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Stabilization of the 2D incompressible Euler system in an infinite strip

The paper is devoted to the study of a stabilization problem for the 2D incompressible Euler system in an infinite strip with boundary controls. We show that for any stationary solution (c, 0) of the Euler system there is a control which is supported in a given bounded part of the boundary of the strip and stabilizes the system to (c, 0).

Introduction

We consider the incompressible two-dimensional Euler system u + u, ∇ u + ∇p = 0, div u = 0, (1.1) where u = (u 1 , u 2 ) and p are unknown velocity field and pressure of the fluid, and

u, ∇ v = 3 i=1 u i (t, x) ∂ ∂x i v.
The space variable x = (x 1 , x 2 ) belongs to the strip D defined by (1.

D := {(x 1 , x 2 ) : x 1 ∈ R, x 2 ∈ (-1, 1)}. ( 1 
3)

The aim of this paper is the study of stabilization of (1.1) with boundary controls supported by Γ 0 . System (1.1) is completed with the boundary and initial conditions

u • n = 0 on Γ \ Γ 0 , (1.4) 
u(x, 0) = u 0 (x), (

where Γ := ∂D and n is the outward unit normal vector on Γ. In particular, (1.4) is equivalent to u 2 = 0 on Γ \ Γ 0 . For any integer s ≥ 0 we denote by H s (D) the space of vector functions u = (u 1 , u 2 ) whose components belong to the Sobolev space of order s and by

• s,D the corresponding norm. If there is no confusion, we drop the index D. In the case s = 0, we write • := • 0 . For any integer s > 0 we define H s (D) as the space of distributions u in D with ∇u ∈ H s-1 (D). We equip H s (D) with the semi-norm u H s (D) := ∇u s-1 .

We denote by Ḣs (D) the quotient space H s (D)/R. The following theorem is our main result.

Main result. Let s ≥ 4 be an integer. Then for any constant c ∈ R and initial function u 0 ∈ H s (D) that decays fast at infinity and satisfies the relations

div u 0 = 0, u 0 • n = 0 on Γ \ Γ 0
there exists a solution (u, p) ∈ C(R + , C(D) ∩ Ḣs (D)) × C(R + , Ḣs (D)) of (1.1), (1.4) and (1.5) such that lim t→∞ ( u(•, t) -(c, 0) L ∞ + ∇u s-1 + ∇p s-1 ) = 0.

For the exact statement see Theorem 3.1. In this formulation the control is not given explicitly, but we can assume that control acts on the system as a boundary condition on Γ 0 .

Before turning to the ideas of the proof, let us describe in a few words some previous results on the controllability of Euler and Navier-Stokes systems. Coron [START_REF] Coron | On the controllability of 2-D incompressible perfect fluids[END_REF] introduced the return method to show exact boundary controllability of 2D incompressible Euler system in a bounded domain. Glass [START_REF] Glass | Exact boundary controllability of 3-D Euler equation[END_REF] generalized this result for 3D Euler system. Chapouly [START_REF] Chapouly | On the global null controllability of a Navier-Stokes system with Navier slip boundary conditions[END_REF] using return method proved the global null controllability of the Navier-Stokes system in rectangle. Recently, Glass and Rosier [START_REF] Glass | On the control of the motion of a boat[END_REF] proved the controllability of the motion of a rigid body, which is surrounded by an incompressible fluid. Controllability of Euler and Navier-Stokes systems with distributed controls is studied in [START_REF] Agrachev | Navier-Stokes equations controllability by means of low modes forcing[END_REF][START_REF] Fursikov | Exact controllability of the Navier-Stokes and Boussinesq equations[END_REF][START_REF] Nersisyan | Controllability of 3D incompressible Euler equations by a finite-dimensional external force[END_REF][START_REF] Shirikyan | Approximate controllability of three-dimensional Navier-Stokes equations[END_REF]; see also the book [START_REF] Coron | Control and nonlinearity[END_REF] for further references.

Notice that the above papers concern the problem of controllability of the fluid in a bounded domain. In this paper, we develop Coron's return method to get the controllability of velocity of 2D Euler system in an unbounded strip. This method consists in reducing the controllability of nonlinear system to the linear one. To this end, one constructs a particular solution (u, p) of Euler system and a sequence of balls {B i } covering D, such that (P ) Any ball B i driven by the flow of u leaves D through Γ 0 at some time.

Then the linearized system around u is controllable. In our case, since the domain D is unbounded, the number of balls B i is infinite, thus we cannot construct a bounded function u, whose flow moves all balls outside D in a finite time. However, we can find a particular solution u such that property (P ) holds in infinite time. This proves the stabilization of linearized system in infinite time.

To show that controllability of linearized system implies that of the nonlinear system, we need to prove that (P ) also holds for any ũ sufficiently close to u. This is obvious in the case of bounded domain. In our case, to prove this, we need some additional properties for u. In particular, we need to construct a solution u, which decays at infinity faster than 1/x 2 1 . As our particular solution u is a combination of the Green functions of the Laplacian with Neumann boundary condition, we need to prove that Green functions decay at infinity. This property is a consequence of elliptic regularity and some explicit formulas for solutions of the Laplace equation in a strip.

The paper is organized as follows. In Section 2, we give preliminaries on Poisson and Euler equations in an unbounded strip. The main results of the paper are presented in Section 3. In Section 4, we construct the particular solution u. In the Appendix, we prove an auxiliary result used in Section 2.
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Notation.

Let J T := [0, T ). The space of continuous functions u : J T → X is denoted by C(J T , X). For any integer s ≥ 0 or s = ∞, we denote

C s b (D) = {u ∈ C s (D) : u L ∞ (D) < ∞}. We set Ḣ∞ (D) := ∩ ∞ s=0 Ḣs (D). Define S(D) := {u ∈ L 2 (D) : x α 1 ∂ β u(x 1 , x 2 ) ∈ L 2 (D) for any α ∈ R + , β ∈ Z 2 + }.
For a vector field u = (u 1 , u 2 ) we set

curl u = ∂ 1 u 2 -∂ 2 u 1 .
The interior of a set K is denoted by int(K). Let B(x 0 , r) be the closed ball in R 2 of radius r centred at x 0 . We denote by C a universal constant whose value may change from line to line.

Preliminaries

In this section, we present some auxiliary results on Poisson and Euler equations in an unbounded strip. The methods used in their proofs are well known and in many cases we confine ourselves to a brief description of the main ideas.

Poisson equations in an unbounded strip

First, let us describe the spaces Ḣs (D).

Proposition 2.1. For any integer s ≥ 1 we have (i) The space Ḣs (D) is complete.

(ii) H s (D) = {u ∈ H s loc (D) : ∇u ∈ H s-1 }. (iii) If s ≥ 3, then for any u ∈ H s (D) there is a constant C depending on u such that |u(x 1 , x 2 )| ≤ C|x 1 | + C
holds for all x ∈ D.

Proof. Let {u n } ⊂ Ḣs (D) be a Cauchy sequence. Then there is v ∈ H s-1 (D) such that ∇u n →v in H s-1 (D) as n→∞, and for any ϕ ∈ C ∞ 0 (D) such that div ϕ = 0, we have

0 = lim n→∞ (∇u n , ϕ) L 2 = (v, ϕ) L 2 .
Hence, v = ∇z, where z ∈ Ḣs (D). This proves that Ḣs (D) is complete. Now let us prove assertion (ii). Clearly the space in the right-hand side is contained in Ḣs (D). Let us take a function u ∈ Ḣs (D), a compact set K ⊂ D and let us show that u ∈ H s (K). Take two functions χ, χ 1 ∈ C ∞ 0 (D) and a compact set K 1 ⊂ D with int(K 1 ) ⊃ K such that χ = 1 in K 1 and χ 1 = 1 in K1 := supp χ. Then there exists r ∈ N such that χ 1 u ∈ H -r (D). This implies that u ∈ H -r ( K1 ), hence ∆(χu) = 2∇χ∇u + χ∆u + u∆χ ∈ H min(-r;s-2) ( K1 ).

The elliptic regularity implies χu ∈ H min(-r+2;s) (D), thus u ∈ H min(-r+2;s) (K 1 ).

Repeating this argument for a compact set

K 2 ⊂ K 1 with int(K 2 ) ⊃ K we can show that u ∈ H min(-r+4;s) (K 2 )
. Iterating this, we get u ∈ H s (K). This completes the proof of assertion (ii).

It is easy to see that (ii) implies (iii). Indeed, from (ii) we get

u(x 1 , x 2 ) = x1 0 ∂ 1 u(y, x 2 )dy + u(0, x 2 ).
The Sobolev inequality yields (iii). 

D := {(x 1 , x 2 ) : x 1 ∈ R, x 2 ∈ (-1 -γ(x 1 -d), 1 + γ(x 1 ))} (2.1)
(see figure 1). 

∆u = f in D ′ , (2.2) u = 0 on Γ ′ , (2.3) 
where

Γ ′ = ∂D ′ and f ∈ L 2 (D ′ ). We say that u ∈ H 1 0 (D ′ ) is a solution of (2.2), (2.3) if D ′ ∇u∇θdx = - D ′ f θdx for any θ ∈ H 1 0 (D ′ ).
We have the following result for the well-posedness of this problem.

Proposition 2.2. For any integer s ≥ 0 and for any f ∈ H s (D ′ ) problem (2.2), (2.3) has a unique solution u ∈ H s+2 (D ′ ). Moreover,

u s+2 ≤ C f s , (2.4) 
where C depends only on s.

Proof. The existence of the solution u ∈ H 1 0 (D ′ ) is a consequence of the Riesz representation theorem. Clearly, we have

∇u 2 ≤ C f u .
(2.5)

The Poincaré inequality applied to u(x 1 , •) gives

u ≤ C ∂ 2 u .
Combining this with (2.5), we obtain

u 1 ≤ C f . (2.6)
To show the regularity of the solution and estimate (2.4), we need the following lemma.

Lemma 2.3. For any integer s ≥ 1 we have

H s (D ′ ) = {z ∈ L 2 (D ′ ) : curl z ∈ H s-1 (D ′ ), div z ∈ H s-1 (D ′ ), z •n ∈ H s-1/2 (Γ ′ )},
where n is the outward unit normal vector on Γ ′ . Moreover, any function z ∈ H s (D ′ ) satisfies the inequality

z s ≤ C z + curl z s-1 + div z s-1 + z • n s-1/2 ,
where C depends only on s.

The proof of this lemma is given in the Appendix. Let us denote z = ∇ ⊥ u := (∂ 2 u, -∂ 1 u). Then curl z = -∆u = -f , div z = 0. Notice that (2.3) implies that z •n = 0. It follows from Lemma 2.3 and inequality (2.6) that z ∈ H s+1 (D ′ ) and z s+1 ≤ C f s . Thus, we obtain u ∈ H s+2 (D ′ ) and (2.4).

Let us take g ∈ H 1 (D ′ ) and consider the Neumann problem for the Poisson equation: (ii) For any

∆u = div g in D ′ , (2.7) ∂u ∂n = g • n on Γ ′ . ( 2 
x ∈ D \ {a} ∇G a (x) = - 1 2π |x -a| 2 -2(x 1 -a 1 ) 2 |x -a| 4 , -2(x 1 -a 1 )(x 2 -a 2 ) |x -a| 4 +ψ a (x), (2.12) 
where ψ a ∈ H ∞ ( D).

(iii) Let a ∈ D \ D, then G a ∈ Ḣ∞ (D) and for any integers 1 ≤ i, j ≤ 2 we have

∂ i ∂ j G a (x 1 , x 2 ) ∈ S(D). (2.13) 
(iv) For any fixed x ∈ D the function G a (x) is analytic in a ∈ D \ {x}.

Proof. The existence of a solution G a ∈ C ∞ ( D \ {a}) will be established when proving assertion (ii). To prove the uniqueness of the solution, we assume that there are two solutions G 1,a and G 2,a . For G = G 1,a -G 2,a we have

∆ G = 0 in D, ∂ G ∂n = 0 on ∂ D, Let χ ∈ C ∞ 0 ( D) with χ = 1 in Q. Then ∆(χ G) = h,
where h ∈ C ∞ 0 ( D). The elliptic regularity for a bounded domain implies that χ G ∈ H ∞ ( D). Since G ∈ Ḣs ( D \ Q), we get G ∈ Ḣs ( D). It follows from Proposition 2.4 that G = 0.

To prove (ii), we seek the solution in the form

G a = ∂ 1 (F a χ) + u a , (2.14) 
where F a (x) = -1 2π ln |x-a| is the fundamental solution of the Laplace operator in R 2 , χ ∈ C ∞ 0 ( D), χ is 1 in a neighborhood of a. Then u a must be the solution of the problem

∆u a = -∂ 1 (2∇F a • ∇χ + F a ∆χ) := ∂ 1 f in D, ∂u a ∂n = 0 on ∂ D.
Since f ∈ C ∞ 0 ( D), applying Proposition 2.4 for g = (f, 0), we conclude that this problem has a solution u a ∈ H ∞ ( D). Property (2.12) follows from the construction of G a . Now let us show (2.13). We have that G a satisfies the following problem in D:

∆G a = 0 in D, (2.15) ∂G a ∂n = ϕ on Γ, (2.16) 
where ϕ ∈ C ∞ (Γ) and supp ϕ ⊂ Γ 0 . To show that the second derivatives of the solution belong to S(D), let us apply the Fourier transform in x 1 to (2.15), (2.16). We obtain

d 2 dx 2 2 Ĝa -ξ 2 Ĝa = 0 in D, d Ĝa dx 2 (ξ, -1) = φ1 (ξ), d Ĝa dx 2 (ξ, 1) = φ2 (ξ),
where Ĝa , φ1 and φ2 are Fourier transforms of G a , ϕ(•, -1) and ϕ(•, 1), respectively. The solution of this ODE is given by Ĝa (ξ,

x 2 ) = φ2 -φ1 2ξ sinh(ξ) cosh(ξx 2 ) + φ2 + φ1 2ξ cosh(ξ) sinh(ξx 2 ).
Since ϕ 1 and ϕ 2 are compactly supported, we have

F (∂ i ∂ j G a ) ∈ S(D), 1 ≤ i, j ≤ 2, whence it follows that ∂ i ∂ j G a ∈ S(D).
This completes the proof of (iii).

Let Ω be any domain such that Ω ⊂ D and Ω ∩ ( D \ D) = ∅. Then for any fixed x ∈ Ω the function G a (x) is analytic in a ∈ Ω \ {x}. Indeed, let χ in (2.14) be 1 in Ω. Then the analyticity of G a (x) is consequence of the facts that F a is analytic in a and u a is a linear operator in F a . Since G a is the unique solution of (2.10), (2.11), we have the analyticity of G a (x) in D \ {x}.

Euler equations in an unbounded strip

We consider the incompressible Euler system:

u + u, ∇ u + ∇p = 0, div u = 0 in D,
(2.17)

u • n = 0 on Γ, (2.18) u(x, 0) = u 0 (x), (2.19) It is well known that if D is a bounded domain or if D = R 2 , then problem (2.17)-(2.19
) is well posed in various function spaces (e.g., see [START_REF] Kato | On classical solutions of the two-dimensional non-stationary Euler equation[END_REF][START_REF] Kato | Commutator estimates and the Euler and Navier-Stokes equations[END_REF][START_REF] Wolibner | Un théorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long[END_REF]).

In this subsection, we study the well-posedness of Euler system in D defined by (1.2). Definition 2.6. For any integer s ≥ 3 we say that (u, p) is a solution of Euler system if (u, p) ∈ C(J T , H s (D)) × C(J T , Ḣs+1 (D)) and (2.17) is satisfied in the sense of distributions.

Let us show that the Euler system is equivalent to the problem

ẇ + u, ∇ w = 0, w(x, 0) = curl u 0 (x), (2.20) 
curl u = w, div u = 0, u • n| Γ = 0. (2.21)
Clearly, if (u, p) is a solution of the Euler system, then (2.20), (2.21) hold. Now let us show that to any solution

(u, w) ∈ C(J T , H s (D)) ∩ C 1 (J T , H s-1 (D)) × C(J T , H s-1 (D))
of (2.20), (2.21) there corresponds a unique solution (u, p) ∈ C(J T , H s (D)) × C(J T , Ḣs+1 (D)) of (2.17)- (2.19). From (2.20) and (2.21) it follows that curl( u + u, ∇ u) = 0.

Hence, there exists p ∈ C(J T , Ḣs (D)) such that -∇p = u + u, ∇ u. It is easy to see that

-div ∇p = div( u, ∇ u) = 2 i,j=1 ∂ i u j ∂ j u i ∈ H s-1 , curl ∇p = 0, - ∂p ∂n = ( u, ∇ u) • n = u, ∇ (u • ñ) - 2 i,j=1 u j u i ∂ j ñi = - 2 i,j=1 u j u i ∂ j ñi ∈ H s-1/2 ,
where ñ is a regular extension of n. Thus, it follows from Lemma 2.3 that ∇p ∈ C(J T , H s (D)), whence we conclude that p ∈ C(J T , Ḣs+1 (D)) .

We have the following result on the local well-posedness of Euler system. The ideas used in the proof of existence of a solution play an important role in the study of stabilization problem (see Section 3). Therefore we present a rather complete proof, even though we do not really need this result.

Theorem 2.7. Let s ≥ 4. For any u 0 ∈ H s (D) satisfying the conditions

div u 0 = 0, u 0 • n = 0 on Γ, there is T * = T * ( u 0 s ) such that system (2.17)-(2.19) has a unique solution (u, p) ∈ C(J T * , H s (D)) × C(J T * , Ḣs+1 (D)).
Proof. Uniqueness. To prove the uniqueness, we argue as in the case of bounded domain. We assume that there are two solutions u 1 and u 2 . Then

for v = u 1 -u 2 , we have v + u 1 , ∇ v + v, ∇ u 2 + ∇p = 0, (2.22) div v = 0, v • n| Γ = 0, v(x, 0) = 0.
Multiplying (2.22) by v and integrating over D, we get

∂ t v(•, t) 2 ≤ - D u 1 , ∇ v • vdx + C v(•, t) 2 - D ∇p • vdx, (2.23) 
where C > 0 is a constant depending only on u 2 . Since u 1 • n = 0, the first term on the right-hand side of (2.23) is zero. Let us show that the last term is also zero. Let us denote

Ω (R) := {x ∈ D : |x 1 | < R},
and let χ ∈ C ∞ (D) such that χ(x) = 0, if x / ∈ Ω (2) , 1, if x ∈ Ω (1) .
Clearly, we have lim

R→∞ D χ( x R )∇p(x) • v(x)dx = D ∇p(x) • v(x)dx.
On the other hand, integrating by parts, we obtain

D χ( x R )∇p(x) • v(x)dx = - Ω (2R) \Ω (R) ∇χ( x R ) p(x) R • v(x)dx.
Since p ∈ Ḣs+1 , from assertion (iii) of Proposition 2.1 we have sup

x∈Ω (2R) | p(x) R | < C,
where C does not depend on R. Thus, dominated convergence theorem yields

D ∇p(x) • v(x)dx = 0.
Applying the Gronwall inequality to (2.23), we obtain v = 0. Existence. To prove the existence of the solution, we shall need the following result.

Lemma 2.8. Let ũ ∈ C(R + , H s ), ũ•n| Γ×R+ = 0, f ∈ C(R + , H s ) and w 0 ∈ H s , s ≥ 3. Then the problem ∂ t w + ũ, ∇ w = f, (2.24) w(x, 0) = w 0 , (2.25)
has a unique solution w ∈ C(R + , H s ), which satisfies the inequality

w(•, t) s ≤ w 0 s + t 0 ( f (•, τ ) s + C w(•, τ ) s ∇ũ(•, τ ) s-1 ) dτ. (2.26)
Proof. Let us denote by φ g : D × R + → D the flow associated to g, i.e., the solution of the problem

∂φ g ∂t = g(φ g , t), φ g (x, 0) = x.
Since (2.24), (2.25) is an inhomogeneous transport equation, its solution is given by

w(φ ũ(x, t), t) = w 0 (x) + t 0 f (φ ũ(x, τ ), τ )dτ.
Let us derive formally inequality (2.26). Taking the ∂ α := ∂ α ∂x α , |α| ≤ s derivative of (2.24) and multiplying the resulting equation by ∂ α w, we get

1 2 d dt ∂ α w 2 = D ∂ α f ∂ α wdx - D ∂ α (ũ • ∇) w • ∂ α wdx ≤ D (ũ • ∇)∂ α w • ∂ α wdx + f s w s + C ∇ũ s-1 w 2 s .
Integrating We now return to the proof of the theorem. The proof is based on some ideas from [START_REF] Bardos | Finite-time regularity for bounded and unbounded ideal incompressible fluids using Hölder estimates[END_REF] and [START_REF] Bona | The initial-value problem for the Korteweg-de Vries equation[END_REF].

Step 1. Let E : H k (D)→H k (R 2 ), 0 ≤ k ≤ s + 1 be an extension operator. Let ρ ∈ S(R 2 ) be the function such that ρ(ξ) = exp(-|ξ| 2 1-|ξ| 2 ) |ξ| < 1, 0 |ξ| ≥ 1.
Define J m : H s (D)→H s+1 (D) by

J m (v) := (m 2 ρ(mx) * E(v))| D . (2.31) For u 0 ∈ H s (D) we define u m 0 := J m (u 0 ). Then u m 0 →u 0 in H s (D), u m 0 s ≤ C u 0 s , u m 0 s+1 ≤ mC u 0 s , (2.32) 
u m 0 -u k 0 s = o(1) and u m 0 -u k 0 1 = o( 1 m s-1 ) as m→∞, (2.33) 
where (2.33) holds uniformly in k > m. Using Lemmas 2.8 and 2.9, we define the sequences u m ∈ C(R + , H s+1 ) and w m ∈ C(R + , H s ) by

u 0 = u 0 , ∂ t w m+1 + u m , ∇ w m+1 = 0, w m+1 (0) = curl u m+1 0 , curl u m+1 = w m+1 , div u m+1 = 0, u m+1 • n| Γ = 0.
Our strategy is to show that sequence u m is convergent and the limit is the solution of Euler system. From (2.26) we derive

w m (•, t) i ≤ curl u m 0 i + C 1 t 0 w m (•, τ ) i u m-1 (•, τ ) i dτ (2.34) for i = s -1, s.
Step 2. In this step, we show that there exists a time

T * = T * ( u 0 s ) such that for any t ∈ J T * w m (•, t) s-1 ≤ C u m 0 s , w m (•, t) s ≤ C u m 0 s+1 ≤ mC u 0 s . (2.35)
By induction, let us prove for i = s -1, s the inequality

w m (•, t) i ≤ y m (t), (2.36) 
where C does not depend on m and y m (t) is the solution of

ẏm = C 1 y 2 m , y m (0) = curl u m 0 i . (2.37)
Clearly (2.36) holds for m = 0 for a sufficiently large C. Assume that it holds also for m -1 and let us prove it for m. From the construction of ρ we have

u m-1 0 i ≤ u m 0 i , hence y m-1 ≤ y m .
Thus, from (2.34), (2.37) and induction hypothesis, we have

w m (•, t) i -y m ≤ C 1 t 0 ( w m (•, τ ) i u m-1 (•, τ ) i -y 2 m )dτ ≤ C 1 t 0 y m ( w m (•, τ ) i -y m )dτ.
Inequality (2.36) follows from the Gronwall inequality. It is easy to see that (2.36) yields (2.35).

Step 3. Now let us show that w m converges in C(J T * , H s-1 ). In view of Lemma 2.9, sequence u m converges in C(J T * , H s ) and the limit u is the solution of Euler problem.

Notice that for m < k we have

∂ t w m -w k + u k-1 , ∇ w m -w k = u k-1 -u m-1 , ∇ w m . (2.38) Denote K m,k (t) := w m (•, t) -w k (•, t) s-1 . Lemma 2.8 implies K m,k (t) ≤ u m 0 -u k 0 s + C t 0 K m,k (τ ) u k-1 (•, τ ) s-1 + u m-1 (•, τ ) -u k-1 (•, τ ) s-1 w m (•, τ ) s dτ. (2.39)
On the other hand,

w m s ≤ Cm, u m-1 -u k-1 s-1 ≤ u m-1 -u k-1 1 s-1 1 u m-1 -u k-1 s-2 s-1 s . (2.40) Assume for a moment that U m,k := w m-1 -w k-1 ≤ o( 1 m s-1 ).
(2.41) Substituting (2.40) into (2.39) and using (2.33) and (2.41), we obtain

K m,k (t) ≤ o(1) + C t 0 K m,k (τ ) u k-1 (•, τ ) s-1 dτ.
Using the Gronwall inequality, we obtain the convergence of w m in C(J T * , H s-1 (D)).

Step 4. To complete the proof of the theorem, it remains to show (2.41). Taking the scalar product of (2.38) with w mw k in L 2 , we get

U m,k (t) ≤ C u m 0 -u k 0 1 + C t 0 U m-1,k-1 (t 1 )dt 1 .
Iterating this inequality, one deduces

U m+p,k+p (t) ≤C u m+p 0 -u k+p 0 1 + C t 0 U m+p-1,k+p-1 (t 1 )dt 1 ≤C u m+p 0 -u k+p 0 1 + C t 0 C u m+p-1 0 -u k+p-1 0 1 + C t1 0 U m+p-2,k+p-2 (t 2 ) dt 2 dt 1 ≤C u m+p 0 -u k+p 0 1 + C t 0 C u m+p-1 0 -u k+p-1 0 1 + • • • + C tp-1 0 C u m+1 0 -u k+1 0 1 + C tp 0 U m,k (t p ) dt p • • • dt 2 dt 1 .
Hence, for any t ∈ J T * we obtain

U m+p,k+p ≤ p j=1 C p-j+1 T * p-j (p -j)! u m+j 0 -u k+j 0 1 + C p+1 T * p p! max t∈[0,T * ] U m,k . (2.42) Since ∞ j=1 C j+1 T * j j! < ∞,
inequalities (2.33) and (2.42) imply (2.41).

Remark 2.10. We have the following assertions:

• Adapting the Beale-Kato-Majda criterion (see [START_REF] Beale | Remarks on the breakdown of smooth solutions for the 3-D Euler equations[END_REF]) for an unbounded strip, one can prove that the solution of (2.17)-(2. [START_REF] Wolibner | Un théorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long[END_REF]) is global in time. However, we shall not need this result.

• Let us take any non-zero function g ∈ H s-1/2 (Γ). If the homogeneous boundary condition (2.18) is replaced by u • n| Γ = g, then, to our knowledge, neither existence nor uniqueness of a solution is known to hold (even in the case of bounded domain).

Main result

Let D and Γ 0 be defined by (1.2) and (1.3). Consider the Euler system:

u + u, ∇ u + ∇p = 0 in D × (0, ∞), (3.1) div u = 0, (3.2) 
u • n = 0 on Γ \ Γ 0 × R + , (3.3) 
u(x, 0) = u 0 (x). (3.4) 
For any integer s we denote

X s (D) = C(R + , C b (D) ∩ Ḣs (D)),
and

x 1 := (1 + x 2 1 ) 1/2 .
The following theorem is our main result.

Theorem 3.1. For any constants α, β > 0, c ∈ R and integer s ≥ 4, for any initial data u 0 ∈ H s (D) such that

div u 0 = 0, (3.5) 
u 0 • n = 0 on Γ \ Γ 0 , (3.6) 
exp(α

x 1 2+β ) curl u 0 (x 1 , x 2 ) s-1 < ∞ (3.7)
there is a solution (u, p) ∈ X s (D) × C(R + , Ḣs (D)) of (3.1)-(3.4) with

lim t→∞ ( u(•, t) -(c, 0) L ∞ (D) + ∇u(•, t) s-1 + ∇p(•, t) s-1 ) = 0. (3.8)
As explained in Introduction, in this formulation the control is not given explicitly, but we can assume that control acts on the system as a boundary condition on Γ 0 . So we show that there exists control η such that there is a solution of our system with u • n| Γ0 = η verifying (3.8). As we mentioned in Remark 2.10, we are not able to show that this solution is unique.

Using a standard scaling argument for Euler system, we can reduce this theorem to a small neighborhood of the origin. 

( u M (•, t) -( c M , 0) L ∞ (D) + ∇u M (•, t) s-1 + ∇p M (•, t) s-1 ) = 0. Then (u, p) = (M u M (x, M t), M 2 p M (x, M t)
) is a solution of our system with u(0) = u 0 and it satisfies (3.8).

Proof of Theorem 3.2. The proof of this theorem is based on generalization of the Coron return method to the case of an unbounded strip. It consists in construction of a particular solution (u, p) of (3.1)-( 3.3) such that the solution of linearized system around (u, p) verifies property (3.8). Then, in the small neighborhood of u, we construct a solution u of Euler system satisfying (3.8).

Step 1. In this step, we construct a particular solution (u, p) of (3.1)-( 3.3) such that any point of strip D, driven by the flow of u, leaves D at some time. Let D ⊂ R 2 be the strip

D := {(x 1 , x 2 ) : x 1 ∈ R, x 2 ∈ (-2, 2)}.
Let us admit the proposition below, which is proved in Section 4.1.

Proposition 3.3. There are scalar functions θ i ∈ C 1 ( D×R + ) with ∇θ i ∈ X s ( D), open balls B i , a sequence τ i ⊂ R + , constants M, λ and an integer N ∈ N such that the following properties are true.

1. Covering. For any integer k ≥ 0, we have

[k, k + 1] × [-1, 1] ⊂ N j=1 B 2kN +j , (3.9) 
[-k -1, -k] × [-1, 1] ⊂ N j=1 B (2k+1)N +j . (3.10)
In particular, the union of balls B i covers D and any square

[k, k + 1] × [-1, 1] is covered by N balls.
2. Support.

supp θ i ⊂ D × (0, τ i ). (3.11)
3. Vector field. The time dependent vector field ∇θ i is divergence-free in D and tangent to Γ \ Γ 0 and ∂ D:

∆θ i = 0 in D × [0, τ i ], (3.12 
)

∂θ i ∂n = 0 on (Γ \ Γ 0 ) ∪ ∂ D × [0, τ i ]. (3.13)
4. Time decay. For any i ≥ 1 we have

||∇θ i (•, t)|| X s ( D) ≤ 1 i for any t ∈ [0, τ i ], (3.14) 
τ i ≤ M i. (3.15)
5. Flow. For any i ≥ 1 and c ∈ R with |c| < λ the flow associated with ∇θ i + (c, 0) is such that

φ ∇θ i +(c,0) (B i , τ i ) ⊂ D \ D. (3.16)
Moreover, there are two closed balls B1 , B2 ⊂ D \ D such that

∪ ∞ i=1 φ ∇θ i +(c,0) (B i , τ i ) ⊂ B1 ∪ B2 . (3.17) 
Let us set t 0 = 0,

t i = 2 i j=1 τ j , t i+1/2 = t i + t i+1 2 , i ≥ 1. (3.18)
We define θ in the following way:

θ(x, t) = θ i (x, t -t i-1 ) for t ∈ [t i-1 , t i-1/2 ], (3.19) θ(x, t) = -θ i (x, t i -t) for t ∈ [t i-1/2 , t i ]. (3.20)
Notice that from the construction of t i we have t it i-1/2 = τ i . Thus (3.11) shows that θ ∈ C 1 ( D × R + ) and ∇θ ∈ X s ( D). We define

u : = ∇θ + (c, 0), p : = -∂ t θ - |∇θ| 2 2 -c∂ 1 θ.
Then (u, p) is a solution of (3.1)-(3.3). Indeed, by construction, (u, p) satisfies (3.1). Properties (3.12) and (3.13) imply (3.2) and (3.3), respectively. Moreover, it follows from (3.14), (3.16) that for any i ∈ N, we have

φ u (B i , t i-1/2 ) ⊂ D, lim t→∞ ( u(•, t) -(c, 0) L ∞ (D) + ∇u(•, t) s-1 ) = 0. (3.21)
We deduce from (3.19) and (3.20) that

φ u (x, t i ) = x (3.22)
for any i ≥ 1 and x ∈ D. We shall need the following result, which is proved in Section 4.1.

Proposition 3.4. There is a constant ν > 0 such that the functions θ i in Proposition 3.3 can be chosen in a way that, for any u ∈ X s ( D) satisfying the inequality

∞ 0 u(t) -u(t) s, D dt ≤ ν, we have φ u (B i , t i-1/2 ) ⊂ D \ D for any i ≥ 1.
From now on, we assume that functions θ i verify this proposition.

Step 2. In this step, we construct an application F u0 such that its fixed point is a solution of our stabilization problem. First, for any constant ν > 0 let us introduce the set

Y ν (u 0 ) := {u ∈ X s (D) : div u = 0, ∞ 0 u(t) -u(t) s,D dt ≤ ν, u(x, t) • n(x) = (u 0 (x)µ(t) + u(x, t)) • n(x) on Γ × R + }, where µ ∈ C ∞ 0 ([0, ∞)) is a non-negative function such that µ(0) = 1, ∞ 0 µ(t)dt < 1. Let D 1 := R×(-3 2 , 3 
2 ) and π : H s (D) → H s ( D) be any linear bounded extension operator such that supp πu ⊂ D 1 for any u ∈ H s (D). Let κ i ∈ C ∞ 0 ( D) be a partition of unity subordinate to B i , i.e.,

supp κ i ⊂ B i , ∞ i=1 κ i = 1 in D.
Take any u ∈ Y ν (u 0 ) and let w l ∈ C(R + , H s-1 ( D)) be the solution of the linear problem For any t ∈ R + we define the function 

ẇl + ũ, ∇ w l = -(div ũ)w l in D × R + , (3.23) w l (0) = κ l curl(πu 0 ), ( 3 
w(•, t) = ∞ l=i+1 w l (•, t), when t ∈ [t i-1/2 ,
w l (t) s-1, D ≤ C( κ l curl(πu 0 ) s-1, D + t 0 ∇ũ(τ ) s-1, D w l (τ ) s-1, D dτ ).
It follows from the Gronwall inequality and relation (3.25) that

w l (t) s-1, D ≤ C κ l curl (πu 0 ) s-1, D exp C t 0 ∇ũ (τ ) s-1, Ddτ ≤ C κ l curl (πu 0 ) s-1, D exp C t 0 ∇u (τ ) s-1, D + u (τ ) -ũ (τ ) s, D dτ .
Using the fact that u ∈ X s ( D), we get

w l (t) s-1, D ≤ C κ l curl(πu 0 ) s-1, D exp(C(t i+1/2 + ν)) for any t ∈ [t i-1/2 , t i+1/2 ]. Thus ∞ l=i w l (t) s-1, D ≤ C exp(Ct i+1/2 ) ∞ l=i κ l curl(πu 0 ) s-1, D.
(3.28) Using (3.7) and assertion 1 of Proposition 3.3, we derive that the right-hand side of (3.28) is finite. Hence, w ∈ C([t i-1/2 , t i+1/2 ], H s-1 ( D)) for any i ≥ 0. Moreover, assertion (3.26) yields that w is continuous at t i-1/2 , thus w ∈ C(R + , H s-1 (D)) (we emphasize that, in general, this is not true for D). Furthermore, we have

ẇ + ũ, ∇ w = -(div ũ)w in D × [t i-1/2 , t i+1/2 ], w(0) = ∞ l=1 κ l curl πu 0 in D.
In Step 3, we prove that for this w there exists a v ∈ Y ν (u 0 ) such that curl v = w.

(3.29)

For any u ∈ Y ν (u 0 ), let F u0 (u) := v. In Step 4, we show that the mapping F u0 : Y ν (u 0 )→Y ν (u 0 ) has a fixed point. We shall prove that this fixed point is a solution of our stabilization problem.

Step 3. In this step, we prove the existence of the solution v ∈ Y ν (u 0 ) of (3.29). By Lemma 2.9, there is a function

z ∈ C(R + , H s (D)) such that curl z = w, div z = 0, z • n = 0, z(•, t) s,D ≤ C w(•, t) s-1,D .
(3.30)

Let us take the solution of the following problem

∆ϕ = 0 in D, ∂ϕ ∂n = (u 0 µ) • n on Γ.
From Proposition 2.4 we have ϕ ∈ C(R + , Ḣs+1 (D)) and

ϕ(•, t) Ḣs+1 (D) ≤ C u 0 µ(t) s,D . Denote v = z + ∇ϕ + u. Let us show that v ∈ Y ν (u 0 ) and (3.29) is verified. Clearly curl v = curl z = w, div v = div z + ∆ϕ = 0, v • n = (u 0 (x)µ + u) • n on Γ × R + .
Hence, to show v ∈ Y ν (u 0 ), it suffices to prove for sufficiently small u 0 that

∞ 0 v(t) -u(t) s,D dt ≤ ν. (3.31) It follows from the construction of v that v(•, t) -u(t) s,D ≤ ϕ(•, t) Ḣs+1 (D) + z(•, t) s,D .
Proposition 2.4 and (3.30) imply

∞ 0 v(t) -u(t) s,D dt ≤ u 0 s,D ∞ 0 µ(t)dt + C ∞ 0 w(•, t) s-1,D dt. From (3.27) we have ∞ 0 w(•, t) s-1,D dt = ∞ i=0 t i+1/2 ti-1/2 ∞ l=i+1 w l (•, t) s-1,D dt. Applying Lemma 2.8 to ∞ l=i+1 w l , we obtain ∞ l=i+1 w l (x, t) s-1,D ≤ C exp C t 0 ∇ũ (•, τ ) s-1,D dτ ∞ l=i+1 κ l curl u 0 s-1,D . Thus ∞ 0 w (•, t) s-1,D dt ≤ C ∞ i=0 t i+1/2 ti-1/2 ∞ l=i+1 κ l curl u 0 s-1,D × × exp C t 0 ∇ũ (•, τ ) s-1,D dτ dt ≤ C 1 ∞ i=0 t i+1/2 ti-1/2 exp Ct i+1/2 curl u 0 s-1,D\∪ i l=1 B l dt.
Combining (3.7), (3.15), (3.18) and assertion 1 of Proposition 3.3, we get

(t i+1/2 -t i-1/2 ) exp(Ct i+1/2 ) curl u 0 s-1,D\∪ i l=1 B l ≤ C 2 1
i 2 for any i > 0, where C 2 does not depend on i. Let K be a constant such that

C 1 C 2 ∞ i=K 1 i 2 < ν 2 .
Taking u 0 sufficiently small such that

u 0 s,D + K i=1 t i+1/2 ti-1/2 ∞ l=i+1 κ l curl u 0 s-1,D exp t 0 ∇ũ (•, τ ) s-1,D dτ dt ≤ ν 2 ,
we get (3.31).

Step 4. In this step, we show that the mapping F u0 : Y ν (u 0 )→Y ν (u 0 ) admits a fixed point, which is the solution of our stabilization problem. Let us take a sequence u m 0 := J m (u 0 ), where J m is the operator defined by (2.31). We have that u m 0 ∈ H s+1 (D) verifies (2.32), (2.33). Take u 0 (x, t) = µ(t)u 0 (x) + u(x, t). For sufficiently small u 0 we have u 0 ∈ Y ν (u 0 ). Let u 1 = F u 1 0 (u 0 ) and let w 1 be defined as in (3.27) with u = u 0 and u 0 (x) = u 1 0 (x). In this way we introduce the sequences u m ∈ X s and w m ∈ C(R + , H s (D)) by the relations

u m+1 = F u m+1 0 (u m ), w m+1 defined as in (3.27) with u = u m and u 0 = u m+1 0 . Let us show the convergence of w m in C([0, t 1/2 ], H s-1 ( D)
). This will be proved by using the same arguments as in the proof of Theorem 2.7. It is easy to see

∂ t (w m -w k ) + ũk-1 , ∇ (w m -w k ) = ũk-1 -ũm-1 , ∇ w m -div ũk-1 (w m -w k ) -div ũm-1 -div ũk-1 w m .
Setting K m,k (t) := w m (•, t)w k (•, t) s-1, D and using Lemmas 2.8 and 2.9, we obtain

K m,k (t) ≤ u m 0 -u k 0 s + C t 0 K m,k (τ ) ∇ũ k-1 (•, τ ) s-1 + ũm-1 (•, τ ) -ũk-1 (•, τ ) s-1 w m (•, τ ) s + K m-1,k-1 (τ ) w m (•, τ ) s-1 dτ. (3.32) Let us show that for any m ∈ N sup t∈[0,t 1/2 ] w m (•, t) s-1, D < C u m 0 s, D, (3.33) 
where C depends only on u(t) L 1 ((0,t 1/2 ), Ḣs ( D)) and does not depend on m.

From the construction of w m , we have

ẇm + ũm-1 , ∇ w m = -(div ũm-1 )w m in D × R + , w m (0) = ∞ l=1 κ l curl πu m 0 in D.
Applying Lemma 2.8, we get

w m (t) s-1, D ≤ C u m 0 s, D + t 0 w m s-1, D ∇ũ m-1 s-1, Ddt ≤ C u m 0 s, D + t 0 w m s-1, D ∇u s-1, D + u -ũm-1 s, D dt .
Using the Gronwall inequality and the fact that ũm-1 ∈ Y ν (u m 0 ), we derive

w m (t) s-1, D ≤ C( u 0 s exp( t 1/2 0 ( ∇u s-1, D + u -ũm-1 s, D)dt) ≤ C 1 ,
where C 1 does not depend on m. Thus, we obtain (3.33). The construction of u m implies boundedness of sup t∈[0,t 1/2 ] u m s, D uniformly in m. In the same way we can show that sup

t∈[0,t 1/2 ] w m (•, t) s, D ≤ C u m 0 s+1, D.
Combining this with (2.32) and (2.33), we get

ũm-1 (•, τ ) -ũk-1 (•, τ ) s-1 w m (•, τ ) s ≤ ũm-1 (•, τ ) -ũk-1 (•, τ ) 1/s × × ũm-1 (•, τ ) -ũk-1 (•, τ ) 1-1/s s w m (•, τ ) s ≤ a m,k (3.34) 
for any t ∈ J t 1/2 , where sup k≥m a m,k →0 as m→∞ and a m,k is decreasing sequence in m for any fixed k > m (this properties we can obtain arguing in the same way as in Theorem 2.7). Using this with (3.32) and (3.33), for any t ∈ J t 1/2 we get

K m,k (t) ≤ C t 0 (K m-1,k-1 (t 1 ) + K m,k (t 1 ))dt 1 + a m,k .
By the Gronwall inequality, for any t ∈ [0, t 1/2 ] we have

K m+p,k+p (t) ≤ C t 0 K m+p-1,k+p-1 (σ 1 )e Ct1 dσ 1 + Ca m+p,k+p ≤ C 2 t 0 σ1 0 K m+p-2,k+p-2 (σ 2 )e Cσ1 e Cσ2 dσ 2 dσ 1 + Ce Ct 1/2 a m+p-1,k+p-1 + Ca m+p,k+p ≤ C 3 t 0 σ1 0 σ2 0 K m+p-3,k+p-3 (σ 2 )e Cσ1 e Cσ2 e Cσ3 dσ 3 dσ 2 dσ 1 + C e 2Ct 1/2 2 a m+p-2,k+p-2 + Ce Ct 1/2 a m+p-1,k+p-1 + Ca m+p,k+p ≤ C p t 0 σ1 0 • • • σp-1 0 K m,k (σ p )e Cσ1+Cσ2+•••+Cσp dσ p • • • dσ 2 dσ 1 + p-1 j=0 C (e Ct 1/2 ) j j! a m+p-j,k+p-j .
Thus, we derive

K m+p,k+p ≤ Ce pC p! max t∈[0,T ] K m,k + Ca m,k .
Hence, w m is a convergent sequence in C([0, t 1/2 ], H s-1 ( D)). In the same way we can get the convergence of w m in C([t i-1/2 , t i+1/2 ], H s-1 ( D)). Finally, the fact w m ∈ C(R + , H s-1 (D)) implies that w m converges to some w * in C(R + , H s-1 (D)). The convergence of w m implies the convergence of u m to some u * in X s (D). We have curl u * = w * , (3.35) div u * = 0, (3.36)

u * (x, t) • n(x) = (u 0 (x)µ(t) + u(x, t)n(x) on Γ × R + . (3.37) 
Let us show that

w * (•, t) = ∞ l=i+1 w * l (•, t) for t ∈ [t i-1/2 , t i+1/2 ], (3.38) 
where w * l is the solution of

∂ t w * l + ũ * , ∇ w * l = -(div ũ * )w * l in D × R + , (3.39) 
w * l (0) = κ l curl(πu 0 ). (3.40) To this end, recall that

w m (•, t) = ∞ l=i+1 w l m (•, t), when t ∈ [t i-1/2 , t i+1/2 ],
where w l m is the solution of

ẇl m + ũm-1 , ∇ w l m = -(div ũm-1 )w l m in D × R + , w l m (0) = κ l curl(πu m+1 0 
).

We have that w l m →w * l in C(R + , H s-1 ( D)) uniformly with respect to l as m→∞ (this can be proved in the same way as in the proof of the convergence of w m ). Thus we have (3.38) 

∞ l=i w * l (t) s-1, D ≤ C ∞ l=i exp(Ci 2 ) κ l curl(πu 0 ) s-1, D ≤ C ∞ l=i exp(Ci 2 ) exp(-Ci 2+β ).
τ i : = i sup t∈[0,1] ∇ θi (•, t) s, D, (4.5) 
θ i (x, t) : = θi (x, t τi ) τ i . (4.6) 
Then B i , τ i and θ i verify (3.9)-(3.16) for i = 1, . . . , N . Moreover, there are closed balls B1 , B2 ⊂ D \ D such that

∪ N i=1 φ ∇θ i +(c,0) (B i , τ i ) ⊂ B1 ∪ B2 .
We denote B 2kN +j := B(x j , r j )+(k, 0) and B (2k+1)N +j := B(x j , r j )-(k +1, 0), j = 1, . . . , N . Then properties (3.9) and (3.10) are satisfied. Let h ∈ C ∞ ([0, 1]) be such that h(t) = 0 for any t ∈ [0, 1/4],

h(t) = 1 for any t ∈ [3/4, 1], |h(t)| ≤ 1 for any t ∈ [0, 1]. For any x = (x 1 , x 2 ) ∈ D and c ∈ R define θ2kN+j (x, t) = (-k -c)x 1 h ′ (t) for t ∈ [0, 1], θj (x, t -1) for t ∈ [1, 2]. (4.7)
It follows from the constructions of θj , j = 1, . . . , N that (3.11)-(3.13) are verified for τ i = 2. It is easy to see that for any t ∈ [0, 1] we have

φ ∇ θ2kN+j +(c,0) (x, t) = (-k -c, 0)h(t) + (c, 0)t + x. (4.8) 
Thus φ ∇ θ2kN+j +(c,0) (B 2kN +j , 2) = φ ∇ θj +(c,0) (B j , 1) ⊂ D, which implies (3.16) and (3.17). Notice that ∇ θi ∈ X s ( D). In order to have also (3.14) and (3.15), we define τ i by (4.5) and

θ i (x, t) : = 2 θi (x, 2t τi ) τ i . (4.9) 
This completes the proof.

Proof of Lemma 4.1. The proof is based on the ideas of [START_REF] Coron | On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions[END_REF]Lemma A.1].

Step 1. We denote by A the vector space of functions ξ ∈ Ḣs+1 ( D) with the following properties ∆ξ = 0 in D, ∂ξ ∂n = 0 on Γ \ Γ 0 , supp ξ ⊂ D. (4.10)

First, let us show that for any x 0 ∈ D we have

R 2 = {∇ξ(x 0 ) : ξ ∈ A}. (4.11) 
Suppose that (4.11) does not hold. Then, there is a vector 

V ∈ R 2 , V = 0 such that V • ∇ξ(x 0 ) =
(x) = 1, if x / ∈ B 2 , 0, x ∈ B 1 . Clearly π(ρG a ) ∈ A, thus V • ∇π(ρG a )(x 0 ) = 0. Since x 0 / ∈ B 2 , we have V • ∇G a (x 0 ) = 0 (4.12)
for all a ∈ D \ D. On the other hand G a is analytic in a ∈ D \ {x 0 } (see Proposition 2.5, (iii)). Thus, we have (4.12) for all a ∈ D \ {x 0 }. Using (2.12), one can find a sequence a n →x 0 such that V • ∇G an (x 0 )→∞ as n→∞, which is a contradiction to V = 0.

Step 2. Take any

x 0 ∈ D ∪ Γ 0 , x 1 ∈ D \ D and let F : [0, 1] → D be a continuous function such that F (t) = x 0 for any t ∈ [0, 1/4], F (t) = x 1 for any t ∈ [3/4, 1], F (t) / ∈ Γ \ Γ 0 for any t ∈ [0, 1].
Then for any ε > 0 we can find ξ Step 3. It remains to study the case x 0 ∈ Γ \ Γ 0 . Let y 0 ∈ Γ 0 and k ∈ R be such that x 0 = y 0 + (k, 0). Then, the function We shall need the following lemma.

i ∈ A, h i ∈ C ∞ ([0, 1]), i = 1, . . . ,
θ(x, t) = (-c -k)x 1 h ′ (t) for t ∈ [0, 1/2], 2θ y0 (x, 2(t -1/2)) for t ∈ [1/2, 1] satisfies (4.1)-(4.4), where h ∈ C ∞ ([0, 1/2]) is any function with h(0) = 0, h(1/2) = 1 and θ y0 is the function constructed in Step 2 for y 0 ∈ Γ 0 .
Lemma 4.2. The functions θ i constructed in the proof of Proposition 3.3 are such that there exist ϕ i ∈ C(R + ) with

sup x∈D |φ ∇θ i +(c,0) (x, t) -x| ≤ i 2N + M for any t ∈ [0, τ i ], (4.16 
)

|∇θ i (x, t) -∇θ i (y, t)| ≤ ϕ i (t) (m + 1) 2 |x -y| for any x, y ∈ D m + or x, y ∈ D m -, (4.17) 
where τi

0 ϕ i (t)dt ≤ M , [ i 2N ] is the integer part of i 2N and M ∈ R does not depend on i.
Proof. It is easy to see that (4.7) and (4.9) imply

φ ∇θ i +(c,0) (x, t) = (-k -c, 0)h( 2t τi ) + (c, 0) 2t τi + x for t ∈ [0, τ i /2], φ ∇ θj +(c,0) (x, 2t τi -1) for t ∈ [τ i /2, τ i ].
where k = i 2N and j = i -2N k. This yields (4.16) for a sufficiently large M . To prove (4.17), notice that in the proof of Lemma 4.1, the functions θ can be chosen such that

x 2 1 ∂ β θ s, D < C(x 0 ), where |β| = 2. Indeed, since Proposition 2.5 implies that the second order derivatives of G a belong to S(D), one can replace (4.11) by

R 2 = {∇ξ(x 0 ) : ξ ∈ A and x 2 1 ∂ β ξ s, D < C(x 0 ), |β| = 2}.
Hence, we can find a constant M 1 such that sup i=1,...,N,|β|=2

1 0 x 2 1 ∂ β θi (t, •) L ∞ ( D) dt < M 1 .
Combining this with (4.7) and (4.9), we get (4.17).

Now we return to the proof of Proposition 3.4. It suffices to show that for any ε > 0 there is ν > 0 such that the inequality

sup x∈Bi |φ u (x, t) -φ u (x, t)| ≤ ε (4.18) holds for any i ≥ 1 and t ∈ [0, t i-1/2 ]. Let us denote X(t) = φ u (x, t), Y (t) = φ u (x, t),
where x ∈ B i . We shall prove (4.18) in the case when i is even. The proof when i is odd is similar. Let k := i 2N , then

B i ⊂ [k -2, k + 3] × [-2, 2]. ( 4 

.19)

Step 1. First let us show that to establish (4.18) it suffices to prove that

|X(t) -Y (t)| < 1 for all t ∈ R + . (4.20)
It is easy to see that

∂ t (X(t) -Y (t)) = u(X(t), t) -u(Y (t), t) = (u(X(t), t) -u(X(t), t)) + (u(X(t), t) -u(Y (t), t)) =: I 1 (t) + I 2 (t). (4.21)
We have that where 2 , t ∈ [t j-1/2 , t j ] for j < 2N (k -3 -M ) (here we use (4.17) for m = k -3 -j 2N -M ) and Ψ(t) = ϕ j (t), t ∈ [t j-1 , t j-1/2 ], ϕ j (t jt), t ∈ [t j-1/2 t j ] for j ≥ 2N (k -3 -M ) (in this case we use (4.17) for m = 0). Thus we have

∞ 0 |I 1 (t)|dt ≤ ν. ( 4 
Ψ(t) =    ϕ j (t-tj-1) (k-2-[ j 2N ]-M) 2 , t ∈ [t j-1 , t j-1/2 ], ϕ j (tj -t) (k-2-[ j 2N ]-M)
t i-1/2 0 Ψ(t)dt = t 2N (k-3-M )-1 0 Ψ(t)dt + t i-1/2 t 2N (k-3-M )-1 Ψ(t)dt ≤ 2N (k-3-M)-1 j=1 2M (k -2 -j 2N -M ) 2
+ (2N (M + 4) + 1)2M. Choosing ν such that the right-hand side of (4.25) is smaller than ε, we prove (4.18) for all i.

Step 2. To complete the proof, it remains to show (4.20). To this end, let us assume that (4.20) does not hold for some t > 0. Denote by t0 the first time such that |X( t0 ) -Y ( t0 )| = 1. Hence, we have (4.20) for all t < t0 . Since the right-hand side of (4.26) does not depend on t0 , choosing ν sufficiently small, we get (4.20).

5 Appendix: proof of Lemma 2.3

Let us consider the space

H 0 (D ′ ) = {z ∈ L 2 (D ′ ) : curl z ∈ L 2 (D ′ ), div z ∈ L 2 (D ′ ), z • n| Γ ′ = 0}
endowed with the norm z H0 = z + curl z + div z .

Here D ′ is a strip or is the domain D defined (2.1). Recall the following result (see [10, Chapter 7, Theorem 6.1]). In the case of bounded domains it is shown in [18, Appendix 1, Proposition 1.4] that H s (Ω) = {z ∈ L 2 (Ω) : curl z ∈ H s-1 (Ω), div z ∈ H s-1 (Ω), z • n ∈ H s-1/2 (∂Ω)}.

(

Let us generalize this result to the case of domain D ′ . We shall need the following lemma. 

(∂ 1 z 1 )ñ 1 + (∂ 1 z 2 )ñ 2 ∈ H s-1 .
Combining this with div z ∈ H s-1 and curl z ∈ H s-1 , we obtain ñ•∇ ⊥ z i ∈ H s-1 and ñ • ∇z i ∈ H s-1 for i = 1, 2. Thus ∇z i ∈ H s-1 , which completes the proof.

. 2 )

 2 Let us take two open intervals (a, b), (a + d, b + d) ⊂ R and denote Γ 0 = (a, b) × {1} ∪ (a + d, b + d) × {-1}.

  Now we summarize some facts about Poisson equation. Let us take a nonnegative function γ ∈ C ∞ 0 (R) such that supp γ = [a, b] and γ = 0 in (a, b) and define

Figure 1 :

 1 Figure 1: Domain D

Theorem 3 . 2 .By Theorem 3 . 2 ,

 3232 There exists ε > 0 such that for any u 0 ∈ H s (D) and c ∈ R verifying (3.5)-(3.7) and u 0 s < ε, |c| < ε there is a solution (u, p) ∈ X s (D)×C(R + , Ḣs (D)) of (3.1)-(3.4) satisfying (3.8). Proof of Theorem 3.1. Let ε > 0 be the constant in Theorem 3.2. Take any u 0 ∈ H s (D) and c ∈ R verifying (3.5)-(3.7). Let M > 0 be such that there exists a solution (u M , p M ) of (3.1)-(3.3) with initial condition u M (0) = u0 M , such that lim t→∞

  .24) where ũ = u + π(uu).(3.25) Take ν such that Proposition 3.4 holds. Since supp w l (0) ⊂ B l , we obtain w l (x, t l-1/2 ) = 0 for any x ∈ D.(3.26)

Thus

  

4 Construction of the particular solution 4 . 1 3 3 . 4 . 1 .φ

 413341 lim t→∞ u * (t)u(t) s,D = 0. (3.41)Combining this with (3.21), we see that the first two terms on the left-hand side of (3.8) go to zero as t→∞. Recall that∆p * =div( u * , ∇ u * ) ∂p * ∂n = -( u * , ∇ u * ) • n.Thus, Proposition 2.4 implies lim t→∞ ∇p * (t) s-1 = 0. This completes the proof of Theorem 3.1. Proof of Proposition 3.We have the following simplified version of Proposition 3.Lemma For any x 0 ∈ D there exist a function θ ∈ C ∞ ([0, 1], Ḣs+1 ( D)) and a constant λ > 0 such that ∇θ+(c,0) (x 0 , 1) / ∈ D for any |c| < λ. (4.4) This lemma is proved at the end of this subsection. Proof of Proposition 3.3. It follows from Lemma 4.1 that there are functions θi ∈ C ∞ ([0, 1], Ḣs+1 ( D)) and open balls B i = B(x i , r i ) ⊂ R 2 , i = 1, . . . , N covering the rectangle [0, 1]×[-1, 1] such that properties (3.11)-(3.13) and (3.16) are verified for τ i = 1. For i = 1, . . . , N let us take

  0 for all ξ ∈ A. Let D be the domain defined in (2.1) and let D ⊂ D 1 . Take any a ∈ D \ D, and let G a be the solution of (2.10), (2.11). Let B 1 , B 2 ⊂ D \ D be two open neighborhoods of a such that B 1 ⊂ B 2 and let ρ ∈ C ∞ ( D) be such that ρ

4. 2

 2 Proof of Proposition 3.4 For any m ∈ R + , let us denote D m -:= (-∞, -m] × [-2, 2] and D m + := [m, +∞) × [-2, 2]. (4.15)

  21), using (4.22)-(4.24) and the Gronwall inequality, we obtain|X(t i-1/2 ) -Y (t i-1/2 )|

  Step 1 implies|X( t0 ) -Y ( t0 )| ≤ ν exp

Theorem 5 . 1 .

 51 The following equality holds{z ∈ H 1 (D ′ ) : z • n| Γ ′ = 0} = H 0 .

Lemma 5 . 2 .ΓCase 1 .

 521 Let g ∈ H 1/2 (Γ ′ ). Then the problem ∆uu = 0 in D ′ , (5.2) ∂u ∂n = g on Γ ′ (5.3) has a unique solution u ∈ H 2 (D ′ ), which satisfiesu 2 ≤ C g 1/2 .(5.4)Proof. Problem (5.2), (5.3) is equivalent to gθdσ for any θ ∈ H 1 (D ′ ).Since g ∈ H -1/2 (Γ ′ ), the Riesz representation theorem implies the existence of a unique solution u ∈ H 1 (D ′ ). Assume D ′ = D, and let us prove that u ∈ H 2 (D). It is easy tosee that v := ∂ 1 u is the solution of the problem ∆vv = 0 in D, ∂v ∂n = ∂ 1 g on Γ.whereh ∈ C ∞ b ( D), h| ∂ D = 0 and h(x 1 , 0) = 1 + γ ′ (x1) √ 1+γ ′ (x1) 2 . Then we have (ñ 1 , ñ2 )| ∂ D = n and |(ñ 1 , ñ2 )| > δ for sufficiently small δ > 0. Hence, ñ(x) = (ñ1,ñ2) |(ñ1,ñ2)| is an extension of n. Let us take v := ∇ ⊥ (z • ñ). Then v ∈ L 2 , div v = 0. Since v • ñ is the tangential derivative of z • ñ along Γ ′ , we have v • ñ ∈ H s-3/2 (Γ ′ ).On the other handcurl v = ∆(z • ñ) = (∆z 1 )ñ 1 + (∆z 2 )ñ 2 + ṽ,where ṽ ∈ H s-2 . It follows from the facts ∆z1 = ∂ 1 div z + ∂ 2 curl z and ∆z 2 = ∂ 2 div z -∂ 1 curl z that curl v ∈ H s-2 . Thus the induction hypothesis yields ∇ ⊥ (z • ñ) ∈ H s-1 . Hence, (∂ 2 z 1 )ñ 1 + (∂ 2 z 2 )ñ 2 ∈ H s-1 ,

  by parts, one verifies that the first integral in the right-hand side vanishes. Integrating in time, we obtain (2.26). Lemma 2.9. Let w ∈ H s , s ≥ 0. Then the problem

	curl z = w,	(2.27)
	div z = 0,	(2.28)
	z • n| Γ = 0	(2.29)
	has a unique solution z ∈ H s+1 . Moreover, there is C > 0 depending only on s such that
	z s+1 ≤ C w s .	(2.30)
	Proof. Let us consider the following Dirichlet problem for the Poisson equation:
	∆v = w in D,	
	v = 0 on Γ.	

By Proposition 2.2, v ∈ H s+2 and v s+2 ≤ C w s . Then for z = -∇ ⊥ v properties (2.27)-(2.30) are satisfied.

  := 0 and i ≥ 0. Let us show that for any t ∈ [t i-1/2 , t i+1/2 ] the sum in the right-hand side of (3.27) exists and belongs to C(R + , H s-1 (D)).

	t i+1/2 ],	(3.27)
	where t -1/2 Applying Lemma 2.8 to (3.23), (3.24), we obtain	

  . Clearly (3.35)-(3.40) imply that u * is a solution of the Euler system (3.1)-(3.3).

	As in (3.28), using (3.35)-(3.40) for any t ∈ [t i-1/2 , t i+1/2 ] and (3.7), we can show that

Thus ∂ 1 u ∈ H 1 (D) and

Combining this with the fact that ∆u ∈ H 1 (D), we obtain u ∈ H 2 (D) and (5.4).

Case 2. Now consider the case D ′ = D. Let

where N is so large that D \ D ⊂ Ω 1 . Let us take some function χ ∈ C ∞ ( D) such that such that

Then w := χu is the solution of ∆ww = 2∇χ∇u + ∆χu =: f in Ω 2 ,

(5.5) ∂w ∂n =: g on ∂Ω 2 .

(5.6)

It is easy to see that f ∈ L 2 (Ω 2 ) and g ∈ H 1/2 (∂Ω 2 ). This implies that w ∈ H 2 (Ω 2 ) (e.g., see [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditionsns[END_REF]). Thus u ∈ H 2 (Ω 1 ). On the other hand, from the fact Γ 0 ⊂ Ω 1 we derive ∂u ∂n | Γ ∈ H 1/2 (Γ). Hence, using the result for D ′ = D, we see that u ∈ H 2 (D). This completes the proof of Lemma 5.2. Now let us prove (5.1) for Ω = D ′ . Clearly the space in the left-hand side is contained in the right-hand side of (5.1). By induction, let us show the other inclusion. Assume s = 1. Let us take some function z from the right-hand side of (5.1) and consider the problem:

By Lemma 5.2, we have p ∈ H 2 (D ′ ) and p 2 ≤ C z • n 1/2 . Let us take w = z -∇p. Clearly w ∈ H 0 , thus Theorem 5.1 implies w ∈ H 1 (D ′ ). Hence, z ∈ H 1 (D ′ ) and

Now assume that (5.1) holds for s-1 and let us prove it for s. Let ñ be a regular extension of n in D ′ such that |ñ(x)| = 1. Let us show that such an extension exists. To simplify the proof, let us assume that d = 0 in the definition of D (see (2.1)). We define ñ1 (x 1 , x 2 ) = -γ ′ (x 1 )

1 + γ ′ (x 1 ) 2 + h(x 1 , x 2 ), ñ2 (x 1 , x 2 ) = x 2

(1 + γ(x 1 )) 1 + γ ′ (x 1 ) 2 ,