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Abstract. In the framework of Finslerian geometry, we propose a geometric unification between 

traditional gauge treatments of gravity, represented by metric field, and dark energy, which arises as a 

corresponding gauge potential from the single SU (2) group. Furthermore, we study the perturbation of 

gravity waves caused by dark energy. This proposition may have far reaching applications in 

astrophysics and cosmology. 
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1. Introduction  

Observations of type Ia supernovae and of  large-scale structure (LSS), in combination with 

measurements of the characteristic angular size of fluctuations in the cosmic microwave 

background (CMB)([1],[2],[3],[4],[5],[6],[7],[8],[9],[10]) provide evidence that the expansion 

of the Universe is accelerating. This acceleration is attributed to the “dark energy”, a 

hypothetical energy with negative pressure ([1], [2], [3], [4], [5], [6]).  Evidence for the 

presence of a dark energy is also provided by an independent, albeit more tentative, 

investigation of the integrated Sachs-Wolfe (ISW) ([11]). 

The dark energy may result from Einstein’s cosmological constant (which has a 

phenomenally small value); from evolving scalar fields ([12]); and from a weakening of 

gravity in our 3 + 1 dimensions by leaking into the higher dimensions, as required in string 

theories ([13]). These explanations may have crucial borader implications on fundamental 

physics. This has stimulated further efforts to confirm the initial results on dark energy, test 

possible sources of error, and extend our empirical knowledge of this newly discovered 

component of the Universe. 

 

The gauge theory of gravity is based on the gauge principle and was suggested immediately 

after the formulation of the gauge theory ([14], [15], [16], [17], [18], [19], [20], [21], [22], 

[23]). In the traditional gauge treatment of gravity, the Lorentz group is localized and the 

gravitational field is not represented by gauge potential, but by a metric field ([18], [20]).  

 

In this paper we use the framework of Finslerian geometry ([24], [25], [26], [27], [28], [29]) 

to propose a geometric unification between traditional gauge treatment of gravity, represented 

by the metric field g


, and dark energy. Which appears as a corresponding gauge potential

B


, arising naturally from the gauge treatment of the single SU (2) group ([30], [31], [32]). 

We demonstrate that the dark energy would result naturally as a geometric effect of Finsler 

space, rather than being an additional suggestion. Furthermore, we study the dark energy 

perturbation of gravity wave, and discuss some wider potential applications of this in 

astrophysics and cosmology. 

 

 

2. On the Finslerian geometric unification of gravity and dark energy  
In the framework of a Riemannian approach, where two nearby particles are subject to the 

traditional gravitational field g


(free-falling), the Equation of Deviations of Geodesics 

(EDG) takes the form:  

 
2

2
0

D n
R n n n

ds


   


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where ,n n
 

represent the deviation vector; 
D

d s
is the covariant derivative; and R




is the 

Riemann tensor.  

 

The equation of motion of two nearby particles subjected to the action of the massless vector 

B-field of dark energy is obtained by introducing the Lorentz term into the geodesics equation 

(1) and replacing the four-acceleration 
du

a
ds



  by

a
D u

d s
.    
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where B is the dark energy field strength: , ,B B B      ; and B


 is the dark energy 

gauge potential arising from the single SU (2) group [30].  Equation (2) thus modifies 

equation (1) in the general form: 

 
2

2

D n
R n n n

ds


    


          (3) 

where 
DB

u B B u
ds


    

 
 

   
 
 

; and   is a constant
1

16 G



 . 

 

The term 
  in relation (3) describes the external interaction between two nearby mass 

particles due to dark energy.  For 0


  , relation (3) is reduced to (1), where only the 

gravitational field is present. 
  also governs the relative acceleration between two nearby 

particles in the flat space with 0
a

R  . 

 

From the above we conclude than Riemannian geometry does not provide a sufficient 

framework for the geometric unification between gravity and the vector dark energy. The 

disadvantage of Riemannian geometry is that the equation of motion of a particle subject to 

the action of a gravitational and dark energy field doesn’t occur physically from the geometry 

of space-time and it is necessary to be imposed as an independent axiom.  

 

Riemannian geometry can be extended through the introduction of the Finsler space [25]. The 

metric function of the Finsler space is given by:  

 

   ,F x V g x V V B V
  

    ([29]),     (4)   

 

where g


is the Riemannian metric tensor and B


 is the dark energy vector potential.  The 

metric f  of Finslerian space [29] is given by 

 
2 2

1

2

F
f

V V
  




 
        (5)  

           

f g h    ,        (6)                 

where g


is the Riemannian metric tensor and h the metric tensor. The latter is given by 

 

   22 s l

s lh V g B B B V B r     

 


 
   ,     (7)       

 where  
1

16 G



  , k
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
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1 k
r g g g x x


   


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1

2
ij jiij

a a a      (9) 

 

A space endowed with the metric tensor (6) is called a Randeres space [29].  

 

The presence of the dark energy component h


in space-time causes the isotropy of space to 

break down. The geodesic equation for this space is:  
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 2 , 0
dx

x x
ds





           (10)       

   

   2 ,x x x x x B x


   







 
      

 

       (11)        

From 


  the connection coefficient  


  of this space can be derived


 , by analogy 

with the Berwald connection coefficient [28]. By analogy to the Berwald curvature tensor 

[28], we may associate with connection coefficient 


 a curvature tensor.  

 i i i

hjk hjk hjkR B   ,         (12)             

where  
i

hjkR   is the Riemannian curvature tensor that came from the metric g  , and i

hjkB  is 

given by  

    
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









   
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 

      (13) 

     

where 
ij

i

g
u


 , k

g x x


    and     2 ij jiij
t t t  .    (14) 

 

The equation of geodesic deviation is given by   

 

 
2

, 0

i
i j

ji

z
H x x z

u




  ,       (15)       

       

where i i h k

j hjk x x     , j
z is the deviation vector and x  is the tangent vector. As i

hjk has a 

part independent of velocity 
m

x  , we have the relation  

      

 

1

3
0

i m i i
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




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     (16)       

      

By equation (16) equation (12) becomes  

 

      
1

2

i i i n i i

hjk hjk h jk h mk j h j k
H x R B B g B B B B        (17)                  

            

By equation (17) we derive the action of the system 

 

 
i hj mn

hjk mnS H x g R B B         (18)  

   

Action (18) yields the field’s equations of gravity and dark energy, respectively, as follows:

  

1
8

2
ij ij ijR g R T          (19)                
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( )
mn n

m g B J           (20) 

 

For equations (12) and (15) we observe that the deviation vector j
z has two terms: a pure 

gravitational deviation, represented by i

hjkR in the curvature tensor equation (12), which we 

would observe if there was no dark energy field, and the admixture of gravitational and dark 

energy deviations, represented by i

hjkB  in the curvature tensor equation (12). We examine the 

following cases:  

For 0
i

hjkB   we have 

2

2
( , ) 0

i
i i h k

hjk

z
R x x x x z

u





          (21) 

 

where the deviation equation (15) becomes a Riemannian one. 

 

For 0
i

hjkB  , 0
i

hjkR   the associated curvature tensor of Randers space i

hjkH is derived from 

the connection coefficients 

 

  31 1
/ /

2 2

i k l l k l

mn mn k m n m n k

l
H g x B u B u u x B

mn
 

 
     

 

   (22) 

 

The last relation shows that dark energy field is incorporated in the geometry of space. The 

second part i

hjkB of the full curvature i

hjkH equation (12) describes the dark force that two 

freely falling particles of masses 
1m and 

2m would exercise on each other. In such a case, the 

dark force would result naturally as a geometrical effect and it would not be necessary for us 

to impose it in addition. 

 

Finally, for  0
i

hjkR   the equations of the geodesic deviations are governed by the dark 

energy and relation (15) is reduced to: 
2

2
( , ) 0

i
i i h k

hjk

z
B x x x x z

u





          (23) 

 

In this case the first term of the Randers tensor corresponds to the Lorenz metric. The metric 

function ( , )F x x can, then, be expressed in the form: 

( , ) ( )
i

iF x x n x x B x x
 

      ,
1

16 G



      (24) 

 

This metric function is interesting for a possible linear theory caused by the dark energy field. 

 

3. The dark energy perturbation of gravity wave  

As an extension of the theory of gravitational waves described by General Relativity, we 

introduce a Finslerian metric, representing the Finslerian perturbation of Riemannian 

metric([33],[34],[35]) 

 

 

( , ) ( ) ( , )f x y g x x y    , | | 1       (25) 
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Where g


is the Riemannian metric tensor and ( , )x y is the Finslerian perturbation to the 

Riemannian metric tensor. Μetric tensor (25) can be called a  post  Riemannian metric tensor 

[36]. 

 

Here, the Finslerian perturbation of Riemannian metric represents the dark energy 

perturbation of the gravity wave. This observation invites us to consider a Finslerian 

manifold, whose metric function contains two masslesss dark energy fields with 4-pontensioal 

vectors, (1)

iB and ( 2 )

iB , in the following form: 

 

     (1) ( 2 )
, ( , )

i j i

ij i iF x V g x V V B B V x V      ,    (26) 

 

where /
i i

V dx ds is a 4-velocity of a particle,   is a constant, ( 2 )(1)i

iB B  is the 

interaction term of two dark energy fields ,   is a constant, and ( , )x V is an homogeneous 

function of 1
st
 degree, assumed to be scalar in the Finslerian manifold [25]. 

 

The last term of equation (26) corresponds to the gravitational field induced by the interaction 

between the dark energy fields.  It contains the information of the gravitational field caused 

by the interaction of the dark energy field. This gravitational field affects the motion of every 

physical object in space-time. Applying equation (5) to equation (26) we obtain the following 

metric tensor for this field: 

 

ij ij ijf g h    , | | 1  ,      (27) 

 

where g


is the Riemannian metric tensor corresponding to the gravity wave perturbation (

| | 1g


 ) to Minkowski metric ( 1, 1, 1, 1)n diag       ([33], [34], [35]), and h  

describes the interactions between the gravity wave and dark energy, and dark energy to 

itself. 

 

  2

' ' 2 '

2 2

2

2
( ) 2 ( )

( ) '

s l

s i j i j l ij

s

s i j i j ij

i

l ij ij

h V g B B B V B r

x g B h

V B



 


 

 
   

 

   

   


    

   

     (28) 

 

where  
1

16 G



 , k

g x x


   , 1 k
r g g g x x


   


   ,    

1

2
ij jiij

a a a  , and 

'i denotes the partial differentiation with respect to 
i

V , (1) ( 2 )

i i iB B B  and
21
'

2
ij ij    . 

 

4. Conclusion 

The equation of deviations of geodesics in Finsler space allows incorporation of dark energy 

in the geometry of space. We demonstrate that the dark energy would result naturally as a 

geometric effect and it would not necessary for us to impose it in addition. In a way the 

geometric unification between gravity and dark energy massless vector field is achieved. We 

also find that, whenever the dark energy component h


is present in space-time, the isotropy 

of space breaks down. In the framework of Finsler space, we also predict a dark energy 

perturbation of gravity waves. 
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