

CLINICAL STUDY: BACTERIAL DNA IN DIAGNOSIS OF SPONTANEOUS BACTERIAL PERITONITIS

Germán Soriano, Óscar Esparzia, Michel Montemayor, Carlos Guarner-Argente, Roser Pericas, Xavier Torras, Núria Calvo, E Roman, Ferran Navarro, Carlos Guarner, et al.

► To cite this version:

Germán Soriano, Óscar Esparzia, Michel Montemayor, Carlos Guarner-Argente, Roser Pericas, et al.. CLINICAL STUDY: BACTERIAL DNA IN DIAGNOSIS OF SPONTANEOUS BACTERIAL PERITONITIS. Alimentary Pharmacology and Therapeutics, 2010, 33 (2), pp.275. 10.1111/j.1365-2036.2010.04506.x . hal-00613795

HAL Id: hal-00613795 https://hal.science/hal-00613795

Submitted on 6 Aug 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Alimentary Pharmacology & Therapeutic

Alimentary Pharmacology & Therapeutics

CLINICAL STUDY: BACTERIAL DNA IN DIAGNOSIS OF SPONTANEOUS BACTERIAL PERITONITIS

Journal:	
	Alimentary Pharmacology & Therapeutics
Manuscript ID:	APT-0724-2010.R2
Wiley - Manuscript type:	Original Scientific Paper
Date Submitted by the Author:	
Complete List of Authors:	Soriano, Germán; Hospital de la Santa Creu i Sant Pau, Department of Gastroenterology; CIBERehd Esparzia, Óscar; Hospital de la Santa Creu i Sant Pau, Department of Microbiology Montemayor, Michel; Hospital de la Santa Creu i Sant Pau, Department of Microbiology Guarner-Argente, Carlos; Hospital de la Santa Creu i Sant Pau, Department of Gastroenterology Pericas, Roser; Hospital de la Santa Creu i Sant Pau, Department of Microbiology Torras, Xavier; Hospital de la Santa Creu i Sant Pau, Department of Gastroenterology; CIBERehd Calvo, Núria; Hospital de la Santa Creu i Sant Pau, Department of Oncology Roman, E; Hospital de la Santa Creu i Sant Pau, Department of Gastroenterology; CIBERehd Navarro, Ferran; Hospital de la Santa Creu i Sant Pau, Department of Gastroenterology; CIBERehd Navarro, Ferran; Hospital de la Santa Creu i Sant Pau, Department of Gastroenterology; CIBERehd Navarro, Ferran; Hospital de la Santa Creu i Sant Pau, Department of Microbiology Guarner, Carlos; Hospital de la Santa Creu i Sant Pau, Department of Gastroenterology; CIBERehd Coll, Pere; Hospital de la Santa Creu i Sant Pau, Department of Microbiology
	Ascites < Hepatology, Cirrhosis < Hepatology, Inflammation < Topics, Microbiology < Topics

TITLE PAGE

TITLE: CLINICAL STUDY: BACTERIAL DNA IN DIAGNOSIS OF SPONTANEOUS BACTERIAL PERITONITIS

SHORT TITLE: BACTERIAL DNA IN ASCITIC FLUID

AUTHORS: Germán Soriano^{1,4}, Óscar Esparcia^{2,5}, Michel Montemayor², Carlos Guarner-Argente¹, Roser Pericas², Xavier Torras^{1,4}, Núria Calvo³, Eva Román^{1,4}, Ferran Navarro^{2,5}, Carlos Guarner^{1,4} and Pere Coll^{2,5}.

AFFILIATIONS: ¹Department of Gastroenterology, ²Department of Microbiology, ³Department of Oncology. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona. Institut d'Investigacions Biomèdiques Sant Pau. Barcelona, Spain. ⁴Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas

(CIBERehd).

⁵Departament de Genètica i de Microbiologia de la Universitat Autònoma de Barcelona.

CORRESPONDENCE:

Germán Soriano, MD

Department of Gastroenterology

Hospital de la Santa Creu i Sant Pau

Mas Casanovas, 90

08041 Barcelona, Spain

e-mail : gsoriano@santpau.cat

telephone number : +34 93 556 5920, FAX number : +34 93 556 5608

KEYWORDS: ascites, cirrhosis, inflammation, microbiology

SUMMARY

Background

Despite inoculation into blood culture bottles, ascitic fluid culture is negative in 50% of cases of spontaneous bacterial peritonitis (SBP).

Aim

To determine whether *16S rDNA* gene detection by real-time PCR and sequencing increases the efficacy of culture in microbiological diagnosis of SBP.

Methods

We prospectively included 55 consecutive SBP episodes in cirrhotic patients, 20 cirrhotic patients with sterile ascites, and 27 patients with neoplasic ascites. Ascitic fluid was inoculated into blood culture bottles at the bedside and tested for bacterial DNA by real-time PCR and sequencing of *16S rDNA* gene.

Results

Bacterial DNA was detected in 23/25 (92%) culture positive SBP, 16/30 (53%) culture negative SBP (p=0.002 respect to culture positive SBP), 12/20 (60%) sterile ascites (p=0.01 respect to culture positive SBP) and 0/27 neoplasic ascites (p<0.001 respect to other groups). Sequencing identified to genus or species level 12 culture positive SBP, 6 culture negative SBP and 6 sterile ascites. In the remaining cases with positive PCR, sequencing did not yield a definitive bacterial identification.

Conclusions

Bacterial DNA was not detected in almost half the culture negative SBP episodes. Methodology used in the present study did not always allow identification of amplified bacterial DNA.

INTRODUCTION

Spontaneous bacterial peritonitis (SBP) is a frequent and severe complication of cirrhotic patients with ascites. Morbidity and mortality remain relevant even though advances in the management of these patients have improved outcome in recent years.¹⁻⁸ SBP is defined by the peritoneal inflammatory response. An ascitic fluid neutrophil count ≥250/mm³ is currently considered the cut-off for SBP diagnosis.¹ Ascitic fluid culture, however, is not positive in all patients with ascitic fluid neutrophil count (i.e. bloody ascites, pancreatitis, carcinomatosis or tuberculosis) is absent, these patients are considered to present "culture negative neutrocytic ascites" (CNNA)^{1.9} or the more recently introduced designation of "culture negative SBP".¹⁰ Culture negative SBP is considered a variant of SBP in which bacteria are present in a low concentration and therefore not detected with microbiological culture methods.^{9,11} In support of this hypothesis, it has been demonstrated that bedside inoculation of large amounts of ascitic fluid (10 and preferably 20 ml) into blood culture bottles increases

¹³ However, in recent years, even using inoculation of ascitic fluid in blood culture bottles, the rates of bacterial detection in SBP have dropped to less than 50%. This decrease is probably related to the widespread use of antibiotic prophylaxis and to the greater awareness of SBP, leading to diagnosis at earlier stages.^{4,14} Moreover, a significant increase in the incidence of SBP caused by multiresistant bacteria has recently been reported to worsen the prognosis of this complication due to the lack of efficacy of current empirical antibiotics.^{15,16} This setting makes identification of the responsible bacteria in SBP even more necessary.
Bacterial DNA detection and sequencing is increasingly used in the diagnosis of many infectious diseases. Molecular techniques can detect minimal amounts of bacterial DNA and improve the rates and velocity of bacterial identification.¹⁷⁻²¹ Nevertheless, few studies to date have examined the usefulness of these molecular techniques in the microbiological diagnosis of SBP in cirrhotic patients. Furthermore, these reports enrolled a limited number of patients and results were controversial.²²⁻²⁵

culture positivity to approximately 70-90% as compared to 30-40% with conventional cultures.¹¹⁻

The aim of the present study was to determine, in a large series of patients, whether broadrange polymerase chain reaction (PCR) using primers targeting the 16S ribosomal DNA (*16S*

rDNA) by real-time PCR (RT-PCR) and sequencing increases the efficacy of culture in the microbiological diagnosis of SBP.

PATIENTS AND METHODS

Patients and study design

We prospectively included all cirrhotic patients with SBP diagnosed in our hospital during a 3year period (between November 2005 and January 2009). Cirrhosis was diagnosed by biopsy or based on clinical, analytical and ultrasonographic findings. SBP diagnosis was established when ascitic fluid neutrophil count was ≥250/mm³ and there was no evidence of an intraabdominal source of infection.^{1,14} Paracentesis was performed in sterile conditions. We excluded patients with an alternative cause for increased ascitic fluid neutrophil count (i.e. bloody ascites, pancreatitis, tuberculosis or carcinomatosis) and also those without a complete microbiological study (i.e. without ascitic fluid inoculation in blood culture bottles). An ascitic fluid aliquot was stored at -80° C until RT-PCR and sequencing of *16S rDNA* gene were performed. We considered SBP as community-acquired when infection was present at admission and nosocomial when diagnosis was made after 72 hours of admission or when a previous neutrophil count during admission was <250/mm³,^{4,14,26} Renal failure at diagnosis of SBP or prior to SBP resolution was considered when serum creatinine values were above 133 µmol/l.²⁷ Systemic inflammatory response syndrome (SIRS) and septic shock were defined according to previously established criteria.^{2,28}

Patients with SBP were initially treated with intravenous ceftriaxone (2 g/day)^{3,29}, unless they were already receiving this antibiotic at SBP diagnosis. In this case, they were treated with imipenem.^{15,16} Treatment was changed when needed according to the patient's response and the *in vitro* antibiotic sensitivity. Albumin was administered in patients with urea > 11 mmol/l and/or bilirubin > 68 μ mol/l.^{6,30} SBP was considered resolved when signs and symptoms of infection disappeared, ascitic fluid neutrophil count was <250/mm³, and ascitic fluid culture was negative.^{1,10}

We analysed the clinical and analytical characteristics of SBP patients and also in-hospital and 3-month mortality. We compared patients with positive bacterial DNA in ascitic fluid with those with negative bacterial DNA.

Alimentary Pharmacology & Therapeutic

We also included a group of cirrhotic outpatients with sterile ascites or culture-negative nonneutrocytic ascites (ascitic fluid neutrophil count <250/mm³ and negative culture) undergoing therapeutic paracentesis in the day-hospital from the Department of Gastroenterology; and a group of non-cirrhotic outpatients with neoplasic ascites undergoing therapeutic paracentesis in the day-hospital from the Department of Oncology. In both these groups we performed the same microbiological studies as those carried out in SBP patients, including bacterial DNA determination and sequencing.

The study was approved by the Research Ethics Committee at Hospital de la Santa Creu i Sant Pau and all patients gave consent to be included in the study after receiving appropriate information.

Microbiological culture

Conventional culture. We directly inoculated 2-3 drops of uncentrifuged ascitic fluid on chocolate agar (BioMérieux, Marcy l'Etoile, France), sheep blood agar (BioMérieux, Marcy l'Etoile, France) and Wilkins-Chalgren agar plates (BioMérieux, Marcy l'Etoile, France). Cultures were incubated in 5% CO₂ (chocolate agar and sheep blood) or in anaerobic atmosphere (Wilkins-Chalgren agar) at 35°C for 4 days and examined daily for visible growth. At the same time, 0.5-1 ml of uncentrifuged ascitic fluid was inoculated in thioglicolate broth and also incubated at 35°C for 4 days.¹³

BacT/ALERT blood culture bottles. In the BacT/ALERT blood culture system (BioMérieux, Marcy l'Etoile, France), an aerobic and an anaerobic BacT/ALERT blood culture bottle were each inoculated with 10 ml of ascitic fluid at the bedside. The bottles were placed in the BacT/ALERT instrument and were processed according to the manufacturer's instructions. Each bottle was treated independently, and only bottles flagged as positive by the instrument were further processed.¹³

Isolated bacteria were identified by standard methods.³¹

RT-PCR and sequencing of 16S rDNA gene (figure 1)

DNA extraction. DNA samples were isolated with QIAamp DNA Blood Mini kit (Qiagen, Hilden, Germany) according to manufacturer's instructions with few modifications: 400 µl of ascitic fluid

were centrifuged at 7500 rpm for 10 minutes, resuspended with 180 µl of a home-made lysis solution [Lisozime (20 mg/ml), 20 mM Tris-Hcl, pH 8.0, and 1.2% Triton X-100] and incubated at 37°C for 30 minutes. Lastly, proteinase K was added to a final concentration of 20 mg/ml and incubated at 56°C for 30 minutes and at 95°C for 15 minutes before DNA extraction. RT-PCR. RT-PCR was performed with a Rotor-Gene 3000 (Corbett Robotics, Australia). Rotor-Gene has four light-emitting diodes that detect up to four targets in a single amplification reaction. This characteristic was used to develop specific Tagman® probes to detect all bacterial DNA with a universal probe (5'-CCACACTGGGACTGAGACACGG-3'- Cy5), E. coli (5'-TTAGCCGCTTCCTTCAACTTCACCT-3'-Cy5) corresponding to a soja lecitin gene fragment (EMBL#K00821) that could be amplified with universal primer adaptors (Biotools, Madrid, Spain). Probes were selected based on alignments of the 16S rDNA region with sequences from the National Center for Biotechnology Information (NCBI) database (http://www.ncbi.nlm.nih.gov). Primers and probes were synthesized at Chipron (Chipron GmbH, Berlin, Germany) and at Roche Diagnostics (Mannheim, Germany), respectively. RT-PCR was performed in two 25-µl reaction mixtures containing 10 µl of DNA, 12.5 µL of Quantitect® Multiplex PCR NoROX (Qiagen, Hilden, Germany), 4 µM of primer 27f and 20 µM of biotinylated primer 519r.³² DNA from the internal control and 20 µM of both *E. coli* and IC Tagman® probes were added to one mixture. In the other reaction mixture, 20 µM of universal probe and 0.5 µl of Sau3A1 (1U/µl) were added followed by a digestion at 37°C for 30 minutes and 95°C for 5 minutes to inactivate the restriction enzyme. The amplification reaction profile included a hot start at 95°C for 15 minutes followed by 35 cycles of 94°C for 60 seconds and 60 °C for 60 seconds. The acquisition of a fluorescent signal was performed at the end of 60°C step in all cycles.

To assess the lower limit of detection in ascitic fluid, the approach was performed on 10-fold serial dilutions of *Escherichia coli* and *Enterococcus faecalis* ranging from 10⁶ to 10 CFU/ml of pooled ascitic fluid previously proven to be culture negative. Bacteria used for spiking were quantified by agar dilution.

DNA Sequencing. Ascitic fluid samples with a universal positive signal and negative for the specific *E. coli* probe in the RT-PCR were re-analysed by standard PCR and DNA sequencing.

Standard PCR was performed in a 50-µl reaction mixture containing 6 µl of DNA from the RT-PCR product (tube containing the universal probe), 5 µl of reaction buffer 10X with MgCl₂ (Expand High Fidelity PCR System, Roche Diagnostics GmbH, Mannheim, Germany), 1µM of primer 27f and 519r, 10 µM of DNTPs and 1.75 U of Taq DNA Polimerase (Expand High Fidelity PCR System, Roche Diagnostics GmbH, Mannheim, Germany). An initial denaturation at 80°C for 5 minutes was performed, followed by 28 cycles of 94°C for 45 seconds, 53°C for 1 minute, and 72°C for 90 seconds, and a final extension at 72°C for 10 minutes. PCR products were purified with the Exosap-IT PCR System (USB Corporation, Cleveland, Ohio, USA) and sequenced in both directions using the universal 27f and 519r primers by Macrogen Inc. (Seoul, Korea). Each sequence was compared with GenBank sequences by using the basic local alignment scratch tool (BLAST) algorithm.

Statistical analysis

Statistical analysis was performed by Student's t test and Mann-Whitney test to analyze quantitative variables, and Chi² test and Fisher test for qualitative variables. Results are expressed as mean±standard deviation or frequencies. To analyze survival of SBP patients according to the presence or absence of bacterial DNA in ascitic fluid, Kaplan-Meier method with log rank test was used. A p value <0.05 was considered statistically significant. Calculations were performed with the SPSS Statistical Package (version 17.0, SPSS Inc., Chicago, IL).

RESULTS

Patients characteristics

A total of 69 SBP episodes were diagnosed during the 3-year study period. After excluding cases with conventional ascitic fluid culture but without culture in blood culture bottles (n=14), 55 episodes in 48 cirrhotic patients were finally included. Of these, 25 had a positive ascitic fluid culture (45.4%) and 30 had a negative culture (54.5%).

A group of 20 cirrhotic outpatients with sterile ascites or culture-negative nonneutrocytic ascites and a group of 27 non-cirrhotic outpatients with neoplasic ascites were also included.

The characteristics of cirrhotic patients with SBP and sterile ascites are shown in Table 1. Patients with SBP showed a higher incidence of hepatocellular carcinoma, worse renal function and higher blood leukocyte and ascitic fluid neutrophil counts than patients with sterile ascites.

16S rDNA gene detection by RT-PCR and sequencing

Tables 2 to 4 show the results of *16S rDNA* gene detection by RT-PCR and further DNA identification by sequencing. The lowest detection limits in ascitic fluid for *E. coli* and *E. faecalis* were 5900 CFU/ml and 3400 CFU/ml, respectively. Bacterial DNA was detected in 23/25 (92%) culture positive SBP episodes (Table 2), in 16/30 (53%) culture negative SBP (p=0.002 respect to culture positive SBP cases) (Table 3), in 12/20 (60%) sterile ascites (p=0.01 respect to culture positive SBP and p=0.64 respect to culture negative SBP) (Table 4) and in 0/27 patients with neoplasic ascites (p<0.001 respect to other groups).

RT-PCR or sequencing of amplified fragments identified one microorganism to genus or species level in 12 cases from the culture positive SBP group (Table 2). The molecular identification agreed with the culture in 8 of these 12 cases but not in 4. Six of the 30 culture negative SBP cases gave positive results by molecular techniques to genus or species level (4 *Escherichia coli* and 2 *Streptococcus*) (Table 3). And in 6 of the 20 patients with sterile ascites, positive results to genus or species level were obtained (all six were *E. coli*) (Table 4). In the remaining cases with positive RT-PCR, sequencing did not yield a definitive bacterial identification.

Characteristics and outcome of patients with SBP according to presence or absence of bacterial DNA in ascitic fluid

Analyzing all SBP episodes (n=55, Table 5) and comparing positive (n=39) and negative bacterial DNA patients (n=16), the former showed more frequent alcoholic etiology, worse liver function and less frequent treatment with beta-blockers. Moreover, SBP cases with positive bacterial DNA showed a trend to a higher inflammatory response (as observed by higher blood leukocyte count and incidence of SIRS and a tendency to higher ascitic fluid neutrophil count) and more frequent positive ascitic fluid culture.

Renal failure was present at SBP diagnosis in 13/39 (33.3%) patients with positive bacterial DNA and in 3/16 (18.7%) in those with negative bacterial DNA (p=0.34). Albumin expansion

Alimentary Pharmacology & Therapeutic

was performed in 14/39 (35.8%) patients with positive bacterial DNA and in 2/16 (12.5%) with negative bacterial DNA (p=0.10). Renal failure at diagnosis of SBP or prior to its resolution was observed in 18/39 (46.1%) patients with positive bacterial DNA and in 4/16 (25%) patients with negative bacterial DNA (p=0.14). The incidence of other complications, such as septic shock (6/39, 15.3% vs 0/16, 0%, p=0.16), encephalopathy (18/39, 46.1% vs 7/16, 43.7%, p=0.87), or variceal bleeding (4/39, 10.3% vs 2/16, 12.5%, p=1) did not differ significantly between these two groups. SBP was resolved in 31/39 (79.4%) and 16/16 (100%), respectively (p=0.08). There was a trend to higher in-hospital mortality (10/39, 25.6% vs 1/16, 6.2%, p=0.14) and 3-month probability of mortality (31% vs 15%, p=0.18) in SBP patients with positive bacterial DNA as compared to those with negative bacterial DNA.

DISCUSSION

In the present study, RT-PCR detected bacterial DNA in ascitic fluid from most patients with culture positive SBP (23/25, 92%). Our results are in agreement with the four previous studies including small series of patients with culture positive SBP, that showed positivity of bacterial DNA in ascitic fluid in 9/9,²² 3/4,²³ 5/5,²⁴ and 4/4²⁵ patients. Bacterial DNA was negative in two of our patients. A low percentage of false negative cases has consistently been described in studies using molecular methods in infections other than SBP, mainly in those caused by grampositive cocci.^{18, 33, 34} This has been attributed to a number of factors. Technical difficulties in disrupting the cell wall of these organisms may result in failure in DNA extraction.^{18,33,44} Contamination during sample extraction or processing may lead to a false positive culture in an otherwise DNA negative sample.^{18,25,33,34} Indeed, in our study, cultures grew gram-positive cocci in the two cases with positive culture and negative bacterial DNA. Another factor that could also contribute is an inoculum effect, as 10 ml of ascitic fluid was inoculated for culture whereas only 400 µl were used for molecular techniques.

Molecular techniques identified one bacteria in 12 culture positive SBP, eight of which correlated with the culture. The lack of agreement in the other 4 cases could be due to contamination during sample extraction or processing, or to the presence of DNA from non-viable bacteria in addition to the viable bacteria detected in the culture. The latter could be the consequence of previous bacterial translocations, as pointed out below. Again, cases of

disagreement between cultures and molecular techniques have been reported previously.^{22,23} Considering culture negative SBP patients, bacterial DNA was not detected in almost half of them (14/30, 46.6%). This finding could perhaps be due to a low DNA concentration in ascitic fluid, although an alternative explanation could be that bacteria were not the cause of the increased ascitic fluid neutrophil count in these cases. In support of these hypotheses, when we analyzed all SBP patients according to the presence or absence of bacterial DNA, we observed a trend to a less severe inflammatory response and better outcome in terms of SBP resolution and survival in the latter. Data about culture negative SBP are controversial in the four previous studies that used molecular techniques in SBP. Bacterial DNA was detected in ascitic fluid in 3/4²⁵ and 13/13²² patients with culture negative SBP using conventional PCR, in 1/6 patients using multiplex PCR²⁴ and 1/5 with DNA microarray.²³

Molecular techniques can increase the rates and velocity of bacterial identification in comparison with microbiological cultures.^{18,19} They could therefore allow a more suitable choice of antibiotic and consequently lead to a better patient outcome.^{15,16} In the present study, however, the results of bacterial DNA analysis would not have determined a change in the antibiotic treatment in any patient. Indeed, one limitation of the present methodology is its inability to assess bacterial resistance. Other molecular methods, however, such as DNA microarrays, may be able to assess such resistances in the future.^{18,20}

We detected bacterial DNA in ascitic fluid in 60% of patients with sterile ascites. This is consistent with previous studies by Such et al³⁵⁻³⁷ and Viera et al²⁵ that showed that some cirrhotic patients with sterile ascites or culture-negative, nonneutrocitic ascites present bacterial DNA in blood and ascitic fluid, and that this presence is associated to an increased inflammatory response^{22,36} and worse prognosis.³⁷ The presence of bacterial DNA in non-infected cirrhotic patients possibly reflects subclinical bacterial translocation, not leading to overt infection but impairing liver function, immune response and hemodynamics.^{22,38-40} We found a higher percentage of patients with sterile ascites and positive bacterial DNA (60%) than the figures previously reported by Such et al. and Vieira et al (approximately 30%).^{25,35,37} It should be noted, however, that our methodology differed from that used in these studies as we performed RT-PCR with specific and universal Taqman probes instead of conventional PCR. It

Alimentary Pharmacology & Therapeutic

is interesting to point out that bacterial DNA was not detected in any patient with neoplasic ascites, supporting the reliability of the positive results in cirrhotic patients.

Another interesting finding was that molecular techniques, and specially sequentiation, did not yield a definitive bacterial identification in approximately half the cases in which bacterial DNA was detected. These unexpected results could be explained by a suboptimal sequencing reaction due to a low initial DNA concentration, or by a mix of amplification products corresponding to different bacterial species. The latter situation could be attributed to the presence of DNA from multiple bacteria in ascitic fluid or polybacterial contamination during paracentesis or later processing. Although contamination may have occurred in a few cases it would not explain the high percentage of non-conclusive identification, especially taking into account that bacterial DNA was not detected in 27 ascitic fluid samples from neoplasic non-cirrhotic patients.

Accordingly, we hypothesize that the low percentages of bacterial identification among samples with positive bacterial DNA could be the consequence of previous polybacterial translocations leading to the presence of polybacterial DNA (with or without viable bacteria) in ascitic fluid. Indeed, polybacterial cultures have been described in up to 37% of rats with experimental cirrhosis and bacterial translocation.⁴¹⁻⁴⁴ Further studies with other methodologies able to separate and identify polymicrobial DNA could be useful in these cases with multiple amplification products. The use of techniques such as denaturing gradient gel electrophoresis (DGGE),⁴⁵ denaturing high-performance liquid chromatography (DHPLC),⁴⁶ bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP)⁴⁷ or web-based application for the analysis of mixed DNA chromatograms obtained by direct *16S rRNA* gene sequencing⁴⁸ may merit consideration.

When analyzing the limitations of the present study, the low number of patients with SBP and negative bacterial DNA could have influenced the lack of statistical differences in some parameters when compared to those with positive bacterial DNA. Other issues are that bacterial DNA assessment in blood samples²² or in serial ascitic fluid samples after antibiotic treatment initiation, not performed in the present study, could have provided additional data that may have improved the interpretation of our results.

Molecular techniques to detect bacterial DNA still present several limitations and challenges that need to be addressed, such as false positive results due to contamination, the lack of standardized methods and reagents, and difficulties and variability in interpretation of results.¹⁷⁻¹⁹ We conclude that the methodology used in the present study has little usefulness with regard to bacterial identification in SBP in clinical practice. However, two relevant findings are worthy of further study. First, bacterial DNA was not detected in almost half of the negative culture SBP episodes. Second, RT-PCR and sequencing did not always identify amplified bacterial DNA.

ACKNOWLEDGEMENTS

We thank Carolyn Newey for English language revision.

STATEMENT OF INTERESTS

This study was supported by the Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III: FEDER, Spanish Network for the Research in Infectious Diseases (REIPI RD06/0008/0013), CIBERehd and grant PI060431. The authors do not have other personal or funding interests.

FIGURE LEGEND

Figure 1. Flow-chart showing procedures used in the present study. SBP: spontaneous bacterial peritonitis; RT-PCR: real-time polymerase chain reaction. *E. coli: Escherichia coli*.

REFERENCES

Runyon BA. Management of adult patients with ascites due to cirrhosis: an update.
 Hepatology 2009;49:2087-2107.

2. Tandon P, Garcia-Tsao G. Bacterial infections, sepsis, and multiorgan failure in cirrhosis. Semin Liver Dis 2008;28:26-42.

3. Guarner C, Soriano G. Spontaneous bacterial peritonitis. Semin Liver Dis 1997;17:203-217.

4. Fernández J, Navasa M, Gómez J, et al. Bacterial infections in cirrhosis: epidemiological changes with invasive procedures and norfloxacin prophylaxis. Hepatology 2002;35:140-148.

5. Thuluvath PJ, Morss S, Thompson R. Spontaneous bacterial peritonitis. In-hospital mortality, predictors of survival, and health care costs from 1988 to 1998. Am J Gastroenterol 2001;96:1232-1236.

6. Sort P, Navasa M, Arroyo V, et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med 1999;341:403-409.

7. Fernández J, Navasa M, Planas R, et al. Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis. Gastroenterology 2007;133:818-824.

 Saab S, Hernández JC, Chi AC, et al. Oral antibiotic prophylaxis reduces spontaneous bacterial peritonitis occurrence and improves short-term survival in cirrhosis: a meta-analysis.
 Am J Gastroenterol 2009;104:993-1001.

9. Runyon BA, Hoefs JC. Culture-negative neutrocytic ascites: a variant of spontaneous bacterial peritonitis. Hepatology 1984;4:1209-1211.

10. Rimola A, García-Tsao G, Navasa M, et al, and the International Ascites Club. Diagnosis, treatment and prophylaxis of spontaneous bacterial peritonitis: a consensus document. J Hepatol 2000;32:142-153.

11. Runyon BA, Canawati HN, Akriviadis EA. Optimization of ascitic fluid culture technique. Gastroenterology 1988;95:1351-1355.

12. Castellote J, Xiol X, Verdaguer R, et al. Comparison of two ascitic fluid culture methods in cirrhotic patients with spontaneous bacterial peritonitis. Am J Gastroenterol 1990;85:1605-1608.

Alimentary Pharmacology & Therapeutic

13. Ortiz J, Soriano G, Coll P, et al. Early microbiologic diagnosis of spontaneous bacterial peritonitis with BacT/ALERT. J Hepatol 1997;26:839-844.

14. Soriano G, Castellote J, Álvarez C, et al. Secondary bacterial peritonitis in cirrhosis: a retrospective study of clinical and analytical characteristics, diagnosis and management. J Hepatol 2010;52:39-44.

15. Umgelter A, Reindl W, Miedaner M, et al. Failure of current antibiotic first-line regimens and mortality in hospitalized patients with spontaneous bacterial peritonitis. Infection 2009;37:2-8.
16. Acevedo JG, Fernández J, Castro M, et al. Current efficacy of recommended empirical

antibiotic therapy in patients with cirrhosis and bacterial infection. J Hepatol 2009;50

(suppl.1):S5 (abstract).

17. Woo PCY, Lau SKP, Teng JLL, et al. Then and now: use of *16S rDNA* gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect 2008;14:908-934.

18. Andrade SS, Bispo PJM, Gales AC. Advances in the microbiological diagnosis of sepsis. Shock 2008;30(suppl.1):41-46.

19. Sontakke S, Cadenas MB, Maggi RG, et al. Use of broad range *16S rDNA* PCR in clinical microbiology. J Microbiol Methods 2009;76:217-225.

20. Picard FJ, Bergeron MG. Rapid molecular theranostics in infectious diseases. Drug Discov Today 2002;7:1092-1101.

21. Baron EJ. Medical Microbiology: Implications of new technology for infectious diseases practice. Clin Infect Dis 2006;43:1318-1323.

22. Francés R, Zapater P, González-Navajas JM, et al. Bacterial DNA in patients with cirrhosis and noninfected ascites mimics the soluble immune response established in patients with spontaneous bacterial peritonitis. Hepatology 2008;47:978-985.

23. Sugihara T, Koda M, Maeda Y, et al. Rapid identification of bacterial species with bacterial
DNA microarray in cirrhotic patients with spontaneous bacterial peritonitis. Inter Med 2009;48:310.

24. Bruns T, Sachse S, Straube E, et al. Identification of bacterial DNA in neutrocytic and nonneutrocytic cirrhotic ascites by means of a multiplex polymerase chain reaction. Liver Int 2009;29:1206-1214. 25. Vieira SM, da Silveira TR, Matte U, et al. Amplification of bacterial DNA does not distinguish patients with ascitic fluid infection from those colonized by bacteria. J Pediatr Gastroenterol Nutr 2007;44:603-607.

26. Guarner C, Solà R, Soriano G, et al. Risk of a first community-acquired spontaneous bacterial peritonitis in cirrhotics with low ascitic fluid protein levels. Gastroenterology 1999;117:414-419.

27. Ginès P, Schrier RW. Renal failure in cirrhosis. N Engl J Med 2009;361:1279-1289.

28. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 1992;20:864-874.

29. Gómez-Jiménez J, Ribera E, Gasser J, et al. Randomized trial comparing ceftriaxone with cefonicid for treatment of spontaneous bacterial peritonitis in cirrhotic patients. Antimicrob Agents Chemother 1993;37:1587-1592.

30. Poca M, Concepción M, Casas M, et al. Renal failure and mortality in cirrhotic patients with spontaneous bacterial peritonitis and low risk of mortality non-treated with albumin. J Hepatol 2009;50(suppl.1):S43 (abstract).

31. Murray PR, Ellen JB, Jorgensen JD, Pfaller MA, eds. Manual of clinical microbiology, 9th ed. Washington, D.C.: American Society for Microbiology Press, 2007.

32. Hall L, Doerr KA, Wohlfiel SL, et al. Evaluation of the MicroSeq system for identification of mycobacteria by 16S ribosomal DNA sequencing and its integration into a routine clinical mycobacteriology laboratory. J Clin Microbiol 2003;41:1447-1453.

33. Harris KA, Hartley JC. Development of broad-range *16S rDNA* PCR for use in the routine diagnostic clinical microbiology service. J Clin Med Microbiol 2003;52:685-691.

34. Jordan JA, Mary BD, Butchko AR, et al. Evaluating the near-term infant for early onset sepsis: progress and challenges to consider with *16S rDNA* polymerase chain reaction testing. J Mol Diagn 2006;8:357-363.

35. Such J, Francés R, Muñoz C, et al. Detection and identification of bacterial DNA in patients with cirrhosis and culture-negative, nonneutrocytic ascites. Hepatology 2002;36:135-141.

36. González-Navajas JM, Bellot P, Francés R, et al. Presence of bacterial-DNA in cirrhosis identifies a subgroup of patients with marked inflammatory response not related to endotoxin. J Hepatol 2008;48:61-67.

37. Zapater P, Francés R, González-Navajas JM, et al. Serum and ascitic fluid bacterial DNA: a new independent prognostic factor in noninfected patients with cirrhosis. Hepatology 2008;48:1924-1931.

38. Guarner C, Soriano G. Bacterial translocation and its consequences in patients with cirrhosis. Eur J Gastroenterol Hepatol 2005;17:27-31.

39. Albillos A, de la Hera A, González M, et al. Increased lipopolysaccharide binding protein in cirrhotic patients with marked immune and hemodynamic derangement. Hepatology 2003;37:208-217.

40. Albillos A, de la Hera A. Multifactorial gut barrier failure in cirrhosis and bacterial translocation: working out the role of probiotics and antioxidants. J Hepatol 2002;37:523-526.
41. Runyon BA, Squier S, Borzio M. Translocation of gut bacteria in rats with cirrhosis to mesenteric lymph nodes explains the pathogenesis of spontaneous bacterial peritonitis. J Hepatol 1994;21:792-796.

42. Llovet JM, Bartolí R, March F, et al. Translocated intestinal bacteria cause spontaneous bacterial peritonitis in cirrhotic rats: molecular epidemiologic evidence. J Hepatol 1998;28:307-313.

43. Pérez-Páramo M, Muñoz J, Albillos A, et al. Effect of propranolol on the factors promoting bacterial translocation in cirrhotic rats with ascites. Hepatology 2000;31:43-48.

44. Chiva M, Guarner C, Peralta C, et al. Intestinal mucosal oxidative damage and bacterial translocation in cirrhotic rats. Eur J Gastroenterol Hepatol 2003;15:145-150.

45. Schabereiter-Gurtner C, Maca S, Rölleke S, et al. *16S rDNA*-based identification of bacteria from conjunctival swabs by PCR and DGGE fingerprinting. Invest Ophthalmol Vis Sci 2001;42:1164-1171.

46. Domann E, Hong G, Imirzalioglu C, et al. Culture-independent identification of pathogenic bacteria and polymicrobial infections in the genitourinary tract of renal transplant recipients. J Clin Microbiol 2003;41:5500-5510.

47. Dowd SE, Wolcott RD, Sun Y, et al. Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS ONE 3 (10): e3326.doi:10.1371/journal.pone.0003326.
48. Kommedal O, Kvello K, Skjåstad R, et al. Direct *16S rRNA* gene sequencing from clinical specimens, with special focus on polybacterial samples and interpretation of mixed DNA chromatograms. J Clin Microbiol 2009;47:3562-3568.

ι, μομβασι μομβασι

Table 1. Clinical and analytical characteristics of cirrhotic patients with SBP and sterile ascites.Data are mean±SD or frequency (%).

	SBP	Sterile ascites	р
	n=55	n=20	
Age (yr)	67.6±11.0	64.6±14.3	0.33
Sex (male/female)	31 (56.3%)/24	14 (70%)/6	0.28
Etiology			
Alcohol	18 (32.7%)	10 (50%)	0.17
нсv	24 (43.6%)	5(25%)	0.14
Hepatocellular carcinoma	18 (32.7%)	2 (10%)	0.04
Child-Pugh A/B/C	4/28/23	1/10/9	0.80
Child-Pugh score	9.3±1.9	9.0±1.7	0.51
MELD score	17.2±7.5	14.4±5.3	0.12
Previous SBP	10 (18.1%)	5 (25%)	0.52
Previous ascites	42 (76.3%)	16 (80%)	0.98
Previous variceal bleeding	11 (20%)	7 (35%)	0.22
Previous encephalopathy	18 (32.7%)	6 (30%)	0.82
Sodium (mmol/l)	133.6±5.2	134.0±5.2	0.77
Urea (mmol/l)	13.0±7.9	7.3±4.5	<0.001
Creatinine (µmol/l)	122.8±78.7	88.6±17.9	0.004
Bilirubin (μmol/l)	60.3±66.2	50.0±45.7	0.52
Albumin (g/l)	26.7±4.9	30.4±4.0	0.004
INR	1.56±0.43	1.44±0.28	0.25
Blood leukocyte count	10340±8243	6074±2586	0.001
(/mm3)			
Ascitic fluid neutrophil count	5760±10988	26±29	<0.001
(/mm3)			
Ascitic fluid total protein (g/l)	13.4±6.0	15.4±9.1	0.28

SBP: spontaneous bacterial peritonitis; HCV: hepatitis C virus; MELD: model for end stage liver disease score; INR: international normalized ratio.

Table 2. Ascitic fluid culture, real-time PCR (RT-PCR) and sequencing results in cases with positive culture SBP.

Nº of	Culture	RT-PCR	Sequentiation
cases			
3	Escherichia coli	positive <i>E. coli</i> probe	ND
2	Escherichia coli	positive	Escherichia coli
2	Escherichia coli	positive	undetermined
2	Streptococcus viridans	positive	undetermined
2	Streptococcus viridans	negative	ND
2	Streptococcus pneumoniae	positive	undetermined
1	Klebsiella pneumoniae	positive	undetermined
	Citrobacter freundii		
1	Enterobacter cloacae	positive	Sphingomonas
1	Klebsiella pneumoniae	positive	Escherichia coli
1	Campylobacter jejuni	positive	undetermined
1	Listeria monocytogenes	positive	undetermined
1	Streptococcus pneumoniae	positive	Escherichia coli
1	Streptococcus pneumoniae	positive	Propionobacterium acnes
1	Streptococcus pneumoniae	positive	S. pneumoniae
1	Streptococcus pneumoniae	positive	Streptococcus
1	Streptococcus viridans	positive	Streptococcus
1	Streptococcus anginosus	positive	undetermined
1	Staphylococcus aureus	positive	undetermined

SBP: spontaneous bacterial peritonitis; ND: not done.

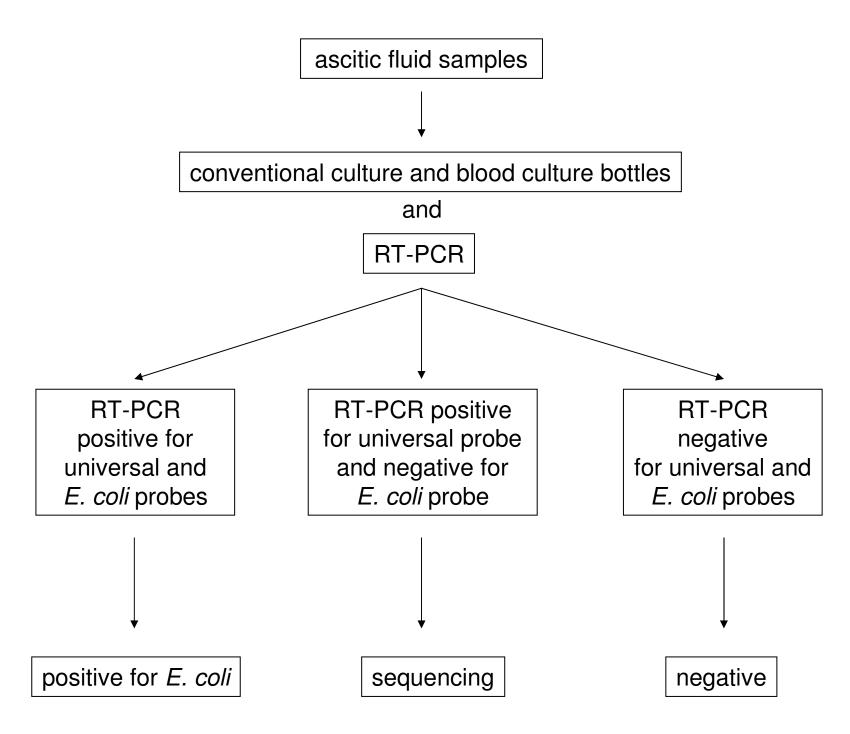
Table 3. Ascitic fluid real-time PCR (RT-PCR) and sequencing results in cases with negative culture SBP.

Nº of	Culture	RT- PCR	Sequentiation	
cases				
14	negative	negative	ND	
10	negative	positive	undetermined	
2	negative	positive <i>E. coli</i> probe	ND	
2	negative	positive	Streptococcus	
2	negative	positive	Escherichia coli	
SBP: sp	ontaneous bacterial peritonitis; N	ID: not done.		

1	
2	
3	
4	
5	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
16	
1/	
18	
19	
20	
21	
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
ა/ ეი	
30 20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
53 54	
54 55	
55 56	
50 57	
5/	

Table 4. Ascitic fluid real-time PCR (RT-PCR) and sequencing results in cases with sterile ascites.

Nº of	Culture	RT-PCR	Sequentiation
cases			
8	negative	negative	ND
6	negative	positive	Escherichia coli
6	negative	positive	undetermined
ND: not do			


Table 5. Clinical and analytical characteristics of patients with SBP and positive or negative ascitic fluid bacterial DNA. Data are mean±SD or frequency (%).

	Negative bacterial DNA	Positive bacterial DNA	р
	n=16	n=39	
Age (yr)	69.1±13.7	67.1±9.9	0.54
Sex (male/female)	7 (43.7%)/9	24 (61.5%)/15	0.22
Etiology			
Alcohol	1 (6.2%)	17 (43.5%)	0.007
нсv	11 (68.7%)	13 (33.3%)	0.01
Hepatocellular carcinoma	6 (37.5%)	12 (30.7%)	0.62
Child-Pugh AB/C	13 (81.2%)/3	19 (48.7%)/20	0.02
Child-Pugh score	8.7±1.2	9.6±2.1	0.06
MELD score	14.3±5.7	18.5±7.9	0.06
Previous complications of	14 (87.5%)	30 (76.9%)	0.47
cirrhosis			
Previous SBP	5 (31.2%)	5 (12.8%)	0.13
Previous ascites	14 (87.5%)	28 (71.7%)	0.30
Previous variceal bleeding	4 (25%)	7 (17.9%)	0.71
Previous encephalopathy	5 (31.2%)	13 (33.3%)	0.88
Previous antibiotic	3 (18.7%)	14 (35.8%)	0.33
treatment ¹			
Beta-blockers	11 (68.7%)	14 (35.8%)	0.02
Diuretics	11 (68.7%)	27 (69.2%)	1
Nosocomial	3 (18.7%)	14 (35.8%)	0.33
Asymptomatic	5 (31.2%)	10 (25.6%)	0.73
Abdominal pain	6 (37.5%)	13 (33.3%)	0.64
Fever (>38ºC)	7 (43.7%)	13 (33.3%)	0.46
Renal failure	3 (18.7%)	13 (33.3%)	0.34

	Negative bacterial DNA	Positive bacterial DNA	р
	n=16	n=39	
SIRS	3 (18.7%)	19 (48.7%)	0.03
MAP (mm Hg)	83.4±14.1	81.4±14.8	0.66
Sodium (mmol/l)	135.5±5.1	132.8±5.1	0.09
Urea (mmol/l)	14.0±9.4	12.6±7.3	0.57
Creatinine (µmol/l)	112.3±46.2	127.1±88.9	0.53
Bilirubin (μmol/l)	30.9±18.6	72.4±74.7	0.002
Albumin (g/l)	26.8±4.4	26.7±5.2	0.93
INR	1.36±0.14	1.64±0.48	0.003
Blood leukocyte count	6588±2713	11880±9235	0.002
(/mm3)			
Ascitic fluid neutrophil count	2649±4183	6964±12392	0.18
(/mm3)			
Ascitic fluid neutrophil count	9 (56.2%)	32 (82%)	0.08
<u>></u> 500/mm ³			
Ascitic fluid total protein (g/l)	14.3±6.6	13.0±5.7	0.48
Positive ascitic fluid culture	2 (12.5%)	23 (58.9%)	0.002
			1

HCV: hepatitis C virus; MELD: model for end stage liver disease score; SIRS: systemic inflammatory response syndrome; MAP: mean arterial pressure; INR: international normalized ratio.

¹ Previous antibiotic treatment consisted of norfloxacin in the 3 patients with negative bacterial DNA. In patients with positive bacterial DNA, previous antibiotic treatment consisted of norfloxacin in 6 patients, amoxicillin/clavulanic acid in 4, ceftriaxone in 3 and cloxacillin in one.

