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In the framework of Finslerian geometry, we propose a geometric unification between traditional gauge treatments of gravity, represented by metric field, and dark energy, which arises as a corresponding gauge potential from the single SU (2) group. Furthermore, we study the perturbation of gravity waves caused by dark energy. This proposition may have far reaching applications in astrophysics and cosmology.

Introduction

Observations of type Ia supernovae and of large-scale structure (LSS), in combination with measurements of the characteristic angular size of fluctuations in the cosmic microwave background (CMB)( [1], [2], [3], [4], [START_REF] Filippenko | Measuring and Modeling the Universe[END_REF], [6], [7], [8], [9], [10]) provide evidence that the expansion of the Universe is accelerating. This acceleration is attributed to the "dark energy", a hypothetical energy with negative pressure ( [1], [2], [3], [4], [START_REF] Filippenko | Measuring and Modeling the Universe[END_REF], [6]). Evidence for the presence of a dark energy is also provided by an independent, albeit more tentative, investigation of the integrated Sachs-Wolfe (ISW) ( [11]). The dark energy may result from Einstein's cosmological constant (which has a phenomenally small value); from evolving scalar fields ( [12]); and from a weakening of gravity in our 3 + 1 dimensions by leaking into the higher dimensions, as required in string theories ( [13]). These explanations may have crucial borader implications on fundamental physics. This has stimulated further efforts to confirm the initial results on dark energy, test possible sources of error, and extend our empirical knowledge of this newly discovered component of the Universe.

The gauge theory of gravity is based on the gauge principle and was suggested immediately after the formulation of the gauge theory ( [14], [15], [16], [17], [18], [19], [20], [21], [22], [23]). In the traditional gauge treatment of gravity, the Lorentz group is localized and the gravitational field is not represented by gauge potential, but by a metric field ( [18], [20]).

In this paper we use the framework of Finslerian geometry ( [24], [START_REF] Matsumoto | Foundation of Finsler Geometry and Special Finsler Space[END_REF], [START_REF] Stavrinos | Deviation of geodesic in the gravitational filed of Finslerian spacetime[END_REF], [START_REF] Stavrinos | Finslerian Metric based on the Gravitensional and electromagnetic Fields[END_REF], [START_REF] Antonelli | The Theory of Sprays and Finsler space with Application in Physics and Biology[END_REF], [START_REF] Beil | The Finsler Geometry and a Unified Field Theory[END_REF]) to propose a geometric unification between traditional gauge treatment of gravity, represented by the metric field g  , and dark energy. Which appears as a corresponding gauge potential B  , arising naturally from the gauge treatment of the single SU (2) group ( [30], [31], [32]).

We demonstrate that the dark energy would result naturally as a geometric effect of Finsler space, rather than being an additional suggestion. Furthermore, we study the dark energy perturbation of gravity wave, and discuss some wider potential applications of this in astrophysics and cosmology.

On the Finslerian geometric unification of gravity and dark energy

In the framework of a Riemannian approach, where two nearby particles are subject to the traditional gravitational field g  (free-falling), the Equation of Deviations of Geodesics (EDG) takes the form: 
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where B  is the dark energy field strength:
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     ; and B  is the dark energy gauge potential arising from the single SU (2) group [30]. Equation (2) thus modifies equation (1) in the general form:
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; and  is a constant 3) is reduced to (1), where only the gravitational field is present.   also governs the relative acceleration between two nearby particles in the flat space with
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From the above we conclude than Riemannian geometry does not provide a sufficient framework for the geometric unification between gravity and the vector dark energy. The disadvantage of Riemannian geometry is that the equation of motion of a particle subject to the action of a gravitational and dark energy field doesn't occur physically from the geometry of space-time and it is necessary to be imposed as an independent axiom. Riemannian geometry can be extended through the introduction of the Finsler space [START_REF] Matsumoto | Foundation of Finsler Geometry and Special Finsler Space[END_REF]. The metric function of the Finsler space is given by:
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where g  is the Riemannian metric tensor and B  is the dark energy vector potential. The metric f  of Finslerian space [START_REF] Beil | The Finsler Geometry and a Unified Field Theory[END_REF] is given by
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where g  is the Riemannian metric tensor and h  the metric tensor. The latter is given by
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A space endowed with the metric tensor ( 6) is called a Randeres space [START_REF] Beil | The Finsler Geometry and a Unified Field Theory[END_REF].

The presence of the dark energy component h  in space-time causes the isotropy of space to break down. The geodesic equation for this space is:
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, by analogy with the Berwald connection coefficient [START_REF] Antonelli | The Theory of Sprays and Finsler space with Application in Physics and Biology[END_REF]. By analogy to the Berwald curvature tensor [START_REF] Antonelli | The Theory of Sprays and Finsler space with Application in Physics and Biology[END_REF], we may associate with connection coefficient    a curvature tensor.
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where
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is the Riemannian curvature tensor that came from the metric g  , and i

hjk B is given by
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The equation of geodesic deviation is given by
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hjk xx      , j z is the deviation vector and x  is the tangent vector. As i

hjk   has a part independent of velocity m x , we have the relation
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By equation ( 16) equation ( 12) becomes
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By equation (17) we derive the action of the system
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Action (18) yields the field's equations of gravity and dark energy, respectively, as follows:
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For equations ( 12) and ( 15) we observe that the deviation vector j z has two terms: a pure gravitational deviation, represented by i hjk R in the curvature tensor equation ( 12), which we would observe if there was no dark energy field, and the admixture of gravitational and dark energy deviations, represented by i hjk B in the curvature tensor equation (12). We examine the following cases: (21) where the deviation equation ( 15) becomes a Riemannian one. 
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The last relation shows that dark energy field is incorporated in the geometry of space. The second part i hjk B of the full curvature i hjk H  equation ( 12) describes the dark force that two freely falling particles of masses 1 m and 2 m would exercise on each other. In such a case, the dark force would result naturally as a geometrical effect and it would not be necessary for us to impose it in addition. 
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In this case the first term of the Randers tensor corresponds to the Lorenz metric. The metric function ( , ) F x x  can, then, be expressed in the form:
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This metric function is interesting for a possible linear theory caused by the dark energy field.

The dark energy perturbation of gravity wave

As an extension of the theory of gravitational waves described by General Relativity, we introduce a Finslerian metric, representing the Finslerian perturbation of Riemannian metric( [START_REF] Stavrinos | Deviation of Geodesics and Gravitational Waves in Finsler Space[END_REF], [START_REF] Balan | Weak Gravitational Models Based on Beil Metrics[END_REF], [START_REF] Balan | Finslerian (a, b)-Metrics in Weak Gravitational Models[END_REF])
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Where g  is the Riemannian metric tensor and ( , )

xy  
is the Finslerian perturbation to the Riemannian metric tensor. Μetric tensor [START_REF] Matsumoto | Foundation of Finsler Geometry and Special Finsler Space[END_REF] can be called a post Riemannian metric tensor [START_REF] Ikeda | Advanced Studies in Applied Geometry[END_REF].

Here, the Finslerian perturbation of Riemannian metric represents the dark energy perturbation of the gravity wave. This observation invites us to consider a Finslerian manifold, whose metric function contains two masslesss dark energy fields with 4-pontensioal vectors, (1) i B and ( 2 ) i B

, in the following form:
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where
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is the interaction term of two dark energy fields ,  is a constant, and ( , )

xV  is an homogeneous function of 1 st degree, assumed to be scalar in the Finslerian manifold [START_REF] Matsumoto | Foundation of Finsler Geometry and Special Finsler Space[END_REF].

The last term of equation ( 26) corresponds to the gravitational field induced by the interaction between the dark energy fields. It contains the information of the gravitational field caused by the interaction of the dark energy field. This gravitational field affects the motion of every physical object in space-time. Applying equation [START_REF] Filippenko | Measuring and Modeling the Universe[END_REF] to equation ( 26) we obtain the following metric tensor for this field:
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where g  is the Riemannian metric tensor corresponding to the gravity wave perturbation ( [START_REF] Stavrinos | Deviation of Geodesics and Gravitational Waves in Finsler Space[END_REF], [START_REF] Balan | Weak Gravitational Models Based on Beil Metrics[END_REF], [START_REF] Balan | Finslerian (a, b)-Metrics in Weak Gravitational Models[END_REF]), and h  describes the interactions between the gravity wave and dark energy, and dark energy to itself. 
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Conclusion

The equation of deviations of geodesics in Finsler space allows incorporation of dark energy in the geometry of space. We demonstrate that the dark energy would result naturally as a geometric effect and it would not necessary for us to impose it in addition. In a way the geometric unification between gravity and dark energy massless vector field is achieved. We also find that, whenever the dark energy component h  is present in space-time, the isotropy of space breaks down. In the framework of Finsler space, we also predict a dark energy perturbation of gravity waves.
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