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COMBINING GRAVITY WITH THE FORCES OF THE

STANDARD MODEL ON A COSMOLOGICAL SCALE

CLAUS GERHARDT

Abstract. We prove the existence of a spectral resolution of the
Wheeler-DeWitt equation when the underlying spacetime is a Fried-

man universe with flat spatial slices and where the matter fields are

comprised of the strong interaction, with SU(3) replaced by a general
SU(n), n ≥ 2, and the electro-weak interaction.

The wave functions are maps from R4n+10 to a subspace of the an-

tisymmetric Fock space, and one noteworthy result is that, whenever
the electro-weak interaction is involved, the image of an eigenfunction

is in general not one dimensional, i.e., in general it makes no sense spec-

ifying a fermion and looking for an eigenfunction the range of which is
contained in the one dimensional vector space spanned by the fermion.
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1. Introduction

In three former papers [10, 9, 11] we proved a spectral resolution of the
Wheeler-DeWitt equation in the cosmological case—at least in principle.
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When the spatial slices of the underlying Friedman-Robertson-Walker uni-
verse are flat we have developed a model in [11] with strictly positive energy
levels—albeit for a single SO(3) gauge field. For a definition of positive energy
levels in this situation see [11, introduction].

In Friedman-Robertson-Walker models the matter Lagrangians must re-
flect the spacetime symmetries up to gauge transformations, and hence very
special ansätze for the gauge fields have to be considered. For SO(n) resp.
SU(n) gauge fields such ansätze are known for some time, cf. [1] and [13],
but due to their special nature these ansätze introduce a number of non-
dynamical variables into the Lagrangian resulting in additional first-class
constraints. Hence, any attempt to generalize our previous results to higher
dimensional gauge groups faced two major challenges, first, to handle these
additional constraints and second, to handle a large number of dynamical
bosonic variables—in fact any number larger than 1 posed a problem for the
actual spectral resolution when an implicit eigenvalue problem for the gravi-
tational Hamiltonian has to be solved and one has to prove that a (weighted)
L2-norm is compact compared with the gravitational energy norm. The for-
mer proof only worked in case of a single bosonic matter variable.

These difficulties could be solved: the additional constraint equations are
taken care of by considering a special infinite dimensional subspace

(1.1) E ⊂ C∞c (R4n+10,F),

where F is a finite dimensional subspace of the antisymmetric Fock space,
as the core domain, while in case of the implicit eigenvalue problem the
compactness property could be proved.

We consider as underlying spacetime a Friedman-Robertson-Walker space
N = N4 with flat spatial sections and the Lagrangian functional has the form

(1.2) J = α−1
M

∫
Ω

(R̄− 2Λ) +

∫
Ω

LM1
+

∫
Ω

LM2
,

where LM1
is the Lagrangian of the strong interaction, though we have re-

placed the SU(3) connection by a general SU(n), n ≥ 2, connection, and LM2

is the Lagrangian for the electro-weak interaction.
The cosmological constant Λ is very important, since it will play the role

of an eigenvalue when we solve the implicit eigenvalue problem. It will turn
out that Λ has to be negative.

The core domain E in (1.1) can be written as an orthogonal sum

(1.3) E =
⊕

1≤k,l≤9

Ekl,

where

(1.4) Ekl ⊂ C∞c (R4n+10, Fσk ⊗ Fρl)

and Fσk resp. Fρl are orthogonal subspaces in the fermion spaces F1 resp.
F2 spanned by the fermions of the strong resp. electro-weak interaction. For
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the electro-weak interaction we have

(1.5) F2 =
⊕

1≤l≤9

Fρl ,

but the Fσk fail to generate F1. Each of the Ekl generates an infinite di-
mensional Hilbert space Hkl in which we solve a spectral resolution for the
Wheeler-deWitt equation. Since the Hkl are mutually orthogonal we can
then define a spectral resolution in the orthogonal sum.

The main results can be summarized in:

1.1. Theorem. There exist 81 Hilbert spaces Hkl as described above, a
detailed description will be given in the last three sections, and a self-adjoint
operator H in

(1.6) H =
⊕

1≤k,l≤9

Hkl,

such that, for fixed (k, l), there exists a complete sequence of eigenfunctions

Ψ̃ij ∈ Hkl, (i, j) ∈ N×N, with eigenvalues λij of finite multiplicities satisfying

(1.7) HΨ̃ij = λijΨ̃ij ,

(1.8) 0 < λij ∧ lim
i→∞

λij =∞ ∧ lim
j→∞

λij = 0.

The eigenfunctions are maps from

(1.9) Ψ̃ij : R4n+10 → Fσk ⊗ Fρl .
Let t be the variable which corresponds to the logarithm of the scale factor,
then the rescaled eigenfunctions

(1.10) Ψij(t, ·) = Ψ̃ij(t− 1
2 log λij , ·)

are solutions of the Wheeler-DeWitt equation with cosmological constant

(1.11) Λij = −λ−3
ij .

1.2. Remark. (i) Instead of considering both the strong and the electro-
weak interactions each can be treated separately leading to similar results.

(ii) The method of proof can be applied to finitely many matter fields.

(iii) Whenever the electro-weak interaction is involved the eigenfunctions
Ψ in general cannot be written as simple products

(1.12) Ψ = uη,

such that

(1.13) η ∈ F1 ⊗F2 ∧ u(x) ∈ C ∀x ∈ R4n+10.

Thus, in general it makes no sense specifying a fermion η and looking for an
eigenfunction Ψ satisfying

(1.14) R(Ψ) ⊂ 〈η〉.
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(iv) The number 81 of mutually orthogonal Hilbert spaces is due to the

fact that the fermionic constraint operators l̂k resp. λ̂0 of the strong (SU(n))
resp. electro-weak interaction each have exactly 9 eigenspaces due to their
definitions as the sum of number operators.

2. Conventions and definitions

In this section we give a brief overview of our conventions and definitions.
We denote the Minkowski metric by ηab, 0 ≤ a, b ≤ 3,

(2.1) (ηab) = diag(−1, 1, 1, 1)

and define the Dirac matrices accordingly

(2.2) {γa, γb}+ = 2ηab.

γ0 is antihermitean and γk hermitean. When we are dealing with normal
spinors, e.g., in case of the strong interaction, we choose a basis such that

(2.3) γ0 = i

(
I 0

0 − I

)
.

However, when Weyl spinors are considered, e.g., in case of the electro-
weak interaction, we choose a basis such that the helicity operator γ5 is
represented as

(2.4) γ5 = −γ0γ1γ2γ3 = i

(
I 0

0 − I

)
,

then γ0 has the form

(2.5) γ0 = i

(
0 I

I 0

)
.

The γk, 1 ≤ k ≤ 3, are defined by

(2.6) γk = i

(
0 σk

−σk 0

)
in both cases, where σk are the Pauli matrices.

Let ψ = (ψa) be a spinor, then a bar simply denotes complex conjugation

(2.7) ψ̄ = (ψ̄a);

the symbol ψ̃ is defined by

(2.8) ψ̃ = iψ̄γ0,

where the notation on the right-hand side automatically implies that now ψ̄
has to be understood as a row, since γ0 acts from the right.

The meaning of symbols may depend on the section where they are used,
e.g., the symbols ‖·‖ resp. ‖·‖1 denote different norms, though their specific
definitions will depend on the contexts in which they are used, though ‖·‖
always denotes a (weighted) L2-norm and ‖·‖1 a stronger energy norm.
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Let Ω ⊂ Rn, 1 ≤ n, be an open set, then we denote by

(2.9) H1,2(Ω)

the usual Sobolev space with norm

(2.10)

∫
Ω

{|Du|2 + |u|2}.

When E is Banach space and Ω ⊂ Rn as before we denote the space of
test functions defined in Ω with values in E by

(2.11) C∞c (Ω,E).

We also use a correction term χ0 occasionally when defining the La-
grangian, which is a function defined in the space of Lorentz metrics on
N such that, when χ0 is evaluated at a metric of the form

(2.12) ds̄2 = −w−2(dx0)2 + e2fσijdx
idxj ,

then

(2.13) χ0 = e6f ,

cf. [9, Lemma 3.1].

3. The strong interaction

The underlying gauge group for the strong interaction is SU(3). We shall
consider a general SU(n), n ≥ 2, instead, since an arbitrary n poses no greater
challenges.

As already mentioned in the introduction we have to look at very special
gauge fields that reflect the symmetries of the underlying spacetime up to a
gauge transformation. When the spacetime is a Friedman-Robertson-Walker
space which is topologically either

(3.1) N = R × S3

or

(3.2) N = R × R3

the gauge fields have to be either SO(4) symmetric, i.e., symmetric with
respect to both left and right actions of SU(2) ∼= SO(3) on the spacelike
sections of N , or symmetric with respect to rigid motions in R3 after an
appropriate gauge transformation.

Let the spacetime metric satisfy

(3.3) ds̄2 = −w2dx02
+ e2fσijdx

idxj ,

where (σij) is the standard metric of a space of constant curvature S0, at the
moment we allow the possibilities S0 = S3 or S0 = R3, but later we shall
stipulate S0 = R3, and let the left-invariant 1-forms ωa, 1 ≤ a ≤ 3 satisfy

(3.4) σij = δabω
a
i ω

b
j ∧ σijωai ω

b
j = δab
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and

(3.5) dωa =

{
0, S0 = R3,

εabc, the Levi-Cività symbol.

Let Ekm be the matrices

(3.6) Ekm = (δikδmj)

for 1 ≤ k,m ≤ n+ 3 and set

(3.7) Tkm = Ekm − Emk
for 1 ≤ k 6= m ≤ n+ 3.

The Tkm with 1 ≤ k < m ≤ 3 are generators of so(3) or equivalently of
the Lie algebra of the adjoint representation of SU(2) which is isomorphic to
su(2). The precise correspondence with the Pauli matrices will be given later
in Section 6.

We stipulate that the indices a, b, c, when used in connection with these
generators or with the matrices in (3.6) or (3.7), will always run from 1 to 3.

Following [1]1 and [13] we define the connection A = A(t) by

(3.8) A(t) = Â(t) +B(t),

where

(3.9) Â(t) = (Λkm(t)Ek+3,m+3 − 1
3Λ

k
k(t)Eaa)dt,

(3.10) B(t) = (−ϕ0Tbcε
bc
a + z̄k(t)Ea,k+3 − zkEk+3,a)ωai dx

i,

(Λkm(t)), 1 ≤ k,m ≤ n, is an arbitrary antihermitian matrix, ϕ0 = ϕ0(t) a
real function and zk = zk(t), 1 ≤ k ≤ n, arbitrary complex valued functions.
The bar indicates complex conjugation.

Writing

(3.11) A = Aµdx
µ

the connection (Aµ) then has values in su(n+ 3). The connection

(3.12) Â = Âµdx
µ = Â0dx

0

can be viewed as being a general element of u(n), when Â0 is considered to
be a homomorphism in the n-dimensional subspace of Cn+3 defined by

(3.13) { ζ = (0, 0, 0, ζ1+3, . . . , ζn+3) : ζk+3 ∈ C, 1 ≤ k ≤ n } ∼= Cn.

For convenience we shall label the components of ζ in the form

(3.14) ζ = (0, 0, 0, ζk) ≡ (ζk)

in this case.

1In the appendix of this paper the necessary procedures for a spacetime N = R × S0
with a general homogeneous space S0 is described.
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However, we shall consider Â0 as a general U(n) connection only for n = 1.
In case n ≥ 2 we shall in addition require

(3.15) Λkk = 0

such that A0 has values in su(n). Â = Â(t) will then be the actual SU(n)
connection.

The corresponding matter Lagrangian comprises three terms: the energy
of the gauge field

(3.16) LYM1
= 1

4 tr(FµλF
µλ),

a Higgs term

(3.17) LH1
= −

(
1
2 ḡ
µλΦµΦ̄λχ

− 1
3

0 + U(Φ)χ
− 2

3
0

)
,

and a massive Dirac Lagrangian describing the fermionic sector

(3.18) LF1 = − 1
2{ψ̃iE

µ
a γ

a(Dµψ)i + ψ̃iE
µ
a γa(Dµψ)i} −mψ̃iψiχ

− 1
6

0 .

3.1. Lemma. Let S0 = R3 and A be the connection in (3.8), then its
energy

(3.19) F 2 = − tr(FµλF
µλ)

can be expressed as

(3.20) F 2 = −12{2|ϕ̇0|2 + |Ddtz|
2}w−2e−2f + 12{ϕ4

0 + 8ϕ2
0|z|2 + |z|4}e−4f ,

where, in case n ≥ 2,

(3.21) D
dtz

k = żk + Λkmz
m,

and Λ ∈ su(n), while for n = 1, Λ ∈ u(1),

(3.22) Λ = Λ11 = iϑ(t), ϑ(t) ∈ R,

and

(3.23) D
dtz = ż + 4

3 iϑz.

Proof. The proof is straight-forward by observing that, when choosing local
coordinates such that ωaj = δaj ,

(3.24) F0j = −ϕ̇0ε
bc
a Tbcω

a
j + {−D

dtz
kEk+3,j + D

dtz
mEj,m+3},

where the different definitions of the covariant derivative of z is due to the
fact that, in case n ≥ 2, Λ has the trace zero.

The other non-vanishing components Fij , i 6= j, are

(3.25)
Fij =− 4ϕ2

0ε
bc
i ε c′

jb Tcc′ − 4ϕ0z̄
kε bji Eb,k+3

+ 4ϕ0z
kε cji Ek+3,c − |z|2Tij .

The final result is then a simple computation. �
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Let us now look at the Higgs term. The scalar field Φ = (Φk) has values in
Cn+3, or effectively in Cn, according to the conventions in (3.13) and (3.14).

The covariant derivative DµΦ = Φµ can be defined either by

(3.26) Φµ = Φ,µ + g1AµΦ

or by

(3.27) Φµ = Φ,µ + g1ÂµΦ,

where g1 is a positive coupling constant. Both definitions make sense. In
(3.26) we consider the full connection A, while in (3.27) only the effective

connection Â ∈ su(n) resp. Â ∈ u(1), when n = 1, is taken into account.
Evaluating

(3.28) |DΦ|2 = ḡµλΦµΦ̄λ

in case of (3.26) we obtain

(3.29) |DΦ|2 = −w−2|DdtΦ|
2 + 3g2

1e
−2f |〈Φ, z〉|2,

where

(3.30) D
dtΦ

k = Φ̇k + g1Λ
k
mΦ

m

and

(3.31) 〈Φ, z〉 = Φkz̄
k.

In case of (3.27) we have

(3.32) |DΦ|2 = −w−2|DdtΦ|
2.

The additional lower order term in (3.29) would have the effect that the
bosonic Hilbert space, we will be working in after quantization, would no
longer be invariant with respect to the corresponding Hamiltonian. Though
the overall solvability wouldn’t be endangered the lacking invariance suggests
that the effective connection will also be the more natural one and we shall
always use the definition (3.27).

The potential U = U(Φ) should be of the form

(3.33) U = U0(|Φ|2)

with a smooth U0 such that after quantization the resulting Hamiltonian,
combining Yang-Mills and Higgs field, is self-adjoint with a complete sequence
of eigenvectors having positive eigenvalues.

Requiring the estimate

(3.34) − c2 + c1|Φ|2p ≤ U(Φ) ≤ c′1|Φ|2p + c′2,

with 1 ≤ p ∈ N and positive constants c1, c
′
1 and non-negative c2, c

′
2, will

guarantee a complete set of eigenvectors. However, a finite number of eigen-
values could be negative under this very weak assumptions. A positive lower
bound of the eigenvalues can be proved, if either the constant c2 is small
relative to c1 or if U satisfies the additional condition

(3.35) U(Φ) ≥ 0.
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Hence, the potentials

(3.36) U(Φ) = λ(|Φ|2 − µ)2,

λ, µ ∈ R, λ > 0, or

(3.37) U(Φ) = λ|Φ|4 + µ|Φ|2

with λ > 0 and µ ∈ R satisfying

(3.38) |µ| < c0(λ),

would lead to positive energy levels, see Theorem 9.3 on page 39.
As we already mentioned in the Section 2 the energy |DΦ|2 as well as the

potential U should be multiplied by appropriate powers of a correction term
χ0 which will ensure that these terms are equipped with the right powers of
the scale factor, cf. [9, Lemma 3.1] for details.

It turns out that |DΦ|2 has to be multiplied by χ
− 1

3
0 and U by χ

− 2
3

0 .
Let us summarize these results in:

3.2. Lemma. Choosing a coordinate system such that the metric (ḡµλ) is
expressed as in (3.3), then the Higgs term (3.17) has the form

(3.39) LH1 = 1
2w
−2|DdtΦ|

2e−2f − U(Φ)e−4f .

The Lagrangian of the fermionic field is stated in (3.18). Here, ψ = (ψia)
is a multiplet of spinors with spin 1

2 ; a is the spinor index, 1 ≤ a ≤ 4, and i,
1 ≤ i ≤ n, the colour index, where we use the convention expressed in (3.14),
namely,

(3.40) ψ = (0, 0, 0, ψia) ≡ (ψia).

We will also lower or raise the index i with the help of the Euclidean metric
(δij).

Let Γµ be the spinor connection

(3.41) Γµ = 1
4ω

b
µ aγbγ

a,

then the covariant derivative Dµψ is defined by

(3.42) Dµψ = ψ,µ + Γµψ + g1Aµψ.

In contrast to the previous consideration, when we looked at the Higgs term,
we do not have to worry about which connection to take, the full connection
Aµ or the effective connection Âµ. The Lagrangian will be the same in both
cases this time.

Let (ebλ) be a 4-bein such that

(3.43) ḡµλ = ηabe
a
µe
b
λ,

where (ηab) is the Minkowski metric, and let (Eµa ) be its inverse such that

(3.44) Eµa = ηabḡ
µλebλ,

cf. [5, p. 246].
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The covariant derivative of Eαa with respect to (ḡαβ) is then given by

(3.45) Eαa;µ = Eαa,µ + Γ̄αµβE
β
a

and

(3.46) ω b
µ a = Eλa;µe

b
λ = −Eλa ebλ;µ,

hence

(3.47) Γµ = 1
4ω

b
µ aγbγ

a = 1
4E

λ
a;µe

b
λγbγ

a = − 1
4E

λ
a e
b
λ;µγbγ

a.

If we choose in (3.14) S0 = R3 and σij = δij we deduce

(3.48) Γ0 = 0

and

(3.49) Γi = 1
2w
−1ḟ efγiγ

0, 1 ≤ i ≤ 3.

To simplify the presentation we will consider the connection Â when cal-
culating the covariant derivatives of ψ, since one can easily check that the
final result will not be affected by this choice.

Thus we deduce

(3.50) D0ψ = ψ̇ + g1Â0ψ,

(3.51) Dkψ = Γkψ = 1
2w
−1ḟ efγkγ

0,

and

(3.52)

ψ̃iE
µ
a γ

a(Dµψ)i = ψ̄iiγ
0{E0

µγ
aD0ψ

i + Ekaγ
aDkψ

i}

= iψ̄iγ
0{w−1γ0(ψ̇i + Λijψ

j)

+ e−fγk 1
2w
−1ḟ efγkγ

0ψi},
where we used

(3.53) Eµ0 = w−1δµ0 ∧ Eµk = e−fδµk ,

when σij = δij .
In view of (2.2) on page 4 we have

(3.54) γkγk = 3 I ∧ γ0γ0 = − I,

hence the right-hand side of (3.52) is equal to

(3.55) iψ̄iγ
0{w−1γ0(ψ̇i + Λijψ

j) + 3
2w
−1ḟγ0ψi},

and we deduce further, by setting

(3.56) χ = e
3
2 fψ,

(3.57)
ψ̃iE

µ
a γ

a(Dµψ)i = iχ̄iγ
0w−1γ0 D

dtχ
ie−3f

= −iχ̄i Ddtχ
iw−1e−3f ,

where

(3.58) D
dtχ

i = χ̇i + g1Λ
i
jχ
j .
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Summarizing the preceding results we obtain:

3.3. Lemma. The Dirac Lagrangian can be expressed as

(3.59) LF1
=
i

2
(χ̄i

D
dtχ

i − D
dtχ

iχi)w
−1e−3f −miχ̄iγ0χie−4f

in view of the definition of χ0.

4. Quantization of the Lagrangian

We consider the functional

(4.1)

J = α−1
M

∫
Ω

(R̄− 2Λ) +

∫
Ω

1
4 tr(FµλF

µλ)

−
∫
Ω

{ 1
2 ḡ
µλΦµΦλχ

− 1
3

0 + U(Φ)χ
− 2

3
0 }

+

∫
Ω

{− 1
2 [ψ̃iE

µ
a γ

a(Dµψ)i + ψ̃iE
µ
a γa(Dµψ)i]−mψ̄iψiχ

− 1
6

0 },

where αM is a positive coupling constant, Ω ⊂ N is open such that

(4.2) Ω = I × Ω̃;

I = (a, b) is a bounded interval and Ω̃ ⊂ S0 = R3 an arbitrary open set of
measure one with respect to the standard metric of R3.

We use the action principle that, for an arbitrary Ω as above, a solution
(A,Φ, ψ, ḡ) should be a stationary point of the functional with respect to
compact variations. This principle requires no additional surface terms for
the functional.

Using Lemma 3.1 on page 7, Lemma 3.2 on page 9, and Lemma 3.3 and
arguing as in [10, section 3], where we observe that now κ̃ = 0, we conclude
that the functional is equal to

(4.3)

J = α−1
M

∫ b

a

{−6|ḟ |2e3fw−1 − 2Λe3fw}

+ 3

∫ b

a

{(2|ϕ̇0|2 + |Ddtz|
2)w−1ef − (ϕ4

0 + 8ϕ2
0|z|2 + |z|4)we−f}

+

∫ b

a

{ 1
2w
−1|DdtΦ|

2ef − Uwe−f}

+

∫ b

a

{ i
2

(χ̄i
D
dtχ

i − D
dtχ

iχi)−miχ̄iγ0χiwe−f}.

Here a dot indicates differentiation with respect to the time t = x0 and the
covariant derivatives

”
D
dt“ of the variables z, Φ, χ are defined in (3.21), (3.23),

(3.30) on page 8, and in (3.58) on page 10.
Thus, our functional depends on the variables (f, ϕ0, z

i, Φi, χi, w, Λij). For

the variables w and Λij no time derivatives exist, i.e., the Legendre transfor-
mation will be singular resulting in corresponding constraints. In case of w
we obtain the well-known Hamiltonian constraint, while in case of the Λij the
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constraint equations are a bit more complicated. We shall address this issue
later.

The dynamical variables are (f, ϕ0, z
i, Φi, χi), where zi, Φi are complex

and χia are anticommuting Grassmann variables. Therefore, we assume that
the bosonic and fermionic variables are elements of a graded Grassmann alge-
bra with involution, where the bosonic variables are even and the fermionic
variables are odd. The involution corresponds to the complex conjugation
and will be denoted by bar.

The χia are complex variables and we define its real resp. imaginary parts
as

(4.4) ξia = 1√
2
(χa + χ̄ia)

resp.

(4.5) ηia = 1√
2i

(χa − χ̄ia).

Then,

(4.6) χia = 1√
2
(ξia + iηia)

and

(4.7) χ̄ia = 1√
2
(ξia − iηia).

In case of even variables we use the usual definitions

(4.8) zi = xi + iyi.

With these definitions we obtain

(4.9)
i

2
(χ̄i

D
dtχ

i − D
dtχ

iχi) =
i

2
(ξai

D
dtξ

i
a + ηai

D
dtη

i
a).

Casalbuoni quantized a Bose-Fermi system in [3, section 4] the results of
which can be applied to spin 1

2 fermions. The Lagrangian in [3] is the same as
our Lagrangian in (4.9), and the left derivative is used in that paper, hence
we are using left derivatives as well such that the conjugate momenta of the
odd variables are, e.g.,

(4.10) πai =
∂L

∂ Ddtξ
i
a

= − i
2
ξai ,

and thus the conclusions in [3] can be applied.
The Lagrangian has been expressed in real variables—at least the im-

portant part of it—and it follows that the odd variables ξia, η
i
a satisfy, after

introducing anticommutative Dirac brackets as in [3, equ. (4.11)],

(4.11) {ξia, ξ
j
b}
∗
+ = −iδijδab,

(4.12) {ηia, η
j
b}
∗
+ = −iδijδab,

and

(4.13) {ξia, η
j
b}
∗
+ = 0,
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cf. [3, equ. (4.19)].
In view of (4.6), (4.7) we then derive

(4.14) {χia, χ̄
j
b}
∗
+ = −iδijδab.

Canonical quantization—with h̄ = 1—then requires that the correspond-
ing operators χ̂ia, ˆ̄χjb satisfy the anticommutative rules

(4.15) [χ̂ia, ˆ̄χjb]+ = i{χia, χ̄
j
b}
∗
+ = δijδab

and

(4.16) [ ˆ̄χia, ˆ̄χjb]+ = [χ̂ia, χ̂
j
b]+ = 0,

cf. [2, equ. (3.10)] and [3, equ. (4.17)].
We could then define a finite dimensional Hilbert space, using Berezin

integration, where these operators would be acting, this is done e.g., in [14,
p.1494], or we could observe, writing χkb for χ̂kb , etc, that χkb resp. χ̄jc can be
looked at as being annihilation resp. creation operators in the antisymmetric
Fock space, cf. [4, chap. 65]; note that Dirac used the reversed symbols for
the annihilation and creation operators.

We adopt the view to represent the operators as operators in the antisym-
metric Fock space. Let η0 be the vacuum vector, normalized to ‖η0‖ = 1,
then the vector space, where the operators are acting, is spanned by η0 and
by

(4.17) χ̄ia1 χ̄
i
a2 · · · χ̄

i
asη0,

(4.18) χ̄i1a χ̄
i2
a · · · χ̄ira η0,

and mixed products

(4.19) χ̄i1a χ̄
i2
a · · · χ̄

ir
b χ̄

ir
c η0,

where all operators acting on η0 have to be different otherwise the result
will vanish. Hence, the vector space is a finite dimensional subspace of the
antisymmetric Fock space.

Defining the number operator

(4.20) nia = χ̄iaχ
i
a,

we deduce from (4.15)

(4.21) χiaχ̄
i
a = I − nia.

The vacuum vector η0 belongs to the kernel of all nia, hence we have

(4.22) χiaχ̄
i
aη0 = η0.

χia and χ̄ia are adjoints of each other, i.e., nia is self-adjoint, and there holds

(4.23) χiaη0 = 0 ∀ (a, i)

in view of

(4.24) 0 = niaη0 = χ̄iaχ
i
aη0.
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Moreover, the vectors in (4.17), (4.18) and (4.19) are normalized eigenvectors
of nia with eigenvalues 1 resp. 0 depending on the fact if χ̄ia happens to be
acting on η0 or not.

The fermionic Hamiltonian is equal to

(4.25) HF1 = miχ̄iγ
0χiwe−f .

Using the definition of γ0,

(4.26) γ0 = i

(
I 0

0 − I

)
,

we deduce

(4.27) iχ̄iγ
0χi = −(χ̄āi χ

i
ā − χ̄

a
i χ

i
a),

where

(4.28) 1 ≤ ā ≤ 2 ∧ 3 ≤ a ≤ 4

with similar definitions for b̄, b, etc.
Hence, we conclude

(4.29) HF1 = m(χ̄
a
i χ

i
a − χ̄āi χiā)we−f

where of course the factor we−f will be taken care of when we shall con-
sider the full Hamiltonian and the Hamiltonian constraint resp. the Wheeler-
DeWitt equation. Note that the sign of m is irrelevant for our considerations.
However, for definiteness, we shall assume m > 0.

Let us now quantize the bosonic part. Without changing the notation we
shall assume that the complex fields Φ, z have real valued components by
doubling their dimensions, i.e., Φ and ζ now have 2n real components

(4.30) Φ = (Φi) ∧ z = (zi), 1 ≤ i ≤ 2n.

Before we apply the Legendre transformation, let us express the quadratic
derivative terms with the help of a common metric.

For 0 ≤ A,B ≤ 4n+ 1, define

(4.31) (yA) = (f, ϕ0, z
i, Φi),

(4.32) (GAB) = diag(−12α−1
M e2f , 12, 6 I2n, I2n)ef ,

and

(4.33) V = 3(ϕ4
0 + 8ϕ2

0|z|2 + |z|4).

Then J in (4.3) can be expressed as

(4.34)

J =

∫ b

a

w{GAB D
dty

A D
dty

Bw−2 − 2α−1
M Λe3f − V e−f − Ue−f}

+

∫ b

a

{ i
2

(χ̄ai
D
dtχ

i
a − D

dtχ
i
aχ

a
i )−m(χ̄

a
i χ

i
a − χ̄ai χiā)e−fw}.
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Applying now the Legendre transformation we obtain the Hamiltonian

(4.35)

H̃ = H̃(w, yA, pA, ξ
i
a, η

i
a) = pA

D
dty

A + πai
D
dtξ

i
a + σai

D
dtη

i
a − L

= { 1
2GAB

D
dty

A D
dty

Bw−2 + 2α−1
M Λe3f + V e−f + Ue−f}w

+m(χ̄
a
i χ

i
a − χ̄ai χiā)e−fw

= { 1
2G

ABpApBw
−2 + 2α−1

M Λe3f + V e−f + Ue−f}w

+m(χ̄
a
i χ

i
a − χ̄ai χiā)e−fw

≡ Hw,

and the Hamiltonian constraint requires

(4.36) H(yA, χia, χ̄
i
a, pA) = 0.

Canonical quantization stipulates that, in case of the bosonic variables,
we replace the momenta pA by

(4.37) pA = −i ∂

∂yA
,

where ~ = 1, and for the fermionic variables we consider χ̄ia and χai as cre-
ation resp. annihilation operators in a 24n dimensional subspace F1 of the
antisymmetric Fock space as described above .

Thus, the Hamilton operator is equal to

(4.38) H = − 1
2∆+ (V + U)e−f + 2α−1

M Λe3f +m(χ̄
a
i χ

i
a − χ̄āi χiā)e−f ,

where the metric GAB is a Lorentz metric, i.e., the bosonic part of H is
hyperbolic.

Ignoring for the moment a crucial first-class constraint we haven’t consid-
ered yet, which is due to the variables Λij , we have to find wave functions

(4.39) Ψ = Ψ(y),

where

(4.40) Ψ : R4n+2 → F1,

such that

(4.41) HΨ = 0;

moreover, we even have to find a spectral resolution of this problem.
We shall consider wave functions of the form

(4.42) Ψ(y) = u(y)⊗ η, η ∈ F1,

where u belongs to a suitable Hilbert space consisting of complex valued
functions.

Let Ψ = u⊗ η be a smooth functions, then

(4.43) ∆Ψ = 1√
|G|

∂

∂yA
(
√
|G|GABΨB).
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Now,

(4.44) |G| = 864α−1
M e4(n+1)f ,

and hence

(4.45) −∆Ψ = 1
12e
−2(n+1)f ∂

∂y0
(e(2n−1)f ∂Ψ

∂y0
)− 2aαβΨαβe

−f − ∆̃Ψe−f ,

where (aαβ) is a positive definite diagonal matrix

(4.46) (aαβ) = diag( 1
24 ,

1
12 I2n),

and the indices range from 1 ≤ α, β ≤ 2n + 1, and ∆̃ is the Laplacian with
respect to the 2n variables Φi. Ψαβ are ordinary partial derivatives of Ψ.

Thus, we deduce from (4.38) that the Wheeler-DeWitt equation looks like

(4.47)

1
24e
−2(n+1)f ∂

∂y0
(e(2n−1)f ∂Ψ

∂y0
)− aαβΨαβe

−f − ∆̃Ψe−f

+ (V + U)Ψe−f + 2α−1
M Λe3fΨ +m(χ̄

a
i χ

i
a − χ̄āi χiā)Ψe−f = 0.

Multiplying this equation by ef we have proved:

4.1. Theorem. The Wheeler-DeWitt equation for the functional J in (4.3)
has the form

(4.48) H1Ψ +H2Ψ +HF1Ψ−H0Ψ = 0,

where

(4.49) H0Ψ = − 1
24e
−(2n+1)f ∂

∂y0
(e(2n−1)f ∂Ψ

∂y0
)− 2α−1

M Λe4fΨ,

(4.50) H1Ψ = −aαβΨaβ + VΨ,

(4.51) H2Ψ = − 1
2∆̃Ψ + UΨ,

and

(4.52) HF1
Ψ = m(χ̄

a
i χ

i
a − χ̄āi χiā)Ψ.

We emphasize that y0 and f denote the same real variable.
Before we can solve the Wheeler-DeWitt equation we still have to formu-

late and satisfy the first-class constraint resulting from the presence of the
variables Λij . This will be done in the next section.
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5. A first-class constraint

The Lagrangian functional in the previous section contains as non-dynamical
variables the Λij , besides the w, which has already been taken care of by the
Hamiltonian constraint.

The requirement that the first variation of the functional with respect to
compact variations of all variables should vanish leads to a set of constraint
equations due to the presence of the Λij .

(Λij) is an arbitrary antisymmetric matrix in Cn with trace zero if n > 1.

To compute the first variation of J with respect to the Λij , we look at the
integral in (4.34) on page 14. Since we also have to differentiate the Dirac
term it is best to rewrite the quadratic form

(5.1) 1
2GAB

D
dty

A D
dty

Bw−1

in the form

(5.2) 1
2GAB

D
dty

A D
dty

Bw−1,

where

(5.3) (yA) = (f, ϕ0, z
i, ζi);

zi, ζi are complex components and ζi symbolizes Φi.
The terms involved are

(5.4) 1
2GAB

D
dty

A D
dty

Bw−1 +
i

2
(χ̄i

D
dtχ

i − D
dtχ

iχi).

Let us first look at the bosonic term and because of the symmetry it suffices
to consider the zi.

The independent components of (Λij) can be labelled as

(5.5) Λkm, 1 ≤ k < m ≤ n,
and

(5.6) Λkk, 1 ≤ k ≤ n− 1,

if n > 1, no summation over k. Since tr(Λij) = 0, we assume the first (n− 1)
diagonal elements to be independent imaginary variables and

(5.7) Λnn = −
n−1∑
k=1

Λkk.

Let us start with a component

(5.8) Λkm = a+ ib

for 1 ≤ k < m ≤ n.
By observing that

(5.9) pA = GAB
D
dty

Bw−1,

we deduce that the terms in (5.4) involving the numbers a, b are

(5.10) 1
2{pkΛ̄

k
mz̄

m + pmΛ̄
m
k z̄

k + p̄kΛ
k
mz

m + p̄mΛ
m
k z

k},
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or equivalently,

(5.11) 1
2{pk(a− ib)z̄m − pm(a+ ib)z̄k + p̄k(a+ ib)zm − p̄m(a− ib)zk}.

Differentiating first with respect to ∂
∂a we obtain

(5.12) 1
2{p̄kz

m − pmz̄k}+ 1
2{−p̄mz

k + pkz̄
m},

and differentiating with respect to −i ∂∂b yields

(5.13) 1
2{p̄kz

m − pmz̄k} − 1
2{−p̄mz

k + pkz̄
m}.

Differentiating the diagonal terms we obtain

(5.14) 1
2{p̄kz

k − pkz̄k} − 1
2{p̄nz

n − pnz̄n}

for 1 ≤ k ≤ n− 1, and

(5.15) 1
2{p̄z − pz̄}

4
3

in case n = 1.
Looking at the terms in (5.12) and (5.13) we see they represent the real

resp. imaginary part of the complex term

(5.16) p̄kz
m − pmz̄k, 1 ≤ k < m ≤ n.

Note that the variables are still complex Grassmann variables and not yet
operators.

When formulating the constraint equations, the terms in (5.12), (5.13)
will be set to vanish. Hence, these equations are equivalent to the complex
equations

(5.17) p̄kz
m − pmz̄k = 0, 1 ≤ k < m ≤ n,

as well as to their complex conjugates

(5.18) pkz̄
m − p̄mzk = 0, 1 ≤ k < m ≤ n.

5.1. Remark. After quantization the left-hand sides of the equations
above will be linear operators in a space of complex valued test functions. It
will turn out that the operator resulting from (5.18) will be the adjoint of the
operator resulting from (5.17), what is already evident since the quantization
process will turn complex conjugation into forming the adjoint.

Similar arguments apply when we differentiate the Dirac terms. The terms
in (5.12) resp. (5.13) will then correspond to

(5.19) ig1{χ̄akχma − χ̄amχka}

resp.

(5.20) ig1{χ̄akχma + χ̄amχ
k
a},

hence, the equivalent to (5.17) will be

(5.21) 2ig1χ̄
a
kχ

m
a ,
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and the equivalent of (5.18)

(5.22) − 2ig1χ̄
m
a χ

a
k.

The diagonal term has the form

(5.23) ig1{χ̄akχka − χ̄anχna}, 1 ≤ k < n,

where the summation convention is not used for the index k, but of course
for the index a. In case n = 1 we have

(5.24) ig1χ̄
aχa.

Since we shall later, after quantization, when these terms have turned into
operators, apply the operators to complex valued wave functions, we consider
the complex expressions as the primary terms to determine the constraints.

The full constraint equations are

(5.25) lk,m + g1 l̃k,m + g1 l̂k,m = 0, 1 ≤ k < m ≤ n,
or equivalently, their complex conjugates,

(5.26) l̄k,m + g1
¯̃
lk,m + g1

¯̂
lk,m = 0, 1 ≤ k < m ≤ n,

(5.27) lk + g1 l̃k + g1 l̂k = 0, 1 ≤ k < n,

and

(5.28) l0 + g1 l̃0 + g1 l̂0 = 0, n = 1,

where lk,m, lk resp. l0 represent the terms in (5.17), (5.14) resp. (5.15), l̂k,m,

l̂k, resp. l̂0 are defined by the equations (5.21), (5.23) resp. (5.24), while

(5.29) l̃k,m = {π̄kζm − πmζ̄k},

(5.30) l̃k = 1
2{π̄kζ

k − πk ζ̄k} − 1
2{π̄nζ

n − πnζ̄n},
and

(5.31) l̃0 = 1
2{π̄ζ − πζ̄}

4
3 .

The coupling constant g1 appears because it entered into the definition of
the covariant derivatives of Φ and χ, but not in the case of z.

The constraint equations are first-class constraints, according to Dirac,
after quantization they have to be satisfied by the wave functions.

The terms for the fermionic variables can already be looked at as operators
in the antisymmetric Fock space. For the quantization of the bosonic terms,
we only consider lk,m, lk and l0. Writing

(5.32) pk = pxk + ipyk

and

(5.33) p̄k = pxk − ipyk
and replacing pk, p̄k by the operators

(5.34) pk → −i{ ∂
∂xk

+ i ∂
∂yk
},
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(5.35) p̄k → −i{ ∂
∂xk
− i ∂

∂yk
}

we deduce from (5.17), (5.14), and (5.15), without changing the notation,

(5.36)

lk,m =
(
yk

∂

∂xm
− xm ∂

∂yk
)

+
(
ym

∂

∂xk
− xk ∂

∂ym
)

+ i
{(
xk

∂

∂xm
− xm ∂

∂xk
)

+
(
yk

∂

∂ym
− ym ∂

∂yk
)}
,

(5.37) lk =
(
xk

∂

∂yk
− yk ∂

∂xk
)
−
(
xn

∂

∂yn
− yn ∂

∂yn
)
,

and

(5.38) l0 = 4
3

(
x
∂

∂y
− y ∂

∂x

)
+ 8

3 i.

When we use the formulation (5.18) instead of (5.17) the operator lk,m in
(5.36) will be replaced by its formal adjoint

(5.39)

l∗k,m = −
(
yk

∂

∂xm
− xm ∂

∂yk
)
−
(
ym

∂

∂xk
− xk ∂

∂ym
)

+ i
{(
xk

∂

∂xm
− xm ∂

∂xk
)

+
(
yk

∂

∂ym
− ym ∂

∂yk
)}
.

The differential operators l̃k,m, etc., are similarly defined; we shall denote
the corresponding variables by x̃i and ỹi, 1 ≤ i ≤ n.

To solve the Wheeler-DeWitt equation we have to define a Hilbert space
generated by wave functions Ψ satisfying the constraint equations

(5.40) (lk,m + g1 l̃k,m + g1 l̂k,m)Ψ = 0,

or equivalently,

(5.41) (l∗k,m + g1 l̃
∗
k,m + g1 l̂

∗
k,m)Ψ = 0,

and

(5.42) (lk + g1 l̃k + g1 l̂k)Ψ = 0.

In case n = 1,

(5.43) (l0 + g1 l̃0 + g1 l̂0)Ψ = 0.

Later we shall define various Hilbert spaces and before defining a Hilbert
space we shall deliberately decide which constraint formulation, either (5.25)
or (5.26), we shall use at the classical level, where both formulations are
equivalent, since it will make an important difference after quantization.

The Hilbert spaces will be tensor products, where, to address the con-
straint equations, it suffices to restrict our attention to wave functions of the
form

(5.44) Ψ = u(z, z̃)⊗ η,
where (z, z̃) ∈ R4n = R2n × R2n and η belongs to the antisymmetric Fock
space. Occasionally, we also use the symbol ζ instead of z̃.
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To solve the constraint equations, we consider each factor u and η sepa-
rately.
η belongs to a finite dimensional subspace F1. Define the linear map

(5.45) λ0 = (l̂k,m)1≤k<m≤n : F1 → F
n(n−1)

2
1 .

Let F̂0 be the image of

(5.46) F1 3 η → η ≡ (η, . . . , η) ∈ Fn−1
1 ,

and Λ0 be the map

(5.47) Λ0 = (l̂k)1≤k<n : F̂0 → Fn−1
1 .

We then look for eigenspaces of −iΛ0

(5.48) F̃σ = { η ∈ F̂0 : − iΛ0η = ση },

where we identify η and (η, . . . , η), i.e., we especially consider

(5.49) F̃σ ⊂ F1.

5.2. Lemma. The eigenvalues σ of −iΛ0 belong to the set

(5.50) M4 = {−4,−3, . . . , 0, . . . , 3, 4}

and each possible eigenvalue is assumed. The F̃σ are mutually orthogonal.

Proof. (i) The claim that the eigenvalues are elements of M4 will be proved
in Lemma 5.4.

(ii) In order to prove that every element of M4 is indeed an eigenvalue we

shall give a list of eigenvectors belonging to F̃σ for each σ ∈M4.

(5.51) χ̄n1 · · · χ̄n4η0 ∈ F−4,

(5.52) χ̄n1 χ̄
n
2 χ̄

n
3η0 ∈ F−3,

(5.53) χ̄n1 χ̄
n
2η0 ∈ F−2,

(5.54) χ̄nb η0 ∈ F−1,

(5.55) η0 ∈ F0.

For 1 ≤ b ≤ 4 define

(5.56) ηb = χ̄1
1 · · · χ̄1

b · · · χ̄n−1
1 · · · χ̄n−1

b η0,

then

(5.57) ηb ∈ Fb.

Since the eigenvectors are especially eigenvectors of the self-adjoint oper-

ator −il̂1, eigenvectors belonging to different eigenvalues are orthogonal. �
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5.3. Lemma. Let χ̄ak, χka, 1 ≤ a ≤ m1, where k is fixed, be creation resp.
annihilation operators in the antisymmetric Fock space, then the eigenvalues
of

(5.58) lk = χ̄akχ
k
a,

where we use summation over a, belong to the set

(5.59) M1 = {0, 1, . . . ,m1}.

Proof. We use induction with respect to m1. When m1 = 1 this result is due
to the fact that a number operator is a projector.

Thus assume that the claim has already been proved for m1 < m with
m > 1 and set m1 = m. Let λ be an eigenvalue of lk and η an eigenvector.
Then we write η as

(5.60) η = η1 + η2,

where η1 can be written in the form

(5.61) η1 = χ̄1
kξ

and η2 can be written as a linear combination of standard basis vectors which
do not contain the creation operator χ̄1

k. Hence, η2 belongs to the kernel of
χ̄1
kχ

k
1 and we deduce

(5.62) λη1 + λη2 = lkη = η1 +

m∑
a=2

χ̄akχ
k
aη.

Let χ̄1
k act on both sides of this equation then

(5.63) λχ̄1
kη2 =

m∑
a=2

χ̄akχ
k
aχ̄

1
kη2

and we conclude either that 0 ≤ λ ≤ m− 1 or that η2 = 0.
Suppose η2 = 0, then, in view of (5.62), we obtain

(5.64) (λ− 1)η1 =

m∑
a=2

χ̄akχ
k
aη1

yielding

(5.65) 0 ≤ λ ≤ m
because of the induction hypothesis. �

5.4. Lemma. Let χ̄ak, χka, χ̄bn, χnb , 1 ≤ a ≤ m1, 1 ≤ b ≤ m2, where k, n,
k 6= n, are fixed, be creation resp. annihilation operators in the antisymmetric
Fock space, then the eigenvalues of

(5.66) l = χ̄akχ
k
a − χ̄bnχnb ,

where we use summation over a and b, belong to the set

(5.67) M1 = {−m2,−m2 + 1, . . . , 0, 1, . . . ,m1}.
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Proof. We use induction with respect to m2. Actually we only prove it for
m2 = 1 and refer for the further steps in the induction arguments to the
proof of the preceding lemma. Thus, let m2 = 1 and let λ be an eigenvalue
of l with eigenvector η. Split η similarly as in (5.60)

(5.68) η = η1 + η2,

where now

(5.69) η1 = χ̄1
nξ.

Then, we infer

(5.70) λη1 + λη2 = lη = lkη − η1,

and conclude further, as in the proof before,

(5.71) lkχ̄
1
nη2 = λχ̄1

nη2,

hence, we either have 0 ≤ λ ≤ m1, in view of Lemma 5.3, or η2 = 0. The
latter would imply, because of (5.70),

(5.72) lkη1 = (λ+ 1)η1,

completing the proof of the lemma. �

5.5. Definition. Let F̃σi be one of the eigenspaces in Lemma 5.2, then we
define in case σi ≥ 0

(5.73) Fσi = { η ∈ F̃σi : l̂k,mη = 0 ∀ 1 ≤ k < m ≤ n }

and in case σi < 0

(5.74) Fσi = { η ∈ F̃σi : l̂∗k,mη = 0 ∀ 1 ≤ k < m ≤ n }.

5.6. Remark. The fermions defined in Lemma 5.2 which belong to F̃σi
also belong to Fσi . Hence, we have

(5.75) dimFσi ≥ 1 ∀ 1 ≤ i ≤ 9.

The eigenspace F0, i.e., σi = 0, will be of special importance, since it
contains the SU(3) fermions used in forming the quarks, when n = 3, as we
shall prove:

5.7. Lemma. Let n ≥ 2, then the dimension of the eigenspace F0 is at
least 16. It contains the mutually orthogonal unit vectors

(5.76) χ̄1
M · · · χ̄nMη0 ∀M ∈ P({1, 2, 3, 4}),

where P({1, 2, 3, 4}) is the power set of {1, 2, 3, 4}, and the operators χ̄kM are
defined by

(5.77) χ̄kM =

{
I, M = ∅,
χ̄ka1 · · · χ̄

k
ai , M = {a1, . . . , ai},
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where, for definiteness, the factors in the product are ordered by the standard
order of the natural numbers, i.e., in the definition above, we assume

(5.78) a1 < a2 < · · · < ai.

Proof. Easy exercise. �

Next, we fix an eigenvalue σi with corresponding eigenspace Fσi , where we
emphasize the convention (5.49), and we want to define a matching bosonic
Hilbert space H(σi) such that

(5.79) lqu = 0 ∧ l̃qu = −iσiu ∀u ∈ H(σi),

and 1 ≤ q < n, and such that

(5.80) lk,mu = 0 ∧ l̃k,mu = 0 ∀u ∈ H(σi),

for all 1 ≤ k < m ≤ n, if σi ≥ 0, and

(5.81) l∗k,mu = 0 ∧ l̃∗k,mu = 0 ∀u ∈ H(σi),

for all 1 ≤ k < m ≤ n, if σi < 0.

5.8. Remark. The Hilbert spaces

(5.82) H(σi)⊗ Fσi
would then be mutually orthogonal and its elements would satisfy the con-
straints.

We shall show that this procedure is always possible; we formulate and
prove the result for generic differential operators lk,m, lk, resp. for l∗k,m, lk,
and for n ≥ 2—the case n = 1 will be dealt with in Section 8.

5.9. Theorem. For any r ∈ N there exists a largest infinite dimensional
subspace

(5.83) E ⊂ C∞c (R2n,C)

such that all u ∈ E satisfy

(5.84) lk,mu = 0 ∀ 1 ≤ k < m ≤ n

and

(5.85) lku = −iru ∀ 1 ≤ k < n.

Moreover, let V (z) = V0(|z|2) be a smooth potential, V0 ∈ C∞(R), then E is
invariant with respect to the operators

(5.86) u→ V u

and

(5.87) u→ ∆u.
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Proof. We first prove that there exists an infinite dimensional subspace with
the above properties. For any ρ ∈ C∞c (R) the function

(5.88) ϕ = ρ(|z|2)

satisfies

(5.89) lk,mϕ = 0 ∧ lkϕ = 0.

Let

(5.90) un = xn + iyn,

then

(5.91) lkun = −iun ∀ 1 ≤ k < n

and

(5.92) lk,mun = 0 ∀ 1 ≤ k < m ≤ n.

Since lk, lk,m are linear differential operators of first order we infer that

(5.93) u = urn

satisfies

(5.94) lku = −iru ∀ 1 ≤ k < n.

Let ρ ∈ C∞c (R) be arbitrary and define

(5.95) v = uϕ, ϕ = ρ(|z|2),

then v is smooth and

(5.96) lkv = −irv ∀ 1 ≤ k < n,

as well as

(5.97) lk,mv = 0.

Since the support of ρ is arbitrary, the functions v in (5.95) generate an

infinite dimensional subspace Ẽ ⊂ C∞c (R2n,C).

Obviously, Ẽ is invariant with respect to the operator in (5.86). It remains
to prove the invariance with respect to the Laplace operator.

An immediately calculation reveals

(5.98) ∆urn = 0,

(5.99) ∆ϕ = 4nρ̇+ 4ρ̈|z|2,

(5.100) Diu
r
nD

iϕ = 2rurnρ̇,

and

(5.101) ∆(urnϕ) = (4nρ̇+ 4ρ̈|z|2)urn + 4rurnϕ.
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Thus, Ẽ ⊂ C∞c (R2n,C) is infinite dimensional and invariant for V and ∆,
and its elements satisfy the constraint equations. To define a largest subspace
with these properties, we consider the family

(5.102) F = {F ⊂ C∞c (R2n,C) : F subspace with the above properties. }

F 6= ∅ and the space generated by

(5.103) E =
⋃
F∈F

F

is the largest subspace with these properties as one easily checks, and hence
E is the largest subspace. �

5.10. Theorem. For any r ∈ N there exists a largest infinite dimensional
subspace

(5.104) E ⊂ C∞c (R2n,C)

such that all u ∈ E satisfy

(5.105) l∗k,mu = 0 ∀ 1 ≤ k < m ≤ n

and

(5.106) lku = iru ∀ 1 ≤ k < n.

Moreover, let V (z) = V0(|z|2) be a smooth potential, V0 ∈ C∞(R), then E is
invariant with respect to the operators

(5.107) u→ V u

and

(5.108) u→ ∆u.

Proof. In view of the proof of the preceding theorem it suffices to show that

(5.109) un = xn − iyn

satisfies

(5.110) lkun = iun ∀ 1 ≤ k < n

and

(5.111) l∗k,mun = 0 ∀ 1 ≤ k < m ≤ n,

but these equations follow immediately. �

5.11. Remark. In the preceding two theorems the elements of E are eigen-
functions of lk with integer eigenvalues, which will suffice for our purposes,

since the corresponding eigenvectors of the fermionic operators l̂k will also
have integer eigenvalues. But even in a situation when the possible eigenval-

ues of the l̂k would be multiples of a given positive number λ we could define
a matching bosonic Hilbert space by modifying the definition of the covariant



COMBINING GRAVITY WITH THE STANDARD MODEL 27

differentiation of the Higgs field. Instead of the definition (3.27) on page 8
we would then define

(5.112) Φµ = Φ,µ + λg1ÂµΦ,

5.12. Remark. If the potential V depends on additional variables ξ =
(ξi), 1 ≤ i ≤ m,

(5.113) V = V0(|z|2, ξ),

which do not enter into the constraint equations, then a largest subspace can
be constructed by choosing the test functions ϕ in (5.88) to be of the form

(5.114) ϕ = ρ(|z|2, ξ),

with

(5.115) ρ ∈ C∞c (R × Rm,C).

The resulting largest subspace would be part of C∞c (R2n × Rm,C) and
invariant with respect to V as well as with respect to the Laplacians ∆R2n

and ∆Rm or any smooth partial differential operator in C∞c (Rm,C).

6. The electro-weak interaction

The gauge group of the electro-weak interaction is SU(2) × U(1). To
implement the U(1) action we have to use the SU(n+ 3) model with n = 1.
As noted in Section 3 the SU(1 + 3) gauge field contains a general u(1)
connection.

For the realization of SU(2) we could either use the same method, i.e.,
looking at the SU(n+ 3) model with n = 2, or use the su(2) Lie subalgebra
which is part of the SU(1+3) model as an embedding of su(2) in su(3), or we
could simply use the fact that SU(2) is the simply connected twofold cover
of SO(3) and employ the corresponding gauge field which is known to be
symmetric with respect to rigid motions of R3.

The SU(2 + 3) model has the disadvantage of the additional constraint
equations, so this model should be avoided when possible. The remaining two
possibilities are very similar. We shall choose the independent so(3) realiza-
tion of su(2), which has already been used to define quantum cosmological
models, cf. [9, 11].

Let us briefly describe how so(3) can be looked at as the Lie algebra of
Ad(SU(2)).

Consider the standard generators Ti, 1 ≤ i ≤ 3, of so(3) viewed as anti-
symmetric homomorphisms in R3 such that

(6.1) [Ti, Tj ] = εkijTk.

Let g = su(2), then a basis of ig is given by the Pauli matrices σi, 1 ≤ i ≤ 3,
satisfying

(6.2) [σi, σj ] = 2iεkijσk.
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Now, the classical adjoint representation of SU(2) as homomorphisms of g
gives just SO(3) and

(6.3) Ad∗(
1
2iσk) = Tk,

see e.g., [7, Theorem 19.12] and also [6, equ. (1.12)].
Note that Ad−1

∗ is two-valued. Thus, let

(6.4) Ã = ϕ̃Taω
a
i dx

i

be an SO(3) connection, then it can be looked at as the adjoint connection
of the SU(2) connection

(6.5) B = ϕ̃ 1
2iσkω

k
i dx

i,

where ωa is the form in (3.5) on page 6 for S0 = R3.
These connections can be extended to the spacetime by setting

(6.6) Ã0 = B0 = 0.

The additional Lagrangian terms which have to be considered in the func-
tional in (4.1) on page 11 are

(6.7)

∫
Ω

{ 1
4 tr(F̃µλF̃

µλ)− 1
2 µ̄γabḡ

µλAaµA
b
λḡ
µλχ

− 1
3

0 + 1
4 tr(F̂µλF̂

µλ)

− 1
2 [L̃iE

µ
a γ

aDµL
i + ẽRE

µ
a γ

aDµeR + L̃iE
µ
a γaDµLi + ẽRE

µ
a γaDµeR]

− 1
2 ḡ
µλDµϕDλϕχ

− 5
6

0 − he(ϕ̄iēRαLiα + ϕiL̄
iαeRα)χ

− 1
6

0 − Û(ϕ)χ
− 5

6
0 },

where

(6.8) Û(ϕ) = −m2
1|ϕ|2 + b0|ϕ|4, b0 > 0.

(F̃µλ) is the field strength of the SU(2) adjoint connection (Ãµ), which we
write in the form

(6.9) Ãµ = Aµ + Āµ,

where Āµ is the flat connection, hence Aµ = (Aaµ) is a tensor; γab is the
Cartan-Killing tensor of the Lie algebra. The corresponding term in the
functional represents the mass of the connection: µ̄ is called the mass of the
connection Ãµ, cf. [9, p. 2].

(F̂µλ) is the field strength of the SU(1 + 3) connection. We now denote

the connection by C instead of A and consequently Ĉ will be the effective
U(1) connection.

With respect to the Dirac terms, the Higgs field and the Yukawa terms we
roughly follow the definitions and notations in [6, p. 201], see also [15].

From [9, equ. (3.15)] we obtain

(6.10)
1
4 tr(F̃µλF̃

µλ)− 1
2 µ̄γabḡ

µλAaµA
b
λḡ
µλχ

− 1
3

0 =

3 ˙̃ϕw−2e−2f − 3ϕ̃4e−4f − 3µ̄ϕ̃2e−4f ,

where we have to set ϕ̃ = ϕ, κ̃ = 0 and µ̄ = −µ, when comparing the
reference with the present situation.
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The value of

(6.11) 1
4 tr(F̂µλF̂

µλ)

we infer from (3.20) and (3.23) on page 7, noting that now n = 1.
Before we inspect the Higgs field ϕ = (ϕ1, ϕ2), let us look at the Dirac

term.
Now, we use a different spinor basis such that

(6.12) γ0 = i

(
0 I

I 0

)
,

and the helicity operator γ5 is represented as

(6.13) γ5 = −γ0γ1γ2γ3 = i

(
I 0

0 − I

)
,

i.e., writing a spinor ψ in the form

(6.14) ψ =

(
χ
η

)
,

then χ = (χα), 1 ≤ α ≤ 2, is left-handed and η = (ηβ), 1 ≤ β ≤ 2, is
right-handed.

The Dirac terms in (6.7) have to be understood as inserting

(6.15) Li →
(
Li

0

)
, 1 ≤ i ≤ 2,

and

(6.16) eR →
(

0
eR

)
,

where Li and eR are Weyl spinors

(6.17) Li = (Liα) ∧ eR = (eRβ).

The covariant derivatives of Li resp. eR are defined by

(6.18) DµL
i = Li,µ + ΓµL

i + g2BµL
i + 1

2g3ĈµL
i

and

(6.19) DµeR = eR,µ + Γµer + g3ĈµeR,

where g2, g3 are positive coupling constants. Note, that, whenever Li or eR
are acted upon by the Dirac matrices γa, then they have to be expressed in
the form (6.15) resp. (6.16), while, when acted upon by the Pauli matrices,
they are simply Weyl spinors.

The terms

(6.20) ĈµL
i ∧ ĈµeR



30 CLAUS GERHARDT

are defined by using the convention in (3.13) on page 6 as well as the remarks
following (3.27) on page 8, hence

(6.21) Ĉk = 0, 1 ≤ k ≤ 3,

and

(6.22) Ĉ0L
i = iϑLi, ϑ ∈ R.

Let us write (6.18) explicitly in terms of

(6.23)

(
Li

0

)
∧ Li,

(6.24) Dµ

(
Li

0

)
=

(
Li,µ
0

)
+ Γµ

(
Li

0

)
+ g2

(
BµL

i

0

)
+ g3

2

(
iϑLi

0

)
,

and similarly for eR.
Applying the definitions of γ0, γk we then deduce, by replacing at the end

of the computation

(6.25) Li → Lie
3
2 f

and

(6.26) eR → eRe
3
2 f

without changing the notation,

(6.27) L̃iEµa γ
aDµLi = −iL̄αi DdtL

i
αw
−1e−3f + 3

2g2ϕ̃L̄
α
i L

i
αe
−4f

and

(6.28) ẽrE
µ
a γ

aDµeR = −iēRα D
dteRαw

−1e−3f ,

where

(6.29) D
dtL

i
α = Liα,t + g3

2 iϑL
i
α

and

(6.30) D
dteR = ėR + g3iϑeRα.

Let us now consider the Higgs field ϕ = (ϕi(t)), 1 ≤ i ≤ 2. Its covariant
derivative is defined by

(6.31) Dµϕ = ϕ,µ + g2Bµϕ+ g3
2 Ĉµϕ,

hence

(6.32) D0ϕ = ϕ̇+ g3
2 iϑϕ,

(6.33) Dkϕ = −i g22 ϕ̃σkϕ,
and

(6.34) − 1
2 ḡ
µλDµϕDλϕ = 1

2w
−2 D

dtϕ
D
dtϕ−

3
2g

2
2ϕ̃

2|ϕ|2e−2f .

Writing the complex functions ϕi as

(6.35) ϕi = ai + ibi,
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we infer

(6.36)
ϕ̄iēRαL

iα + ϕiL̄
iαeRα = −ai(ēRαLiα + L̄iαeRα)

− bi(iL̄iαeRα − iēRαLiα),

hence, after quantization, it will be a self-adjoint operator in the finite di-
mensional Hilbert space generated by the fermions. However, the operator
will depend on the spatial variables ai, bi, which will turn out to have very
important consequences.

Note that a similar term appears on the right-hand side of (6.27), i.e.,
even without the Yukawa term there would be a self-adjoint operator in
the antisymmetric Fock space depending on the spatial variables—for the
consequences we refer to Remark 11.5 on page 52.

The constants g2, g3, b0 and he are assumed to be positive, while m1 may
be real or imaginary. Note that the sign of he is irrelevant.

7. Quantization of the full Lagrangian

Adding the terms in (6.7) to the functional J in (4.1) on page 11 and
following the procedures in Section 4 we arrive at an analogue of equation
(4.34) on page 14 which reads

(7.1)

J =

∫ b

a

w{GAB D
dty

A D
dty

Bw−2 − 2α−1
M Λe3f − V e−f − Ue−f

− (3ϕ̃4 + 3µ̄ϕ̃2 + 3
2g

2
2ϕ̃

2|ϕ|2 + V̂ + Û + 3
2g2ϕ̃L̄

α
i L

i
α)e−f}

+

∫ b

a

{ i
2

(χ̄ai
D
dtχ

i
a + L̄αi

D
dtL

i
α + ēαR

D
dteRα) + c.c.

−m(χ̄
a
i χ

i
a − χ̄ai χ̄iā)e−fw − he

(
ai(ēRαL

iα + L̄iαeRα)

+ bi(−iēRαLiα + iL̄iαeRα)
)
e−fw},

where

(7.2) V̂ = ϕ̂4
0 + 8ϕ̂2

0|ẑ|2 + |ẑ|4,

ẑ ∈ C, is the potential coming from the energy of the connection Cµ, and
where

(7.3) GAB
D
dty

a D
dty

B

has now been modified to incorporate the new variables. Note also that the
covariant derivative

”
D
dt“ is defined differently depending on the variables it

is applied to.
The variable y = (yA) is now defined by

(7.4) (yA) = (f, ϕ0, z
i, Φi︸ ︷︷ ︸

SU(n)

, ϕ̃, ϕ̂0, ẑ
i, ϕi︸ ︷︷ ︸

SU(2)×U(1)

).
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The additional variables are the real variables ϕ̃, ϕ̂0, the complex variable ẑ,
and

(7.5) ϕ = (ϕi) ∈ C2.

Let us summarize the definitions of the covariant derivatives for the addi-
tional variables

(7.6) D
dt ẑ = ẑ,t + 4

3 iϑẑ,

cf. (3.23) on page 7,

(7.7) D
dtϕ = ϕ̇+ g3

2 iϑϕ,

(7.8) D
dtL

i
α = Liα,t + g3

2 iϑL
i
α,

and

(7.9) D
dteRα = ėRα + g3iϑeRα.

The metric (GAB) is the diagonal Lorentz metric

(7.10) (GAB) = diag(−α−1
M 12e2f , 12, 6 I2n, I2n, 6, 12, 6 I2, I4)ef .

Canonical quantization then leads to the Wheeler-DeWitt equation

(7.11) HΨ = 0,

where the Hamilton operator H is defined by

(7.12)

efH = − 1
2e
f∆+ 2α−1

M Λe4f + V + U + V̂ + Û

+ (3ϕ̃4 + 3µ̄ϕ̃2 + 3
2g

2
2ϕ̃

2|ϕ|2 + 3
2g2ϕ̃L̄

α
i L

i
α)

+m(χ̄
a
i χ

i
a − χ̄ai χiā) + he

(
ai(ēRαL

iα + L̄iαeRα)

+ bi(−iēRαLiα + iL̄iαeRα)
)
,

and the Laplace operator with respect to the metric (GAB) can be expressed
as

(7.13) − ef∆Ψ =
αM
12

e−(2n+5)f ∂

∂y0

(
e(2n+3)f ∂Ψ

∂y0

)
− 2aαβΨαβ ,

where

(7.14) (aαβ) = diag( 1
24 ,

1
12 I2n,

1
2 I2n,

1
12 ,

1
24 ,

1
12 I2,

1
2 I4).

Replacing efH by H without changing the notation, we then have

(7.15) H = H1 −H0,

where

(7.16) H0Ψ = −αM
24

e−(2n+5)f ∂

∂y0

(
e(2n+3)f ∂Ψ

∂y0

)
− 2α−1

M Λe4fΨ
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and

(7.17)

H1Ψ =

− aαβΨαβ + (V + U + V̂ + Û)Ψ + (3ϕ̃4 + 3µ̄ϕ̃2 + 3
2g

2
2ϕ̃

2|ϕ|2)Ψ

+m(χ̄
a
i χ

i
a − χ̄ai χiā)Ψ + 3

2g2ϕ̃L̄
α
i L

i
αΨ

+ he
(
ai(ēRαL

iα + L̄iαeRα) + bi(−iēRαLiα + iL̄iαeRα)
)
Ψ.

Note that the symbols f, ϕ0, z
i, Φi, ϕ̃, ϕ̂0, ẑ

i, ϕi now are variables of the Eu-
clidean space

(7.18) R × R4n+9,

where f corresponds to the first factor. The complex variables have been
expressed by their real and imaginary parts respectively, e.g.,

(7.19) ϕk = ak + ibk.

The terms in the last two rows of the right-hand side of (7.17) represent a
symmetric operator in the finite dimensional Hilbert space generated by the
fermions which also depends on the spatial variables ak, bk and ϕ̃.

Let us write this operator in the form

(7.20) B + C,

where B acts on the fermions from the SU(n) model and C on those from
the SU(2)×U(1) model, and let us abbreviate the rest of the right-hand side
by A such that

(7.21) H1 = A+B + C.

In the next section we shall define the Hilbert space in which H1 acts as a
symmetric operator.

8. The vector space defined by the constraints of the
electro-weak interaction

The functional in (7.1) on page 31 contains ϑ as a non-dynamical variable,
hence an additional constraint equation has to be satisfied. The equations
(7.6)–(7.9) on page 32 reveal how ϑ enters into the Lagrangian.

Writing ẑ resp. ϕi in the form

(8.1) ẑ = x̂+ iŷ

resp.

(8.2) ϕi = ξi + iηi

for 1 ≤ i ≤ 2, we deduce from (5.38) on page 20 that the differential opera-

tor—we now use the notations λ0, λ̃0 and λ̂0—has the form

(8.3) λ0 = 4
3 (x̂

∂

∂ŷ
− ŷ ∂

∂x̂
) + i 8

3 ,
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and a variant of (5.38) is also valid for ϕi, namely,

(8.4) g3λ̃0 = g3
1
2 (ξi

∂

∂ηi
− ηi ∂

∂ξi
) + ig3,

where, however, we now have to sum over i. The different coefficients are due
to the different definitions of the covariant derivative, cf. (7.7) on page 32 and
also Remark 5.11 on page 26—but note that we used the standard definitions.

Finally, when differentiating the Dirac terms with respect to −i ∂∂ϑ we
obtain

(8.5) g3λ̂0 ≡ ig3Λ̂0 = ig3{ 1
2 L̄

α
i L

i
α + ēαReRα},

where the summation convention is in place for all indices.
Hence the constraint equation is

(8.6) (λ0 + g3λ̃0 + g3λ̂0)Ψ = 0.

To solve this equation we first determine the eigenspaces of λ̂0, or equiv-
alently, of Λ̂0, which is a self-adjoint operator in the 26 dimensional Hilbert
space F2 spanned by the electro-weak fermions. It has 9 eigenvalues

(8.7) 0, 1
2 , . . . ,

7
2 , 4

which are all multiples of 1
2 . This claim can be proved by arguing as in the

proof of Lemma 5.3 on page 22.
Denote by ρa, 1 ≤ a ≤ 9, these eigenvalues and by

(8.8) Fρa

the corresponding eigenspaces, then

(8.9) F2 =

9⊕
a=1

Fρa .

Let Fρa be arbitrary. We shall use the operator λ̃0 to define a matching
function space.

8.1. Theorem. For any r ∈ Z there exists a largest infinite dimensional
vector space

(8.10) E ⊂ C∞c (R4,C)

such that all u ∈ E satisfy

(8.11) λ̃0u = −i r2u,
and such that E will be invariant with respect to the operators ∆R4 and

(8.12) u→ V u,

where the potential V is of the form

(8.13) V = V0(|z|2).

The claims in Remark 5.12 on page 27 are also valid.
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Proof. The proof is similar to the proof of Theorem 5.9 on page 24 resp.
Theorem 5.10 on page 26. First, let ρ ∈ C∞c (R), then the functions

(8.14) ϕ = ρ(|ζ|2),

where ζi = ξi + iηi, 1 ≤ i ≤ 2, satisfy

(8.15) λ̃0ϕ = 0.

Second, let

(8.16) uk = ξk − iηk ∧ ũk = ξk + iηk,

1 ≤ k ≤ 2 fixed, then

(8.17) λ̃0uk = −i 1
2uk + iuk ∧ λ̃0ũk = i 1

2 ũk + iũk

For r ∈ N define

(8.18) u = urkρ(|ζ|2) ∧ ũ = ũrkρ(|ζ|2)

where ρ ∈ C∞c (R) is arbitrary, then

(8.19) λ̃0u = −i r2u+ iu ∧ λ̃0ũ = i r2 ũ+ iũ

and these functions, u resp. ũ, generate an infinite dimensional subspace.
The invariance properties of the subspace can be proved as in the case

of Theorem 5.9, and the arguments at the end of the proof of that theorem
yield the existence of a largest subspace with these properties. �

Next we have to define a function space E0 such that

(8.20) λ0v = 0 ∀ v ∈ E0.

This can be achieved with the help of Theorem 5.10 on page 26. Let
E0 ⊂ C∞c (R2,C) be such that

(8.21) (x̂
∂

∂ŷ
− ŷ ∂

∂x̂
)v = −2iv ∀ v ∈ E0,

then

(8.22) λ0v = 0 ∀ v ∈ E0.

9. The eigenvalue problem for the strong interaction

In this section we want to solve the free eigenvalue problem for the matter
Hamiltonian HM1

in the SU(n), n ≥ 2, model. The Hamiltonian can be
expressed in the form

(9.1)
HM1

Ψ = (−aαβΨαβ + VΨ) + (− 1
2∆Ψ + UΨ) +HF1

Ψ

≡ H1Ψ +H2Ψ +HF1
Ψ.

The operator H1 depends on the variables (ϕ0, z
i) ∈ R1+2n, H2 on the vari-

ables (Φi) ∈ R2n and HF1
acts on the fermions in a 24n dimensional subspace

of the antisymmetric Fock space.
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Symbolizing the differentiation with respect to ϕ0 by a prime and the
Laplace operator with respect to z ∈ R2n by ∆̃, then

(9.2) H1Ψ = − 1
24Ψ′′ − 1

12∆̃Ψ + V (ϕ0, z)Ψ.

9.1. Definition. (i) To solve the eigenvalue problem for the operator H1,
we choose a largest subspace E1 ⊂ C∞c (R1+2n) the elements of which sat-
isfy the constraint equations for the constrained operators lk,m and lk with
eigenvalue r = 0 and the invariance conditions, and define the Hilbert spaces

(9.3) H1 = Ē
‖·‖
1 ,

as the completion of E1 in the L2-norm, abbreviated simply by ‖·‖, and H̃1

as the completion of E1 with respect to the norm

(9.4) 〈u, u〉1 = ‖u‖21 =

∫
R×R2n

(|Du|2 + |x|4|u|2)

where x = (xi) ∈ R1+2n.

(ii) In case of the operator H2, we first have to choose one of the joint
eigenspaces Fσk of the fermionic constraint operators, cf. Remark 5.8 on
page 24. Let E2 = E2(σk) be the matching largest subspace of C∞c (R2n,C)
such that the constraint equations will be satisfied for

(9.5) u⊗ η, ∀ (u, η) ∈ (E2 × Fσk).

Then we define the Hilbert spaces H2 = H2(σk) as the completion of E2 with
respect to the L2-norm

(9.6) 〈u, u〉 = ‖u‖2 =

∫
R4n

|u|2

and H̃2 as the completion of E2 with respect to the norm

(9.7) 〈u, u〉1 = ‖u‖21 =

∫
R2n

(|Du|2 + |x|2p|u|2),

where x = (xi) ∈ R2n and p the exponent in (3.34) on page 8.

We then have to solve three eigenvalue problems for the Hamiltonians Hi

in Hi, 1 ≤ i ≤ 2, and for the fermionic Hamiltonian HF1
restricted to Fσk .

HF1 corresponds to a quadratic form, i.e., there holds

(9.8) a(ξ, η) = 〈HF1ξ, η〉 ∀ ξ, η ∈ F1,

where a is a hermitean bilinear form. In general the spaces Fσk will not be
invariant with respect to HF1

—note, however, that the 16 mutually orthog-
onal unit vectors given in Lemma 5.7 on page 23 are all eigenvectors of HF1

.
We therefore define a new fermionic Hamiltonian operator Hf = Hf (σk) as
the unique self-adjoint operator Hf ∈ L(Fσk , Fσk) satisfying

(9.9) a(ξ, η) = 〈Hfξ, η〉 ∀ ξ, η ∈ Fσk .
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Its eigenvectors will then complement the eigenvectors of the bosonic Hamil-
tonians.

When solving the bosonic problems it suffices to look at just one operator,
and we choose H2 because the corresponding potential U is more general and
the proof slightly more elaborate.

9.2. Theorem. The linear operator H2 with

(9.10) D(H2) = E2 ⊂ H2

is symmetric and semi-bounded from below. Let Ĥ2 be its self-adjoint
Friedrichs extension, then there exist countably many eigenvectors

(9.11) ui ∈ H̃2 ↪→ H2

with eigenvalues λi of finite multiplicities of Ĥ,

(9.12) Ĥ2ui = λiui,

satisfying

(9.13) 〈ui, uj〉 = 0 ∀ i 6= j,

(9.14) λi ≤ λi+1 ∧ lim
i→∞

λi =∞.

The (ui) are complete in H̃2 as well as in H2.

Proof. (i) We shall derive the existence of eigenfunctions from a general vari-
ational problem. The symmetric operator H2 defines a sesquilinear form a

(9.15) a(u, v) = 〈H2u, v〉 =

∫
R2n

{ 1
2DiuD

iv̄ + Uuv̄} ∀u.v ∈ D(H2),

where we used that

(9.16) H2u = − 1
2∆u+ Uu ∀u ∈ D(H2),

and integrated by parts. In view of the estimates (3.34) on page 8 the qua-
dratic form

(9.17) a(u, u) + c2‖u‖2

is equivalent to

(9.18) 〈u, u〉1.

Furthermore, the norm ‖·‖ is compact relative to ‖·‖1, i.e., if

(9.19) ui ⇁ u in H̃2,

then

(9.20) ui → u in H2,

where we used the trivial embedding

(9.21) H̃2 ↪→ H2;
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the property described in (9.19), (9.20) can be rephrased that this embedding
is compact.

The compactness proof is similar to the proof of [10, Lemma 6.8], where
a one dimensional analogue has been considered, but the arguments in the
higher dimensional case are the same.

A general variational argument which goes back to Courant-Hilbert, see
e.g., [8], then yields the existence of a mutually orthogonal sequence (ui) of
eigenvectors solving the variational relation

(9.22) a(ui, v) = λi〈ui, v〉 ∀ v ∈ H̃2,

such that the relations (9.13), (9.14) and the completeness claims in H̃2 as
well as H2 are valid.

(ii) To prove (9.12) we consider the closure H̃2 of H2. Let u ∈ D(H̃2),
then there exists a sequence uk ∈ D(H2) such that

(9.23) uk → u in H2,

and

(9.24) H2uk → H̃2u in H2.

Define fk formerly by

(9.25) fk = H2uk.

Multiplying the equation

(9.26) H2(uk − ul) = fk − fl
by (ūk − ūl) and integrating by parts we conclude

(9.27) a(uk − ul, uk − ul) ≤ ‖fk − fl‖‖uk − ul‖,

hence, (uk) is also a Cauchy sequence in H̃2, and we conclude further

(9.28) D(H̃) ⊂ H̃2.

The Friedrichs extension Ĥ2 of H̃2 is then defined by

(9.29) Ĥ2 = H∗2 |D(H∗2 )∩H̃2
,

where H∗2 is the adjoint of H2.
Now, let ui be an arbitrary solution of (9.22), then we deduce immediately

(9.30) ui ∈ D(H∗2 ) ∧ H∗2ui = λiui,

proving (9.12). �

A finite number of the eigenvalues λi of the variational solutions can be
negative, since the potential U is not supposed to be non-negative, but only
subject to the estimates in (3.34) on page 8.

The positivity of the smallest eigenvalue λ0 can be guaranteed under the
following assumptions:
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9.3. Theorem. Let c1, c2 be the constants in (3.34) and let c1 be fixed,
then there exists a positive constant c0 such that the smallest eigenvalue λ0

of the variational problems (9.22) is strictly positive provided

(9.31) c2 < c0.

Moreover, for fixed c2, let

(9.32) λ0 = λ0(c1)

be the smallest eigenvalue, then

(9.33) lim inf
c1→∞

λ0(c1) =∞.

Proof. (i) Let us first prove the positivity of λ0, if (9.31) is satisfied. The
eigenfunction of the smallest eigenvalue λ0 is a solution of the variational
problem

(9.34) J(v) =

∫
R2n

( 1
2 |Dv|

2 + U |v|2)→ min ∀ v ∈ K,

where

(9.35) K = { v ∈ H̃2 : ‖v‖ = 1 }.

In view of (3.34) on page 8 J can be estimated from below by

(9.36)

∫
R2n

( 1
2 |Dv|

2 + c1|x|2p|v|2 − c2|v|2).

Denote by J̃ the functional

(9.37) J̃(v) =

∫
R2n

( 1
2 |Dv|

2 + c1|x|2p|v|2),

then the variational problem

(9.38) J̃(v)→ min ∀ v ∈ K

has a solution ũ0 with eigenvalue λ̃0 > 0, i.e., there holds

(9.39) 0 < λ̃0 = J̃(ũ0) ≤ J̃(v) ∀ v ∈ K.

Thus, setting

(9.40) c0 = λ̃0

will prove the first claim.

(ii) To prove (9.33), we argue by contradiction. Let c1,k be sequence
converging to infinity and uk a corresponding sequence of first eigenfunctions
such that

(9.41) λ0,k ≤ const ∀ k.

Hence, we have

(9.42) J(uk) = λ0,k = λ0,k‖uk‖2.
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Since c2 is fixed, we deduce from (9.36)

(9.43)

∫
R2n

( 1
2 |Duk|

2 + c1,k|x|2p|uk|2) ≤ λ0,k + c2 ≤ c.

The sequence (uk) is therefore bounded in H̃2 and

(9.44) lim
k→∞

∫
R2n

|x|2p|uk|2 = 0,

and we conclude, since the embedding

(9.45) H̃2 ↪→ H2

is compact, that a subsequence, not relabeled, converges weakly in H̃2 to a
function u such that

(9.46) uk → u in H2;

hence, ‖u‖ = 1 contradicting

(9.47)

∫
R[2n]

|x|2p|u|2 ≤ lim

∫
R2n

|x|2p|uk|2 = 0.

�

For the Hamiltonian H1 similar results are valid. The potential V then
satisfies

(9.48) c1|x|4 ≤ V, c1 > 0,

if x = (xi) ∈ R1+2n. Hence, the smallest eigenvalue λ0 is always positive,
but we cannot manipulate its size, since we cannot adjust V .

Combining the results for the Hamiltonians H1, H2, and HF1
we have

proved:

9.4. Theorem. For each Fσk ⊂ F1, 1 ≤ k ≤ 9, there exist infinite di-
mensional Hilbert spaces H1 and H2 and corresponding self-adjoint operators
Ĥ1, Ĥ2 and Hf in Fσk , such that the functions in

(9.49) H1 ⊗H2 ⊗ Fσk
satisfy the constraint equations, and complete sequences of eigenfunctions

(9.50) ui ∈ H1 ∧ vj ∈ H2

for Ĥ1 resp. Ĥ2 and finitely many eigenvectors for Hf

(9.51) ηl ∈ Fσk .

The products

(9.52) Ψijl = ui ⊗ vj ⊗ ηl
are then eigenfunctions of

(9.53) Ĥ1 + Ĥ2 +Hf .
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Relabeling the eigenvalues and eigenfunctions we get a sequence of eigenvalues
λi and corresponding eigenfunctions Ψi such that

(9.54) 0 < λi ≤ λi+1 ∧ limλi =∞,

(9.55) Ĥ2Ψi = λiΨi,

where, by abusing the notation, we define

(9.56) Ĥ2 = Ĥ1 + Ĥ2 +Hf ,

and

(9.57) D(Ĥ2) = 〈(Ψi)i∈N〉.

Ĥ2 is then essentially self-adjoint in

(9.58) H2 = H1 ⊗H2 ⊗ Fσk .

10. The eigenvalue problem for the electro-weak interaction

The matter Hamiltonian of the electro-weak interaction is the sum of two
Hamiltonians which are strongly coupled and cannot be treated separately.

(10.1) HM2
= H3 +HF2

The bosonic variables are (ϕ̃, ϕ̂0, ẑ, ϕ
i), where ϕ̃, ϕ̂0 are real variables, ẑ com-

plex and (ϕi) a complex doublet, the Higgs field. Only ẑ and ϕi are related
with the constraint equations.

Let us denote the coordinates according to

(10.2) (ϕ̃, ϕ̂0, ẑ, ϕ
i)→ (x, y, x̂+ iŷ, ξi + iηi).

and the Laplacians in R2 resp. R4 by ∆̃ resp. ∆̄.
With these notations there holds

(10.3)

H3Ψ = − 1
12

∂2Ψ

∂x2
− 1

24

∂2Ψ

∂y2
− 1

12∆̃Ψ− 1
2∆̄Ψ + V̂ + Û

+ 3x4 + 3µ̄x2 + 3
2g

2
2x

2(|ξ|2 + |η|2) + 3
2g2xL̄

α
i L

i
α

+ he
(
ξi(ēRαL

iα + L̄iαeRα)

+ ηi(−iēRαLiα + iL̄iαeRα)
)
,

where 1 ≤ α ≤ 2, 1 ≤ i ≤ 2.
The potential V̂ is defined by

(10.4) V̂ = |y|4 + 8y2(x̂2 + ŷ2) + (x̂2 + ŷ2)2,

and Û by

(10.5) Û = b0(|ξ|2 + |η|2)2 −m2
1(|ξ|2 + |η|2),

where b0 > 0 and m1 can be real or imaginary.
Let V̄ be the potential

(10.6) V̄ = 3x4 + 3µ̄x2 + 3
2g

2
2x

2(|ξ|2 + |η|2),
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then we see that the sum of all three potentials has the same structure as the
potentials in the case of the strong interaction, namely,

(10.7) − c2 + c1|x|4 ≤ V̄ + V̂ + Û ≤ c′1|x|4 + c′2,

where x ∈ R8—but this usage is restricted to this particular estimate.
We also see that the fermionic operators have coefficients depending on

(x, ξk, ηk) and therefore the eigenvalue problem cannot be separated in
bosonic and fermionic part but has to treated in a fermions valued function
space. The eigenfunctions will be non-trivial fermionic fields

(10.8) Ψ : R8 → F2,

where F2 is the subspace of the antisymmetric Fock space spanned by the
fermions.
H3 is obviously formerly self-adjoint and the eigenvalues of the fermionic

operators—disregarding their coefficients as well as g2 and he—are absolutely
bounded by a numerical constant α0.

Thus, using the symbol u instead of Ψ, if

(10.9) u, v ∈ C∞c (R8,F2)

then

(10.10) 〈H3u, v〉 = 〈u,H3v〉
and

(10.11)
〈H3u, u〉 =

∫
R8

{aij〈Diu,Dju〉+ (V̄ + V̂ + Û)‖u‖2

+ 3
2g2xa0(u, u) + he(ξ

kak(u, u) + ηkbk(u, u))},
where

(10.12) − aijDiDju

represents the elliptic main differential part of H3, and a0, ak, bk, 1 ≤ k ≤ 2,
are the sesquilinear fermionic forms, e.g.,

(10.13) a0 = 1
2 L̄

α
kL

k
α,

and the scalar product under the integral sign is the scalar product in F2

with corresponding norm ‖·‖.
Let χ ∈ F2 be normalized, ‖χ‖ = 1, then

(10.14) max(|a0(χ, χ)|, |ak(χ, χ)|, |bk(χ, χ)|) ≤ α0 ∀ 1 ≤ k ≤ 2,

and we deduce, that for any δ > 0

(10.15)
〈H3u, u〉 ≥

∫
R8

{aij〈Diu,Dju〉+ (V̄ + V̂ + Û)‖u‖2

− c
(
g2

2 |x|2 + h2
e(|ξ|2 + |η|2)

)
α2

0δ
−1‖u‖2 − δ‖u‖2},

where c is a numerical constant.
Note that u has values in F2, i.e., if we fix an orthonormal basis in F2,

(10.16) u = (uA),
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then

(10.17) aij〈Diu,Dju〉 = aijDiu
ADj ūA,

and

(10.18) c1‖Du‖2 ≤ aij〈Diu,Dju〉 ≤ c2‖Du‖2,
where c1, c2 are positive numerical constants, and the norm is the norm in
F2.

To solve the eigenvalue problem we first have to define the Hilbert space.

Fix an eigenspace Fρa , 1 ≤ a ≤ 9, of λ̂0 in F2, cf. (8.9) on page 34, and
let E0 ⊂ C∞c (R4,C) resp. E ⊂ C∞c (R4,C) be matching subspaces, cf. The-
orem 8.1 on page 34 and the remarks at the end of Section 8. Then we
define

(10.19) E = E(ρa) = E0 ⊗ E ⊗ Fρa
and consider E as a subspace of C∞c (R8, Fρa)

(10.20) E ⊂ C∞c (R8, Fρa),

where its elements are functions

(10.21) u = u(x) = (uA)

with pointwise norm

(10.22) ‖u‖2 = uAūA.

10.1. Definition. Let H3 be the completion of E with respect to the L2-
norm, where we define for u ∈ E

(10.23) ‖u‖2 =

∫
R8

‖u‖2;

the norm inside the integral is the norm in F2.
The Hilbert space H̃3 is defined as the completion of E with respect to

the norm

(10.24) ‖u‖21 =

∫
R8

{‖Du‖2 + |x|4‖u‖2}.

Though E is invariant with respect to the potentials and the respec-
tive Laplace operators it is not invariant with respect to H3 because of
the fermionic operators which also depend on spatial variables. To define
a meaningful symmetric operator satisfying the constraints, we consider the
quadratic form associated with H3 which is defined in (10.11). Denote this
quadratic form by a3,

(10.25) a3(u, v) = 〈H3u, v〉 ∀u, v ∈ E.
In view of the estimate in (10.15), a3 is semi-bounded from below in H3, or
more precisely, we have

(10.26) a3(u, u) ≥ c1‖u‖21 − c2‖u‖2 ∀u ∈ E;
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for a proof simply choose the parameter δ in (10.15) large enough.
On the other hand, a3 can be estimated from above by

(10.27) a3(u, u) ≤ c′1‖u‖21 + c′2‖u‖2 ≤ c′1‖u‖21 ∀u ∈ E,

where the second inequality is valid because of the embedding

(10.28) H̃3 ↪→ H3

is compact; the constant c′1 in the second inequality is of course different from
the corresponding constant in the first inequality.

Thus, a3 has a natural extension to H̃3 and we can apply the general
variational principle to find a complete set of eigenfunctions.

10.2. Theorem. There exists a sequence of normalized eigenfunctions ui
with real eigenvalues λi of finite multiplicities such that

(10.29) a3(ui, v) = λi〈ui, v〉 ∀ v ∈ H̃3,

(10.30) λi ≤ λi+1 ∧ limλi =∞,

and

(10.31) a3(ui, uj) = 〈ui, uj〉 = 0 ∀ i 6= j.

Define the linear operator T3 by

(10.32) D(T3) = 〈(ui)i∈N〉 ∧ T3ui = λiui ∀ i ∈ N,

then T3 is densely defined in H3, symmetric, essentially self-adjoint and there
holds

(10.33) a3(u, v) = 〈T3u, v〉 ∀u, v ∈ D(T3).

Proof. We only have to prove the claims about the operator T3. T3 is certainly
densely defined and satisfies (10.33), since this relation is valid for u = ui

Hence T3 is symmetric and it remains to prove the essential self-adjointness.
Thus it suffices to prove

(10.34) R(T3 ± i) = H3.

But these relations are obviously valid, since

(10.35) ui ∈ R(T3 ± i) ∀ i.

�

The closure of T3 is then the self-adjoint operator we are looking for

(10.36) Ĥ3 = Ĥ3(ρa) = T̄3.

As in the case of the strong interaction a finite number of eigenvalues could
be negative. This can be excluded by adjusting the free parameters µ̄ and b0
in the potentials V̄ and Û appropriately.
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Using the notations in (10.2), (10.3) and the definitions of the potentials

V̄ , V̂ , Û in (10.6), (10.4), (10.5) we infer

(10.37)
V̄ + V̂ + Û ≥ 3µ̄|x|2 + b0(|ξ|2 + |η|2)2

+ 3|x|4 + |y|4 + (x̂2 + ŷ2)2 −m2
1(|ξ|2 + |η|2),

and we conclude further, in view of (10.15),

(10.38)

a3(u, u) ≥∫
R8

{c1‖Du‖2 +
(
(b0 − c2

2 h
4
eα

4
0δ
−3 − |m|

4
1

2 δ−1)(|ξ|2 + |η|2)2

+ 3|x|4 + |y|4 + (x̂2 + ŷ2)2 − 2δ
)
‖u‖2},

provided

(10.39) 3µ̄ ≥ cg2
2α

2
0δ
−1.

Hence, we conclude, as in the proof of Theorem 9.3 on page 39:

10.3. Theorem. There exists a constant δ = δ(c1) > 0 such that the
eigenvalues λi are strictly positive provided

(10.40) b0 ≥ c2

2 h
4
eα

4
0δ
−3 +

|m|41
2 δ−1 + 1

and µ̄ satisfies (10.39).

We have thus solved the eigenvalue problem for each subspace Fρa ⊂ F2

in a corresponding Hilbert space

(10.41) H3(ρa).

These Hilbert spaces are mutually orthogonal subspaces of

(10.42) L2(R8)⊗F2
∼= L2(R8,F2).

The self-adjoint operators Ĥ3(ρa) then define a unique self-adjoint operator

Ĥ3 in

(10.43)

9⊕
a=1

H3(ρa)

such that

(10.44) Ĥ3|H3(ρa)
= Ĥ3(ρa) ∀ 1 ≤ a ≤ 9.
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11. The spectral resolution

We shall now prove the spectral resolution of the Wheeler-DeWitt equation
for the full Hamiltonian when gravity is combined with the strong and electro-
weak interactions. Our proof will even be valid when a finite number of
matter fields are involved. However, except for the actual proof, we shall only
consider the two interactions we are dealing with to simplify the presentation.

For arbitrary but fixed σk, ρa, 1 ≤ a, k ≤ 9, let H2(σk), H3(ρa) be the

corresponding Hilbert spaces and Ĥ2 resp. Ĥ3 the (essentially) self-adjoint
operators solving the eigenvalue problems

(11.1) Ĥ2ui = λiui ui ∈ H2,

resp.

(11.2) Ĥ3vj = µjvj vj ∈ H3,

cf. Theorem 9.4 on page 40 resp. Theorem 10.2 on page 44.
The functions

(11.3) ϕij = ui ⊗ vj ∈ H2 ⊗H3

are then eigenfunctions of the operator

(11.4) Ĥ1 = Ĥ2 + Ĥ3,

(11.5) Ĥ1ϕij = (λi + µj)ϕij ,

where

(11.6) D(Ĥ1) = 〈(ϕij)(i,j)∈N×N〉.
We require that

(11.7) λi + µj > 0 ∀ (i, j).

In view of the results in Theorem 9.3 on page 39 and Theorem 10.3 on
page 45 this can always be achieved by choosing the parameters in the po-
tentials appropriately.

After relabeling the countably many eigenvalues and eigenfunctions we
may assume that (ϕi, µi) are solutions of the eigenvalue problem for Ĥ1

satisfying

(11.8) Ĥ1ϕi = µiϕi

such that the (ϕi) are complete in H1 = H2⊗H3 and the eigenvalues µi have
finite multiplicities such that

(11.9) 0 < µi ≤ µi+1 ∧ limµi =∞.
We also note that the elements ϕ ∈ H1 are viewed as maps

(11.10) ϕ : R4n+9 → Fσk ⊗ Fρa ⊂ F1 ⊗F2,

i.e.,

(11.11) H1 ⊂ L2(R4n+9,F1 ⊗F2)
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We are therefore in a similar situation as in [11], where we considered a
related problem.

The Wheeler-DeWitt equation can now be written in the form

(11.12) H0Ψ− Ĥ1Ψ = 0,

where Ψ has to satisfy the constraints. The constraints will be satisfied, if
we split Ψ in the form

(11.13) Ψ = u⊗ ϕ,
where ϕ ∈ H1 and u is a complex valued function

(11.14) u = u(f) ≡ u(t)

depending on the real variable f which we shall also denote by t.
The operator H0 is the differential operator

(11.15) H0u = −αM
24

e−(2n+5)t
(
e(2n+3)tu′

)′
− 2α−1

M Λe4tu

cf. (7.16) on page 32, where a dot or prime indicates differentiation with
respect to t.

The exponents (2n+3) resp. (2n+5) depend on the number of the bosonic
dynamical variables. To solve the Wheeler-deWitt equation for an arbitrary
number of matter fields with m dynamical bosonic variables, we consider the
operator

(11.16) H0u = −αM
24

e−
(m+1)

2 t
(
e

(m−3)
2 tu′

)′
− 2α−1

M Λe4tu.

In our present situation there holds

(11.17) m = 4n+ 9.

Let H̃0 be defined by

(11.18) H̃0u = −αM
24

e−
(m+1)

2 t
(
e

(m−3)
2 tu′

)′
+ 2α−1

M e4tu.

Then, we first want to solve the eigenvalue problems

(11.19) H̃0u = λu

in an appropriate function space.

11.1. Definition. For p = m−3
2 define H0 as the completion of C∞c (R,C)

with respect to the norm

(11.20) ‖u‖2 =

∫
R
|u|2e(p+2)t

and H̃0 as the completion of C∞c (R,C) with respect to the norm

(11.21) ‖u‖21 =

∫
R
{|u̇|2ept + |u|2e(p+6)t}.

11.2. Lemma. The norm ‖·‖ is compact relative to ‖·‖1.



48 CLAUS GERHARDT

Proof. Let uk ∈ H̃0 be a sequence converging weakly to zero, then we have
to prove

(11.22) lim‖uk‖ = 0.

Let I = (a, b) be any bounded interval and χ = χI be its characteristic
function, then

(11.23) lim‖ukχI‖ = 0,

in view of the Sobolev embedding theorem saying that the embedding

(11.24) H1,2(I) ↪→ L2(I)

is compact.
Thus, we only have to prove

(11.25) lim sup

∫ ∞
b

|uk|2e(p+2)t ≤ ε(b),

where

(11.26) lim
b→∞

ε(b) = 0,

and a similar estimate in (−∞, b), b << −1,

(11.27) lim sup

∫ b

−∞
|uk|2e(p+2)t ≤ ε(b).

Let us first prove (11.25), which is almost trivial. From

(11.28) ‖uk‖1 ≤ c ∀ k
we deduce

(11.29)

∫ ∞
b

|uk|2e(p+2)t ≤ e−4b

∫ ∞
b

|uk|e(p+6)t ≤ ce−4b ≡ ε(b),

which implies (11.26).
The proof of (11.27) is a bit more delicate. First, we make a change of

variables setting

(11.30) τ = −t
such that the crucial estimate for uk = uk(τ) is

(11.31) lim sup

∫ ∞
b

|uk|2e−(p+2)τ ≤ ε(b).

Replacing uk by

(11.32) ukη,

where η is a cut-off function, we may assume without loss of generality that

(11.33) suppuk ⊂ (τ1,∞), τ1 > 3.

We then only use the estimate

(11.34)

∫ ∞
0

|u̇k|2e−pτ ≤ c ∀ k
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and the Hardy-Littlewood inequality

(11.35)

∫ ∞
0

|u|2τ−σ ≤
( 2

|σ − 1|

)2
∫ ∞

0

|u̇|2τ (−σ+2),

which is valid for all u ∈ C∞c (R+) and all 1 6= σ ∈ R, cf. [12, Theorem 3.30].
We distinguish two cases.

Case 1: p = 0.

Then, we may choose in (11.35) σ = 2 and u = uk to deduce

(11.36)

∫ ∞
0

|uk|2τ−2 ≤ 4

∫ ∞
0

|u̇k|2 ≤ 4c,

and we conclude further

(11.37)

∫ ∞
b

|uk|2e−2τ ≤ b2e−2b

∫ ∞
b

|uk|2τ−2,

if b > 1, hence the result.

Case 2: p 6= 0

If p 6= 0, we employ another variable transformation

(11.38) r = eτ ,

such that

(11.39)
d

dr
u ≡ u̇ =

d

dτ
ueτ ≡ u′eτ ,

and we infer

(11.40)

∫ ∞
0

|u′k|2r(1−p) =

∫ ∞
0

|u̇k|2e−pτ ≤ c,

in view of (11.33) and (11.34).
Thus, we may apply the Hardy-Littlewood inequality with

(11.41) σ = p+ 1

to derive

(11.42)

∫ ∞
r0

|uk|2r−(p+3) ≤ r−2
0

∫ ∞
r0

|uk|2r−(p+1) ≤ cr−2
0 = ε(r0), r0 > 1,

where we used (11.33), completing the proof of the lemma. �

Let 〈·, ·〉 be the scalar product

(11.43) 〈u, v〉 =

∫
R
uv̄ept

in H0 and

(11.44) a(u, v) = 〈H̃0u, v〉 =

∫
R

{αM
24

u̇ ˙̄v + 2α−1
M uv̄e(p+6)t

}
∀u, v ∈ H̃0,

then, by applying the general variational eigenvalue principle, we obtain:
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11.3. Theorem. There exists a sequence of normalized eigenfunctions ũi
with strictly positive eigenvalues λ̃i with finite multiplicities such that

(11.45) 0 < λ̃i ≤ λ̃i+1 ∧ lim λ̃i =∞,

(11.46) a(ũi, v) = λ̃i〈ũi, v〉 ∀ v ∈ H̃0,

and

(11.47) a(ũi, ũj) = 〈ui, uj〉 = 0 ∀ i 6= j.

Define the linear operator H̃ by

(11.48) D(H̃) = 〈(ũi)i∈N〉 ∧ H̃ũi = λ̃iũi ∀ i,

then H̃ is densely defined in H0, symmetric, essentially self-adjoint and

(11.49) a(u, v) = 〈H̃u, v〉 ∀u, v ∈ D(H̃).

Moreover, there holds

(11.50) ũi ∈ C∞(R,C)

and

(11.51) H̃0ũi = H̃ui = λ̃iũi.

Proof. We only have to prove (11.50) and (11.51), since the proof of the other
statements is identical to the proof of Theorem 10.2 on page 44.

From (11.46) we immediately deduce

(11.52) H̃0ũi = λ̃iũi

in the distributional sense, hence (11.50) is valid, which in turn implies
(11.51). �

An immediate consequence of the preceding result is:

11.4. Theorem. Let µ > 0, then the pairs (ũi, λi) represent a complete
set of eigenfunctions with eigenvalues

(11.53) λi = λ̃iµ
−1

for the eigenvalue problems

(11.54) H̃0u = λµu.

The rescaled functions

(11.55) ui(t) = ũi(t− 1
2 log λi)

then satisfy

(11.56) − αM
24

e−
(m+1)

2 t
(
e

(m−3)
2 tu′i

)′
+ 2α−1

M λ−3
i e4tui = µui,

or, if we set

(11.57) Λi = −λ−3
i ,
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(11.58) − αM
24

e−
(m+1)

2 t
(
e

(m−3)
2 tu′i

)′
− 2α−1

M Λie
4tui = µui.

We can now prove the spectral resolution of the Wheeler-DeWitt equation.
Let (µ, ϕ) resp. (λ, ũ) be a solution of

(11.59) Ĥ1ϕ = µϕ

resp.

(11.60) H̃0ũ = λµũ,

and set

(11.61) Ψ̃ = ũ⊗ ϕ,
then

(11.62) H̃0Ψ̃ = λĤ1Ψ̃,

or equivalently, in view of the preceding theorem,

(11.63) H0Ψ− Ĥ1Ψ = 0,

where

(11.64) Ψ = u⊗ ϕ,

(11.65) u(t) = ũ(t− 1
2 log λ),

(11.66) H0Ψ = −αM
24

e−
(m+1)

2 t
(
e

(m−3)
2 tΨ′

)′
− 2α−1

M Λe4tΨ,

and

(11.67) Λ = −λ−3.

One easily checks that Ψ belongs to

(11.68) H̃0 ⊗ H̃1 ⊂ H0 ⊗H1,

cf. the corresponding considerations in [11, section 3].

Let ũi resp. ϕj be the eigenfunctions of H̃0 resp. Ĥ1, then

(11.69) Ψ̃ij = ũj ⊗ ϕj
form a complete set of eigenfunctions in H0 ⊗H1 of the linear operator

(11.70) H = H̃0Ĥ
−1
1 = Ĥ−1

1 H̃0,

such that

(11.71) HΨ̃ij = λijΨ̃ij = λiµ
−1
j Ψ̃ij ,

where

(11.72) D(H) = 〈(Ψ̃ij)(i,j)∈N×N〉.
The rescaled functions

(11.73) Ψ(t, ·) = Ψ̃(t− 1
2 log λij , ·)
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are solutions of the Wheeler-DeWitt equation with cosmological constant

(11.74) Λij = −λ−3
ij .

11.5. Remark. H is essentially self-adjoint in H0 ⊗ H1 and we consider
it to be the Hamiltonian associated with the physical system defined by the
interaction of gravity with the matter fields. The properly rescaled eigen-
functions Ψij are solutions of the Wheeler-DeWitt equation. We refer to [11,
section 3], where these connections have been explained and proved in greater
detail.

The wave functions Ψ are maps from

(11.75) Ψ : R4n+10 → F1 ⊗F2

and in general the eigenstates Ψ cannot be written as simple products

(11.76) Ψ = uη,

such that

(11.77) η ∈ F1 ⊗F2 ∧ u(x) ∈ C ∀x ∈ R4n+10.

Thus, in general it makes no sense specifying a fermion η and looking for an
eigenfunction Ψ satisfying

(11.78) R(Ψ) ⊂ 〈η〉.
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