma 9, G has a colouration of its edges by at most
Pp( ∇̃/(p−1)/2(G)) colours such that every cycle γ gets at least min(p+1, |γ|) colours, that
is

Arbp(G) ≤ Pp( ∇̃/p−1
2

(G)).

By Lemma 12, to prove that for some polynomial Pp, Arbp(G) ≤ Pp( ∇̃/ p−1

2

(G)), it

suffices to prove that one can find a fraternal completion f of an orientation ~G of G of
depth p so that ∆−( ~Hi) is bounded by some polynomial function Qi of ∇̃/ p−1

2

(G). The

construction of such a fraternal completion f is easy: Let Hi be the underlying graph of
~Hi. By definition, H1 = G and for i = 1, 2, . . . , p − 1, Hi+1 is uniquely determined by
~Hj for j = 1, 2, . . . , i. For i = 1, 2, . . . , p, we orient the edges of Hi to obtain ~Hi so that

∆−( ~Hi) = ⌈ ∇̃/0(Hi)⌉. This defines a fraternal completion f of an orientation ~G of G of

depth p. In the following, we shall show that for this fraternal completion f, ∆−( ~Hi) is

bounded by some polynomial function of ∇̃/ p−1

2

(G).

For i = 1, 2, . . . , p, let Ti be the (i− 1)-subdivision of the underlying graph Hi of ~Hi.
Hence

Hi ∈ Ti ˜P (
i−1
2 ).

In particular, H1 = T1 = G.
For integer m, let G • m be the multigraph with vertex set V (G) × [m] where

{(x, i), (y, j)} is an edge of G • m of multiplicity k if and only if {x, y} is an edge of
G of multiplicity k. In the following section, we shall prove the following two lemmas.

Lemma 13. Let G be a multigraph, let m be a positive integer and let r be a positive
half-integer. Then

∇̃/r(G •m) ≤ (2r(m− 1) + 1) ∇̃/r(G) +m2 ∇̃/0(G) +m− 1. (9)

Lemma 14. For every integer p ≥ 2, there is a polynomial Np such that Tp is a subgraph

of G •Np( ∇̃/ p−2

2

(G)).

From these lemmas will then follow the main result of this paper:

Theorem 15. For each integer p there exists a polynomial Pp such that for every multi-
graph G it holds (

∇̃/ p−1

2

(G)
)1/p

≤ Arbp(G) ≤ Pp( ∇̃/ p−1

2

(G)).

In particular, Arbp and ∇̃/p−1
2

are two polynomially equivalent multigraph invariants.

Proof. The inequality
(
∇̃/ p−1

2

(G)
)1/p

≤ Arbp(G) follows from Lemma 7. By the argu-

ment above, Lemma 13 and Lemma 14 imply that ∆−( ~Hi) is bounded by some polyno-

mial function of ∇̃/ p−1

2

(G), and hence, by Lemma 12, there exists a polynomial Pp such

that Arbp(G) ≤ Pp( ∇̃/ p−1

2

(G)).

12



5. Proofs of Lemmas 13 and 14

Proof of Lemma 13. The vertices of K •m are the pairs (v, i), v a vertex of G and
1 ≤ i ≤ m. The every vertex v of G, we say that (v, i) and (v, j) are twins in G •m and
we denote by π the projection of G •m into G which maps (v, i) to v.

Let S be a subgraph of G • m which is (≤ 2r)-subdivision of a multigraph H such
that

∇̃/r(G •m) =
‖H‖

|H|
.

Choose S with the minimal number of vertices.
A path of S corresponding to an edge of H is called a branch. The vertices of S

corresponding to vertices of H are called principal vertices. The other vertices of S are
subdivision vertices.

Let S0 be the graph obtained from S by deleting all the branches which are not
subdivided and let H0 be the corresponding subgraph of H (S0 is a (≤ 2r)-subdivision
of H0 and every branch of S0 is a path of length at least 2). Then we have ‖H‖ ≤
‖H0‖+m2‖G[π(V (H))]‖ hence

‖H‖

|H|
≤

‖H0‖

|H|
+m2 ‖G[π(V (H))]‖

|π(V (H))|
.

Thus

∇̃/r(G •m) ≤
‖H0‖

|H0|
+m2 ∇̃/0(G).

First notice that no branch of S(H) contains two twin vertices, except if the branch is a
single edge path linking two twin vertices (otherwise we can shorten the branch without
changing ‖H‖ and |H|, see Fig 4).

Figure 4: If a branch contains twin vertices, we shorten it.

We define the multigraphH1 and its (≤ 2r)-subdivision S1 by the following procedure:
Start with H1 = H0 and S1 = S0. Then, for each subdivision vertex v ∈ S1 having a
twin which is a principal vertex of S1, delete the branch of S1 containing v and the
corresponding edge of H1. In this way, we delete at most (m− 1)|H0| edges of H1. Thus
‖H1‖
|H1|

≥ ‖H0‖
|H0|

− (m− 1) and S1 is such that no subdivision vertex is a twin of a principal
vertex.

Given H1 we construct the conflict graph C of H1 as follows: the vertex set of C
is the edge set of H1 and the edges of C are the pairs of edges {e1, e2} such that one

13



of the subdivision vertices of the branch corresponding to e1 is a twin of one of the
subdivision vertex of the branch corresponding to e2. Note that graph C has maximum
degree at most 2r(m− 1) hence it is (2r(m− 1)+1)-colourable. Let H2 be the subgraph

of H1 induced by a monochromatic set of edges of H1 of size at least ‖H1‖
2r(m−1)+1 . So

‖H1‖
|H1|

≤ (2r(m− 1) + 1)‖H2‖
|H2|

.

Let S2 be the corresponding subgraph of S1. If v is a principal vertex of S2, then
two edges incident to v cannot have their other endpoints equal or twins (because of
the colouration). Let S3 = π(S2) be the projection of S2 on G. Because of the above
colouration, S3 is a (≤ 2r) subdivision of H2. Hence

∇̃/r(G) ≥
‖H2‖

|H2|
≥

‖H1‖

(2r(m− 1) + 1)|H1|
≥

‖H0‖

(2r(m− 1) + 1)|H0|
−

m− 1

2r(m− 1) + 1

and the result follows.
Proof of Lemma 14
Let f = ((E1, . . . , Ep), w, κ) be a fraternal completion of ~G of depth p constructed in

such a way that for i = 1, 2, . . . , p, ∆−( ~Hi) = ∇̃/0(Hi).

~G ~H≤9

1

1

1

1 124

2

2
3

w(h) = 4

w(g) = 3

w(f) = 7 9

T2

e1

e2

e3
e4 e5

Figure 5: Example of graphs defined by a fraternal completions. On the left, the graph ~G. In the
middle, arcs of a fraternal completion of depth 9 form the multigraph ~H≤9; here, κ(f) = (g, h); the walk
W (h) = (e1e2e4e5) associated to h is simple but the walk W (f) = (e3e4e5e5e4e2e1) associated to f is
not. On the right, the 1-subdivision of the arcs in E2 define the undirected multigraph T2.

In the following, we shall prove that for 2 ≤ a ≤ p there is a polynomial Na such
that the graph Ta can be injectively embedded into a blowing G • Na( ∇̃/ a−2

2

(G)) of G.

Observe that if this is true for a = 2, . . . , i, then by using Lemma 13, we can conclude
that there is a polynomial Pi such that ∇̃/0(Hi) ≤ Pi( ∇̃/ i−1

2

(G)).

By definition, for a ≥ 1, Ta is obtained from the empty graph on V (G) by adding,
for each arc e = xy in Ea, an induced path of length a connecting x and y. Each arc
e = xy in Ea corresponds to a walk W (e) in G of length a from x to y. By sending the
induced x-y-path of length a in Ta to the corresponding walk in G connecting x and y,
we obtain a homomorphism, say f , from Ta to G. However, f is not an embedding, as
many vertices of Ta may have the same image. Indeed, V (Ta) is the union of V (G) and a
set of |E(Ta)|(a− 1) added vertices which are the interior vertices of the walks W (e). If
for some integer m, each vertex v of G is contained in at most m−1 of the walks W (e) as
an interior vertex, then Ta embeds into G •m, as we can assign to each vertex in f−1(v)
a distinct vertex of {v} × [m] in G •m as its image. Let us consider the case a = 2. By

our construction, ~G has ∆−( ~G) = ⌈ ∇̃/0(G)⌉ Each arc e = xy in E2 corresponds to a walk
14



of the form (x, v, y), where (x, v) and (y, v) are arcs of ~G. Let d = ⌈ ∇̃/0(G)⌉ = ∆−( ~G).
Then v is an interior vertex of a walk W (e) for e = xy in E2 if and only if (x, v) and

(y, v) are arcs of ~G. Hence v is contained in at most
(
d
2

)
walks W (e) as a an interior

vertex. Therefore for N2(x) =
(
x+1
2

)
+ 1, T2 embeds into G •N2( ∇̃/0(G)).

Assume now that the polynomial Ni is defined for i = 2, . . . , a−1 and Ti embeds into
G • Ni( ∇̃/ i−2

2

(G)). Each arc e = xy ∈ Ea corresponds to two arcs g ∈ Ei and g′ ∈ Ej

with i + j = a, with g = xz and g′ = yz for some z. A vertex v is an interior vertex of
the walk W (e) if and only if either v = z or v is an interior vertex of W (g) or W (g′). By

our definition of the fraternal completion, v has in-degree at most ∆−( ~Hi) = ⌈ ∇̃/0(Hi)⌉

in ~Hi. By induction hypothesis and the observation above, ∇̃/0(Hi) ≤ Pi( ∇̃/ i−1

2

(G))

for some polynomial Pi. This implies that for some polynomial Q, each vertex v has
in-degree at most d = Q( ∇̃/ a−2

2

(G)) in ~H≤(a). So for each vertex v of G, there are at

most
(
d
2

)
pairs of arcs g, g′ for which there is an edge e = xy in Ea with k(e) = (g, g′).

For an edge e = xy ∈ Ea, we say a vertex v is the transfer vertex of W (e) if k(e) =
(g, g′), g = (x, v) and g′ = (y, v). An interior vertex of W (e) is either a transfer vertex
of W (e) or an interior vertex of g for some g ∈ Ei where i ≤ a− 1.

By induction hypothesis, there is a polynomial Z such that a vertex v appears at
most Z( ∇̃/ a−3

2

(G)) times as an interior vertex of a walk W (g) for g ∈ ∪a−1
i=1Ei. For each

g ∈ Ei for some i ≤ a− 1, there are at most 2d edges e ∈ Ea such that k(e) = (g, g′) or

k(e) = (g′, g). Therefore, each vertex v appears at most
(
d
2

)
+2d×Z( ∇̃/ a−2

2

(G)) times as

an interior vertex of W (e) for e ∈ Ea. As d = Q( ∇̃/ a−2

2

(G)) and ∇̃/ a−3

2

(G) ≤ ∇̃/ a−2

2

(G),

with Na(x) = Q(x)2 +2Q(x)Z(x), each vertex appears at most Na( ∇̃/ a−2

2

(G))− 1 times

as an interior vertex of W (e) for some e ∈ Ea. Therefore with m = Na( ∇̃/ a−2

2

(G)), Ta

embeds into G •m. This completes the proof of Lemma 14.

6. The Dual Version

The problem addressed in this paper can be considered in the more general context
of matroids:

Problem 2. Let M be a matroid and let p be an integer. What is the minimum number
Arbp(M) needed to colour the elements of M in such a way that each circuit γ gets at
least min(|γ|, p+ 1) colours?

It would be interesting to find a natural class of matroids for which Arb⋆p(M) is
uniformly bounded. For graphs this leads to the following problem:

Problem 3. Let G be a graph and let p be an integer. What is the minimum integer
N = Arb⋆p(G) such that the edge set of G may be coloured using N -colours in such a
way that each cut ω gets at least min(|ω|, p+ 1) colours?

It is maybe interesting that the dual version of our problem may present different
aspects. The well known theorem of Erdős [3] which asserts that there exists a graph of
order at least n, girth at least g and chromatic number at least 2N+1. As the chromatic
number of a graph is bounded by χ(G) ≤ 2Arb(G) + 1 we get that there exist graphs
with arbitrarily large girth and arboricity (hence arbitrarily large Arbp). The notion
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dual to “G has girth at least k” (i.e. every cycle of G has length at least k) is “G is
k-edge connected” (i.e. every edge cut of G has size at least k). However, there does not
exist graphs with arbitrarily edge-connectivity and Arb⋆p. Precisely:

Proposition 16. Let G be a graph and let p be an integer.

• If G is (2p+ 2)-edge connected then Arb⋆p(G) = p+ 1;

• if G is (2p + 1)-edge connected then Arb⋆p(G) ≤ (p + 1)(2p + 1), and there exists
infinitely many (2p+ 1)-edge connected graphs such that Arb⋆p(G) ≥ p+ 2;

• Arb⋆p(G) is not bounded for (2p)-edge connected graphs.

Proof. The first item is a consequence of [6] where it is proved that a 2n-edge connected
graph has at least n pairwise edge-disjoint spanning trees. It follows that if G is (2p+2)-
edge connected, it has at least p+ 1 edge-disjoint spanning trees Y1, . . . , Yp+1. Colour i
the edges of Yi and further colour 1 the edges which are present in none of the Yi’s. As
each Yi is spanning, each cut meets all the Yi’s thus gets p + 1 colours. It follows that
Arb⋆p(G) = p+ 1.

The upper bound of the second item is similarly obtained by doubling each edge of G
(thus obtaining a (4p+2)-edge connected multigraph) and considering 2p+1 edge-disjoint
spanning trees of this new multigraph G′, and colouring each edge e of G by the set of (at
most two) colours assigned to the two edges of G′ corresponding to e. The lower bound
is obtained by considering non-complete (2p+1)-regular (2p+1)-edge connected graphs
G: if Arbp(G) = p+ 1 would hold then each colour class would include a spanning tree
and hence ‖G‖ ≥ (p+ 1)(|G| − 1) would hold.

The last item follows from the following construction. For integers L, p let C
(p)
L be the

multigraph obtained from a cycle of length L by replacing each edge by p parallel edges

(see Fig. 6). The graph C
(p)
L is (2p)-edge connected. However, Arbp(C

(p)
L ) ≥ L1/p as if

each cut gets at least p+ 1 colours then no two group of parallel edges can be coloured
by the same set of colours.

p

Figure 6: The multigraph C
(p)
L is (2p)-edge connected and Arbp(C

(p)
L ) ≥ L1/p
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