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Communicated by <Please don’t enter> 

 

ABSTRACT: The forkhead box G1 (FOXG1) gene has recently been associated with the congenital variant of Rett 

syndrome, and so far 17 mutations have been reported. We screened the coding region in 150 patients affected by 

postnatal microcephaly, and identified two mutations: the c.326C>T (p.P109L) substitution inherited from the 

healthy father; and the de novo c.730C>T transition, which induces the p.R244C mutation within the DNA-binding 

forkhead domain. This latter mutation is carried by an 8-year-old girl, who presented a phenotype reminiscent of the 

congenital variant of Rett syndrome. Immunofluorescence analysis of the wild-type protein revealed a 
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homogeneous nuclear staining excluding the nucleoli, while the p.R244C mutant showed abnormal nuclear foci in a 

large proportion of cells, suggesting that its mislocalization may reduce and/or impair target recognition. 

Interestingly, this missense mutation results in a mislocalization of FoxG1 to specific nuclear foci referred to as 

nuclear speckles, and affects the cyclin-dependent kinase inhibitor p21 CDKN1A expression. Because CDKL5, 

which is involved in the early-onset variant of Rett syndrome, is also located in these speckles, we suggest that 

disregulation of the dynamic behaviour of nuclear speckles may functionally link these two proteins, which are both 

involved in atypical forms of Rett syndrome.©2010 Wiley-Liss, Inc. 

KEY WORDS: FOXG1; Rett syndrome; Microcephaly; Encephalopathy; Nuclear speckles  

 

INTRODUCTION 

The mammalian forkhead family belongs to the large family of over 100 known forkhead genes in animals 

[Solomon et al., 2003a]. All forkhead family members contain the ~100 amino acid, monomeric DNA “winged-

helix” binding domain of the founding members: Drosophila forkhead [Lee and Frasch, 2004] and hepatocyte 

nuclear factor 3a [Tao and Lai, 1992]. Forkhead gene products play pivotal roles in organogenesis, including 

patterning and morphogenesis, through the regulation of the proliferation and cell fate specification [Solomon et 

al., 2003b]. 

The neocortex develops from the progenitor cells of the rostral neural plate, the telencephalic 

neuroepithelial cells. Following a period of uniform proliferation, cerebral cortical progenitors generate neurons 

asynchronously beginning at embryonic day 11 (E11) in mouse. Progenitors undergo asymmetric cell divisions in 

which one daughter cell differentiates while the other divides. The proportion of cells with asymmetric divisions 

steadily increases over a period of several days. At the end of the neurogenetic period (E17), both daughter cells 

differentiate, resulting in the depletion of the progenitor pool. The duration of the neurogenetic period is a critical 

determinant driving the quantity of neurons generated within the cerebral cortex. Three factors have a major 

influence on the cellular output from the proliferative zones: the rate of cell proliferation, the rate of cell 

differentiation, and the rate of cell death. The progenitor cells of the telencephalon are identifiable as early as the 

eight-somite stage (E8.5) by the expression of one of the members of the forkhead box family, the FoxG1 

transcription factor, also known as the winged-helix (WH) protein brain factor (BF-1) [Murphy et al., 1994]. 

FoxG1 (MIM 164874) is a DNA-binding transcription factor with a forkhead binding domain (FBD; amino 

acids (AA) 181-275), which represses target genes during brain development by recruiting transcriptional 

corepressor proteins via two protein-binding domains: the Groucho-binding domain (GBD; AA 307-317) and the 

JARID-1B binding domain (JBD; AA 383-406). 

In a recent series of articles, several groups identified ten different mutations in FOXG1 as the cause of the 

congenital form of Rett syndrome (RTT, OMIM 312750) [Ariani et al., 2008; Philippe et al., 2010; Mencarelli et 

al., 2010; Bahi-Buisson et al., 2010]. All patients fulfilled the criteria of the congenital variant of RTT except one 

presenting a classical form of Rett syndrome [Philippe et al., 2010]. The congenital variant of RTT, which was 

initially described by Rolando in 1985 [Rolando et al., 1985], involves girls that present with a normal perinatal 
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period followed by a phase of developmental regression at the age of 3-6 months. At birth, head circumference is 

normal while a deceleration of growth is observed soon afterwards, resulting in a severe microcephaly. Patients 

with FOXG1 mutations usually exhibit a phenotype reminiscent of the congenital RTT variant. Motor development 

is severely impaired and voluntary hand-use is absent. In contrast with classic RTT, patients show poor eye 

contact. Typical stereotypic hand movements with hand-washing and hand-mouthing activities are observed 

continuously. Several patients show abnormal tongue movements, as well as jerky movements of the limbs. Brain 

MRI typically shows corpus callosum hypoplasia, abnormal ventricles, and abnormal white matter in most cases, 

while epilepsy is a variable sign [Bahi-Buisson et al., 2010]. Scoliosis and autonomic neurovegetative symptoms 

typical of Rett syndrome are frequently present [Philippe et al., 2010]. 

To date, only a few missense mutations have been reported in the FOXG1 gene. In this report, the gene was 

screened by direct sequencing in more than 150 sporadic cases of girls with microcephaly, stereotypic hand 

movements and jerky movements. A novel missense mutation within the DNA-binding domain was identified and 

subsequent studies by genetic and cellular approaches showed that the nuclear localization of the protein is 

impaired. These results provide new insights into the understanding of FoxG1 dysfunction and its associated 

phenotype. 

MATERIALS AND METHODS 

 

Patients 

As part of the Rettsearch program (SYRENE program), 150 female patients with a clinical diagnosis of 

severe congenital encephalopathy with microcephaly were selected for the study. The cohort included nine females 

with the classical form of Rett syndrome, 19 patients with the early seizure onset variant, 7 patients with the 

congenital variant of Rett syndrome, and 115 patients showing some of the features observed in Rett syndrome. 

This last heterogeneous group of patients included patients with mental retardation, autistic features, stereotypic 

hand movements, progressive microcephaly, epileptic encephalopathy, and/or severe congenital encephalopathy 

without recognizable aetiology. In all selected individuals, neither point mutation nor large rearrangement in the 

MECP2 and CDKL5 genes had been identified. Methylation studies for Angelman syndrome and chromosome 

analysis were also normal.  

 

DNA mutation analysis 

DNA was extracted from peripheral blood using standard methods. All blood samples were obtained after 

provision of informed consent. DNA samples were screened for mutations in FOXG1 (GenBank reference 

NG_009367.1)) using PCR amplification and direct sequencing. Primer sequences and PCR conditions are 

available upon request to the corresponding author. Sequencing reactions were carried out with the BigDye 

Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems, Courtaboeuf, France) and loaded on the ABI 3100 

Genetic Analyzer (Applied Biosystems). Nucleotide numbering reflects cDNA numbering with +1 corresponding 

to the A of the ATG initiation codon (codon 1) in the reference sequence, according to journal guidelines 

(www.hgvs.org/mutnomen). Mutation nomenclature follows the recommended guidelines of the human genome 
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variation society (www.HGVS.org). Nucleotide numbering is based on cDNA reference sequences GenBank 

accession number NM_005249.3. Detection of large rearrangements of the FOXG1 gene was assessed by 

quantitative, real-time PCR carried out with the SYBR Green PCR Master Mix (Applied Biosystems) on an ABI 

Prism 7000 Sequence Detection System (Applied Biosystems) according to the manufacturer’s instructions. 

Primers were designed with Primer Express software and are available upon request to the corresponding author. 

After PCR amplification, the purity of products was determined by a melting-curve analysis, and all samples 

indicating a single amplification product were considered positive for further analysis. The identity and size of the 

single PCR product were also confirmed by agarose gel electrophoresis. For each sample, a relative quantification 

of the copy number of the FOXG1 gene was calculated by the ∆Ct method as described by the manufacturer using 

the ALB gene as the calibrator for normalization. 

 

Plasmid construction and production 

The human FOXG1 open-reading frame was extracted from the BC035020 clone (cDNA clone IMAGE: 

4823883, Thermo Scientific Open Biosystems, Huntsville, AL, USA) by PCR amplification with forward (F) and 

reverse (R) primers flanked by BglII and BamHI restriction sites, respectively: 5’-

GGAAGATCTTCCCTGGACATGGGAGATAGGAAAGAGGTG-3’ (F) and 5’-

CGCGGATCCGCGATGTATTAAAGGGTTGGAAGAAGACCCCTG-3’ (R) (restriction sites are underlined; 

FOXG1 sequences are in bold). This amplification removes the initiation codon ATG from the sequence and 

allows its subcloning as the C-terminal part of a fusion protein. The PCR was carried out with the PCRx Enhancer 

System (Invitrogen, Cergy-Pontoise, France) with 10 ng of template plasmid DNA, 1X PCRx Amplification 

Buffer, 2X PCRx Enhancer Solution, 2 mM MgSO4, 250 µM dNTP each, 0.5 µM each primer, and the Platinum
®

 

Taq DNA Polymerase. Cycle conditions were: an initial denaturation step at 95°C for 2 min; followed by 40 cycles 

of denaturation at 95°C for 45 sec, annealing at 62°C for 30 sec, extension at 68°C for 1 min 45 sec; and a final 

extension step at 68°C for 2 min. PCR products were loaded on a 2% agarose gel and purified with the QIAquick 

Gel Extraction Kit (Qiagen, Courtaboeuf, France). The purified fragments were subsequently cloned within the 

pCR4
®
-TOPO

®
 (Invitrogen) vector according to the protocol described by the manufacturer. The cloning product 

was transformed into XL1-Blue Supercompetent Cells (Stratagene, purchased from Agilent Technologies, Massy, 

France) cultured in a selective medium. The reported G>C substitution at codon 82, which converts a proline to an 

arginine, was found in the clone and reversed by directed mutagenesis using the QuikChange
®
 Site-Directed 

Mutagenesis Kit (Stratagene) with oligonucleotides 5’-CCCCCGGCACCGCAGCCCCCC-3’ (F) and 5’-

GGGGGGCTGCGGTGCCGGGGG-3’ (R) (converted codon underlined; converted nucleotide in bold) according 

to the manufacturer’s instructions. 

To generate the expression vectors, the TOPO-TA cloning product containing the human FOXG1 sequence, 

as well as the pEGFP-C1 Vector (Clontech, purchased from Ozyme, Saint-Quentin-en-Yvelines, France) were 

digested with both the BglII and BamHI restriction enzymes, and the linearized pEGFP-C1 Vector was treated 

with Alkaline Phosphatase (New England Biolabs, purchased from Ozyme, Saint-Quentin-en-Yvelines, France). 

Digestion products were loaded on a 0.8% agarose gel and extracted as described above. Insert and vector were 
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then ligated with the T4 DNA Ligase (New England Biolabs) overnight at 4°C, and transformed into XL10-Gold
®

 

Ultracompetent Cells (Stratagene) cultured in a selective medium, to generate the pEGFP-FOXG1 recombinant 

plasmid producing an EGFP-FOXG1 fusion protein. After direct sequencing, this wild-type construct serves as a 

template to generate the p.R244C mutant (c.730C>T) by directed mutagenesis with the QuikChange
®
 XL Site-

Directed Mutagenesis Kit (Stratagene) and the following oligonucleotides: 5’-

CGTGAAGGTGCCGTGCCACTACGACGA-3’ (F) and 5’-TCGTCGTAGTGGCACGGCACCTTCACG-3’ (R) 

(converted codon underlined; converted nucleotide in bold). Sequences of intermediate and final plasmid 

constructs were systematically controlled by direct sequencing. 

 

Cell culture, transfection and immunofluorescence 

The DAOY medulloblastoma cell line and the HeLa human cervix carcinoma cells (ATCC
®
 Number: CCL-

2™) were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal calf serum and 

antibiotics at 37°C, 5% CO2 under humidified atmosphere. One day before transfection, cells were seeded onto 

round coverslips and cultured in minimal medium. They were either mock-transfected or transfected with the 

plasmid encoding an EGFP-tagged fusion protein using Lipofectamine™ 2000 (Invitrogen) as the transfection 

reagent following the manufacturer’s instructions. Forty-eight hours after transfection, cells were fixed with 

methanol 100%, -20°C for 5 minutes. For direct fluorescence, coverslips were mounted with Vectashield
®
 

Mounting Medium with DAPI (Vector Laboratories, purchased from Abcys, Paris, France) and visualised with a 

Leica DMRA2 fluorescence microscope. All subsequent steps were carried out at room temperature unless 

indicated. For indirect immunofluorescence, cells were permeabilized with 0.2% Triton X-100, 15 min, and 

unspecific sites were blocked with a 5% non-fat milk solution in PBS 1X, 30 min. Cells were incubated with the 

mouse monoclonal anti-splicing factor SC-35 antibody (Sigma-Aldrich, dilution 1:200), overnight at 4°C, and then 

with a Texas Red-conjugated secondary anti-mouse IgG (dilution 1:4000) for 1 hour. After extensive washing, 

coverslips were mounted as described above. 

 

Cell fractionation extracts and western blot analysis 

Cell fractionation to isolate the nuclear proteins from the cytosolic proteins was carried out as described 

before [Regad et al., 2007]. All fractions were suspended with Laemmli Sample Buffer 2X (BioRad, Richmond, 

CA, USA), and equivalent cell ratios (1:1) of nuclear vs cytosolic proteins were loaded on a SDS-polyacrylamide 

gel to estimate the enrichment of the fusion proteins in either subcellular compartment. After gel electrophoresis, 

proteins were transferred on a Hybond-C nitrocellulose membrane (GE Healthcare), which was subsequently 

blocked with a TBS-Tween 20 0.05%/BSA 5% solution, and incubated overnight at 4°C with a rabbit anti-GFP 

polyclonal antibody (Santa Cruz Biotechnology, Inc.; dilution 1:1000). The membrane was further extensively 

washed and incubated with a horseradish peroxidase (HRP)-conjugated anti-rabbit IgG (dilution 1:5000), and 

developed with the enhanced chemiluminescence method (ECL; GE Healthcare). The membrane was reprobed for 

β-actin (Santa Cruz Biotechnology, Inc.; dilution 1:10000) for fractionation checking. 
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Cell culture, transfection, and RT-PCR analysis 

The human neuroblastoma SH-SY5Y cell line was cultured in 1:1 mixture of Dulbecco’s modified 

Eagle’s medium (DMEM) and Ham’s F12 medium (Sigma) containing 100 U/ml penicillin, 100 mg/ml 

streptomycin and 10% fetal calf serum (FCS) and incubated at 37°C, 5% CO2 in a humidified atmosphere. Five 

hundred thousand cells were seeded in 100 mm collagen-coated cell culture dishes. After 24 hours, the medium 

was replaced by a 1:1 mixture of DMEM and Ham’s F12 medium with 0.5% FCS and retinoic acid (RA; final 

concentration 5 µM) for differentiation. After five days in these conditions, cells were seeded in 6-well plates to 

reach 50-70% confluency. Cells were then transfected with either FOXG1 constructs (see the cell culture, 

transfection and immunofluorescence section) using Lipofectamine 2000 (Invitrogen, CA) as the transfection 

reagent according to the manufacturer’s instructions, and incubated for 4-6 hours. The transfection medium was 

then replaced by the complete growth medium. Cells were cultured for 48 hours, and (GFP+)-transfected cells 

were collected and selected using a FACScan flow cytometer. Total RNA was extracted from the sorted SH-SY5Y 

cells by Trizol Reagent (Invitrogen) according to the manufacturer’s instructions, and converted to cDNA prior to 

quantitative, real-time PCR analysis carried out with the SYBR Green PCR Master Mix (Applied Biosystems) on 

an ABI Prism 7500 Sequence Detection System (Applied Biosystems) according to the manufacturer’s 

instructions. CDKN1A expression was assessed by quantitative Reverse Transcriptase (RT)-PCR (primer 

sequences available upon request to the corresponding author). After PCR amplification, a dissociation protocol 

was performed to determine the melting curve of the PCR product. Reactions with melting curves indicating a 

single amplification product were considered positive for further analysis. The identity and expected size of the 

single PCR product were also confirmed by agarose gel electrophoresis. For each sample, a relative quantification 

of the expression of each individual gene of interest was calculated by the comparative ∆∆Ct method as described 

by the manufacturer, using HPRT as the calibrator for normalization. Statistical analysis was carried out using the 

nonparametric Mann-Whitney test. A p-value <0.05 was considered as significant. 

 

RESULTS 

 

Molecular analysis and case report 

The whole coding sequence of the FOXG1 gene was screened by direct sequencing in 150 clinically well-

characterized girls with severe microcephaly. Two missense mutations were identified: the c.326C>T transition 

and the c.730C>T transition, which are predicted to result in p.P109L and the p.R244C changes at the amino acid 

level, respectively. The first variant was subsequently identified in her healthy father at the heterozygous state, 

suggesting that it is a non-pathogenic polymorphism. 

Conversely, the c.730C>T transition is a de novo mutation (data reviewed but not shown) that was not 

detected in more than 100 control female individuals of different ethnic origins. The patient carrying this mutation 

is an 8-year-old girl, third child of non-consanguineous healthy parents. Prenatal ultrasound at 33 weeks of 

gestation showed a relative microcephaly (10
th

 percentile) without cortical malformation. She was born full-term 

by spontaneous delivery, with normal neonatal parameters but relative small head circumference (OFC) (33 cm; 

Page 6 of 13

John Wiley & Sons, Inc.

Human Mutation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

<Running Title> 7 
 

10
th

 percentile). On first examination at 4 months old, deceleration of head growth (3
rd

 percentile) with good eye 

contact and smile, moderate axial hypotonia and limb hypertonia were noted. First brain MRI performed at 7 

months old showed frontally predominant pachygyria with thick frontal gyri and reduced white matter (Fig. 2 A-

D). Initially she was suspected to present with cortical malformation and was referred for anterior pachygyria. At 7 

months old, she developed hyperkinetic and dyskinetic movement disorder but neither prehension, nor babbling. In 

addition, sleep disorders and intermittent unexplained crying were reported. She never presented myoclonia or 

seizures. EEG was normal, as well as fundoscopy. Progressively, she developed severe mental retardation although 

she made constant progress. Secondary deceleration of head growth leads to absolute microcephaly. At last 

evaluation at 8 years of age, microcephaly was severe (45.5 cm; < 3
rd

 percentile), she was able to walk with aid, 

presented hyperkinetic and choreic movements, and dyskinetic tongue movement and hand stereotypies. Hand 

stereotypies were variable, but hand-mouthing stereotypies were predominant. She also presented pyramidal signs 

with mild spasticity. Eye contact dramatically improved while verbal language did not. Brain MRI performed at 6 

years old showed frontal gyral simplification without pachygyria without hypomyelination, and mildly reduced 

white matter (Fig. 2 E-H). Altogether, the girl presented a phenotype reminiscent of the congenital variant of Rett 

syndrome. 

 

Figure 1. A-D Brain MRI at 7 months of age. T1 weighted sequences show frontal pachygyria with thick 

frontal gyri (A; B). On T2 weighted sequence, mild myelination delay with only internal capsule myelinated (C). 

T1 sagital section shows thin corpus callosum and normal fossa posterior (D). E-H refer to age-matched control. 

 

The resulting change at the amino acid level is predicted to replace an arginine by a cysteine residue 

(p.R244C) in the highly evolutionarily conserved DNA-binding forkhead domain of the protein (Fig. 2), and may 

thus be critical for the function of the protein. 
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Figure 2. Arginine 244 (p.R244) is a conserved amino acid residue located within the forkhead domain of the 

FoxG1 protein. A) Schematic representation of the FoxG1 protein showing the poly-histidine tract (amino acids 

47-57) and the relative position of the R244 amino acid. GBD: Groucho-binding domain; JBD: JARID-1B-binding 

domain; N and C: N- and C-termini, respectively. Alignment of the human FoxG1 protein sequence (ClustalW2: 

www.ebi.ac.uk/Tools/clustalw2/) in the close vicinity of the R244 residue with B) 15 multi-species orthologous 

and C) 33 human paralogous protein sequences imported from Ensembl Genome Browser v60 

(www.ensembl.org/). Arginine 244 (R244) is indicated by an arrow. 

 

The p.R244C mutation affects the localisation of the FOXG1 protein 

To better understand the pathogenic effect of this mutation, we first investigated the subcellular distribution 

of the overexpressed FoxG1 mutant protein fused to GFP in HeLa and neuronal DAOY cells (Fig. 3). While the 

wild-type protein shows a homogeneous nuclear pattern excluding the nucleoli (Fig. 3A,B), the p.R244C mutant 

appears to aggregate as nuclear foci (Fig. 3E,F). The respective subcellular distribution of the FOXG1 mutant 

protein was confirmed by western-blot analysis of cell fraction protein extracts (data reviewed but not shown). 

Ricciardi and colleagues recently showed that the product of the CDKL5 gene, which is involved in the early onset 

seizure variant of Rett syndrome, localizes in nuclear speckles that are involved in the pre-mRNA processing in 

cells [Weaving et al. 2004; Ricciardi et al. 2009]. We then stained our cell models with an antibody directed 

against this structure (i.e. splicing factor SC-35) (Fig. 3C,G). We clearly observed that the FOXG1 mutant protein 

extensively, although not fully, localizes in nuclear speckles (Fig. 3H, white arrowheads), while the wild-type 

FOXG1 protein is more widely dispersed throughout the nucleus (Fig. 3D). This result suggests that the specific 
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nuclear localisation of the p.R244C mutant in nuclear speckles may affect the functions of these nuclear domains, 

which are known to be involved in the assembly and/or modification of pre-mRNA splicing factors. 

 

Figure 3. Immunofluorescence analysis of (HeLa/DAOY) cells transfected by pEGFP-FOXG1 (A-D) and pEGFP-

FOXG1_p.R244C (E-H). Fixed cells were mounted with Vectashield mounting medium with DAPI (A, E). Green 

fluorescence was observed by direct fluorescence (B, F) and SC-35 staining appears in red in immunolabeled cells 

(C, G). Merge images (green/red fluorescence) are shown (D, H). 

 

The p.R244C mutation affects the CDKN1A expression 

To investigate whether the p.R244C mutation located within the DNA-binding forkhead domain affects 

the expression of target genes, we studied expression of the cyclin-dependent kinase inhibitor (CKI) p21 CDKN1A 

gene in transfected wild-type FOXG1 or mutated FOXG1 neuronal SH-SY5Y cells. After transfection and 

collection of (GFP+)-transfected using a FACScan flow cytometer, total RNAs were extracted, converted to 

cDNA, and CDKN1A expression was studied by real-time RT-PCR. As reported in previous reports [Seoane et al. 

2004; Kawauchi et al. 2009; Chan et al. 2009], we first observed that overexpression of the wild-type protein 

FOXG1 in cells results in a decrease (~40%) of CDKN1A expression as compared with untransfected cells (data 

not shown). Secondly, we showed that overexpression of the p.R244C mutant results in an increase (Fig. 4; 

31±0.2%) in CDKN1A expression, suggesting that in contrast to the wild-type FOXG1 protein, this mutant loses its 

ability to repress CDKN1A expression, at least partially, and that this misregulation may likely be due to its 

abnormal concentration in the nuclear speckles. 
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Figure 4. Real-time quantitation of CDKN1A mRNA levels in (GFP+)-wild-type (WT) and mutated (R244C) 

transfected cells Total RNA was converted to cDNA for quantitative real-time PCR with SYBR Green as the 

detection agent with the ABI Prism 7500 Sequence Detection System (Applied Biosystems). CDKN1A expression 

was studied by quantitative Reverse Transcriptase (RT)-PCR. RT-PCR was carried out in triplicate and expression 

levels were normalized to HPRT as an endogenous control. 

 

DISCUSSION 

 

In this report, we describe two female patients with novel missense FOXG1 mutations. One of these 

variants, the p.P109L mutation, was also identified in her healthy father at the heterozygous state, suggesting that it 

is a nonpathogenic polymorphism. The other variant, the p.R244C mutation was not detected in more than 100 

control female individuals of different ethnic origins, and FOXG1 parent’s screening and paternity testing using 

microsatellite markers suggest that the p.R244C mutation is a de novo mutation. This raises the total number of 

reported pathogenic missense mutations to three (p.F215L, p.P227K, and p.R244C). All of these mutations are 

located within the highly evolutionarily conserved DNA-binding forkhead domain of the protein (amino acids 181 

to 275). However, up to now, their disruptive effect on the function of the FOXG1 protein has not been clearly 

shown. This novel mutation was identified in a girl with a combination of postnatal microcephaly, dyskinetic 

movement disorder with hand stereotypies, and relative preserved nonverbal communication. These clinical 

features are similar to those previously described in patients with the congenital variant of Rett syndrome [Bahi-

Buisson et al. 2010]. Moreover, a simplified gyral pattern, as well as a delayed myelination, two features 

previously reported in FOXG1 mutation patients, are observed in our patient suggesting that these MRI 

abnormalities are key features to identify patients likely to carry FOXG1 mutations. 

In our study, the overexpressed wild-type protein is localised throughout the nucleus excluding the nucleoli, 

as previously observed. Conversely, the p.R244C FoxG1 mutant aggregate as nuclear foci, and interestingly 

colocalizes with the splicing factor SC-35, a marker of the nuclear speckles. FoxG1 is a nuclear protein bearing a 
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poly-histidine (His) repeat (11 His, amino acids 47-57) in its N-terminal part. As observed in our work, it has been 

shown that loss of DNA binding in other poly-Histidine(His)-containing nuclear proteins (such as the transcription 

factor MEOX2) [Salichs et al. 2009] with a point mutation is associated with their localization in intranuclear 

speckles. Recently, Ricciardi and colleagues showed that the product of the CDKL5 gene, which is involved in the 

early onset seizure variant of Rett syndrome, also localizes in nuclear speckles that are involved in the pre-mRNA 

processing in cells [Ricciardi et al. 2009]. Because nuclear speckles are thought to be the result of the aggregation 

of pre-mRNA splicing factors, including ribonucleoprotein particles (snRNPs) and arginin-serine-rich splicing 

factors, it has been suggested that any CDKL5 dysfunction results in an imbalance of the various components of 

the spliceosome machinery, which ultimately leads to alterations of the splicing pattern of a number of yet 

undefined RNA transcripts. Additional studies will be required to elucidate the functional consequences of the 

localization of mutant FOXG1 in nuclear speckles on the splicing machinery, and the possible link with CDKL5 in 

the pathological mechanisms of this disease. 

Finally, it is well established that FoxG1 acts as a transcriptional repressor, with both direct and indirect 

mechanisms, in both DNA-binding dependent and independent manners. Target genes include cell cycle inhibitors, 

such as the cyclin-dependent kinase inhibitor 1A (p21, Cip1) (CDKN1A) gene [Seoane et al. 2004; Kawauchi et al. 

2009; Chan et al. 2009]. FoxG1 is known to be a potent inhibitor of the transforming growth factor (TGF) β-

regulated signalling by inhibiting the TGFβ-dependent transcription of the CDKN1A gene, encoding a cell cycle 

protein that may induce cell cycle exit in neural precursors [Siegenthaler and Miller, 2005]. In this study, we 

showed that overexpression of FOXG1 in neuroblastoma cells reduces CDKN1A expression. This inhibitory role of 

FoxG1 on TGFβ-induced CDKN1A expression has already been described in earlier reports [Adesina et al. 2007; 

Chan et al. 2009]. The p.R244C FoxG1 mutant loses its effect, suggesting that this mutation affects the expression 

of CDKN1A at the transcriptional level in SH-SY5Y cells. During brain development, this mutant may induce cell 

cycle exit in neural precursors leading to severe microcephaly observed in mutated FOXG1 patient, in adult Foxg1 

haploinsufficient mice [Shen et al., 2006], and in Fgf8 hypomorphic and null mice, which is likely due, at least in 

part, to alterations in Foxg1 expression [Storm et al., 2006]. 

In conclusion, we identified a novel missense mutation within the DNA-binding forkhead domain of FoxG1 

in an 8-year-old girl, who presented the combination of postnatal microcephaly, dyskinetic movement disorders 

with hand stereotypies, relative good eye contact and frontal gyral simplification and myelination delay. The 

observation that the FOXG1 mutation associated with the disease state causes mislocalization of the protein in the 

nucleus offers an additional possible explanation for the loss of function of FoxG1 in mutated affected patients. 

This loss of function is associated with the loss of repressive activity against CDKN1A expression. Additional 

studies are required to elucidate the functional consequences of the nuclear speckle localization of mutant FoxG1 

proteins on the splicing machinery and its possible link with CDKL5 in the pathological mechanisms of this 

disease.  
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