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ABSTRACT: Variants of unknown significance in the CAPN3 gene constitute a significant challenge 
for genetic counselling. Despite the frequency of intronic nucleotide changes in this gene (15-25% 
of all mutations), so far their pathogenicity has only been inferred by in-silico analysis, and 
occasionally, proven by RNA analysis. In this study, 5 different intronic variants (one novel) that 
bioinformatic tools predicted would affect RNA splicing, underwent comprehensive studies which 
were designed to prove they are disease-causing. Muscle mRNA from 15 calpainopathy patients 
was analyzed by RT-PCR and splicing-specific-PCR tests. We established the previously 
unrecognized pathogenicity of these mutations, which caused aberrant splicing, most frequently by 
the activation of cryptic splicing sites or, occasionally, by exon skipping. The absence or severe 
reduction of protein demonstrated their deleterious effect at translational level. We concluded that 
bioinformatic tools are valuable to suggest the potential effects of intronic variants; however, the 
experimental demonstration of the pathogenicity is not always easy to do even when using RNA 
analysis (low abundance, degradation mechanisms), and it might not be successful unless splicing-
specific-PCR tests are used. A comprehensive approach is therefore recommended to identify and 
describe unclassified variants in order to offer essential data for basic and clinical geneticists. 
©2010 Wiley-Liss, Inc. 
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INTRODUCTION 

Autosomal recessive limb girdle muscular dystrophies (LGMD) are a group of disorders characterized by 
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progressive involvement of proximal limb girdle muscles, including at least 14 different genetic entities. 

LGMD2A [MIM#253600] is the most prevalent form of LGMD in many countries, and is caused by mutations in 

the CAPN3 gene [MIM#114240] encoding calpain-3 protein. About 350 different CAPN3 gene mutations have so 

far been reported on the Leiden Muscular Dystrophy Database, most of which are private and distributed 

throughout the gene. Approximately 70% of mutant alleles are of missense type; the remainder are null mutations 

(deletion/insertion causing frame shifting, nonsense, and splice site mutations), large genomic rearrangements, and 

synonymous or intronic changes causing aberrant splicing. 

While the truncating mutations are considered to be causative, the pathological significance of nucleotide 

changes localized in intronic regions is very difficult to predict, which makes distinguishing between benign and 

pathogenetic variants a challenge and compromises a conclusive genetic counselling. Indeed, many intronic 

changes remain of uncertain clinical significance (UVs), thus partially explaining the observation that, although a 

severe calpain-3 protein defect in muscle usually corresponds to primary LGMD2A, about 20% of biochemical 

defects remain without any molecular proof [Fanin et al., 2008]. Many CAPN3 intronic variants have been 

identified during diagnostic screening: they account for about 15% of the total variants listed at the Leiden 

Database (28% in splice sites, 72% in deep intronic position), and for about 25% of the mutations reported in other 

studies [Blazquez et al., 2008; Krahn et al., 2006].  However, it is conceivable that the true frequency of intronic 

mutations has largely been underestimated because deep intronic sequences are not conventionally sequenced and, 

most aberrant transcripts are expressed at low abundance and are usually prone to degradation by nonsense-

mediated mRNA decay (NMD) mechanism [Maquat, 2004]. For the majority of intronic variants the consequences 

on mRNA splicing have been only inferred by in-silico analysis [Duno et al., 2008], whereas experimental 

demonstration of their pathogenicity has been obtained by mRNA studies for only 1% of them [Leiden Database; 

Haffner et al., 1998; Krahn et al., 2007; Blazquez et al., 2008]. In this study we have exploited the availability of 

diagnostic muscle biopsies to demonstrate previously unrecognized pathogenetic effects, at both transcriptional 

and translational levels, of 5 different intronic mutations in the CAPN3 gene. 

MATERIALS AND METHODS 

Selection of patients and muscle biopsies 

From a population of over 100 LGMD2A patients who had received a biochemical and genetic characterization 

in our Centre, 16 cases were selected because of the presence of one intronic variant in the CAPN3 gene with an 

unknown pathogenetic effect. In all cases except one, the second mutant allele has been identified. Patients 

underwent diagnostic open muscle biopsies, after written consent had been obtained. As normal controls, we used 

genomic DNA, cDNA from muscle tissue and calpain-3 protein from subjects who had resulted free of any 

neuromuscular disorders. 

Protein analysis by western blotting 

Semi-quantitative analysis of calpain-3 protein in muscle was conducted as reported [Fanin et al. 2008]. The 

quantity of immunoreactive bands at 94 kDa (full-length protein) was determined by densitometry and expressed 

as a percentage of control.  

In-silico analysis of unclassified intronic variants (UVs)  

Prediction of the potential effect of intronic variants was determined by the following splice-site prediction 

programs (SSPPs): Human Splicing Finder (HSF V2.4 at http://www.umd.be/HSF) [Desmet et al., 2009], Splice 

Site prediction by Neural Network (NNSPLICE V0.9 at www.fruitfly.org/seq_tools/splice.html), Splice View 

(http://bioinfo.itb.cnr.it/oriel/splice-view.html) and NetGene2 (at www.cbs.dtu.dk/services/NetGene2). Score 

variation in canonical splice-site use and potential activation of cryptic splice-sites in the presence of mutations 

were evaluated by analysis of exon and intron sequences localized in proximity to mutations using default settings 

(Supp. Table S1). 

RNA analysis  

Total RNA was isolated from muscle biopsies using the SV Total RNA Isolation System kit (Promega, 

Madison, WI) including treatment with DNAsel, and reverse transcribed to cDNA with Superscript III reverse 
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transcriptase (Invitrogen, San Diego, CA) and random hexamers. In one patient the total RNA was isolated also 

from blood using the PAXGene blood RNA System (PreAnalytiX, Qiagen, Hilden, Germany). cDNA was 

amplified with specific calpain-3 primers designed on the published human calpain-3 mRNA sequence (GenBank 

accession number: NM_000070). PCR products were analyzed by gel electrophoresis: aberrant bands were 

manually excised and processed using the QIAquick Gel Extraction kit (Qiagen) for sequencing. Furthermore, we 

designed splicing-specific and skipping-specific primers (sequence available on request) to selectively amplify 

abnormal transcripts predicted by bioinformatic tools, even when this was not detectable on RT-PCR. Each 

splicing-specific PCR was tested on both patients and normal controls and directly sequenced. Details of in-silico 

predictions of splicing are reported in Supp. Table S1.  

RESULTS 

We investigated the pathogenetic effect in muscle of 5 different intronic variants (one novel) in the CAPN3 

gene, including 3 nucleotide substitutions in the canonical donor or acceptor splice sites and 2 more deep intronic 

variations, and demonstrated that they all caused abnormal mRNA splicing and abolished or impaired protein 

synthesis (Table 1, Table 2, Supp. Table S1). These intronic mutations accounted for 9% of the total mutant alleles 

and 7% of all the mutations found in our population of over 100 LGMD2A patients. 

Variation c.1030-1G>A (intron 7) 

This was the first time this mutation had been identified in an LGMD2A patient. The patient was a compound 

heterozygote for a null mutant allele (c.550delA). This mutation abolishes the canonical acceptor splice-site, but 

the expected skipping of exon 8 was not detected. From SSPPs analysis, this intronic variant was expected to 

create a novel acceptor splice site (A1) with consequent deletion of the first nucleotide of exon 8 (r.1030delG). 

cDNA sequencing confirmed this deletion, which resulted in the creation of a downstream premature stop codon 

(p.V344SfsX8). Calpain-3 protein in muscle was absent, demonstrating the deleterious effect of this mutation at 

translational level. 

Variation c.1524+1G>C (intron 11) 

This mutation was identified in one LGMD2A patient in our series, who was a compound heterozygote for a 

missense mutant allele (p.M252T) and showed severely reduced calpain-3 protein level in muscle (5% of control), 

revealing its deleterious effects at translational level. This mutation abolishes the canonical donor splice-site, but a 

transcript carrying the skipping of exon 11 was not detected, even when using skipping-specific primers. 

Following SSPPs analysis, this variant was expected to produce two different aberrant transcripts (Figure 1): one 

originated by the use of a cryptic donor site (D1), leading to a deletion of the last 99 basepairs in exon 11 

(r.1425_1524del), and another (D2) resulting from the exonization (intron retention) of 212 basepairs in intron 11 

(r.1524_1525ins1524+1_1524+31;1524+1g>c; p.E508_V509ins 508+1_508+70). D1 transcript was characterized 

by cDNA amplification, which showed a shortened product corresponding to the expected deletion, that was 

identified by sequencing (p.V476_E508del). A further confirmation was obtained by PCR with D1 splicing-

specific primers. While this transcript was sufficiently expressed and stable enough to be easily detected by cDNA 

analysis in muscle, the D2 transcript was detected only by splicing-specific PCR. 

Variation c.1992+1G>T (intron 17) 

This mutation was identified in 3 unrelated LGMD2A patients in our series; its deleterious effect at translational 

level was demonstrated by the observation that it was associated with absent or virtually absent protein when 

found in a compound heterozygote state with different mutant alleles. The mutation abolishes the canonical donor 

splice-site and we demonstrated that it caused the skipping of the exon 17 (r.1915_1992del; p.P639_D664del) in 

muscle. This result was confirmed also in blood mRNA from one patient. The resulting transcript (WTD) is 

probably unstable and poorly expressed, since it was detectable only with skipping-specific primers. At least 3 

cryptic splicing sites in the region surrounding this mutation obtained a high score from SSPPs analysis, but only 

one of them was shown to be effectively activated (D1) in muscle and blood cDNA by splicing-specific primers. 

This cryptic splice site generated an aberrant transcript carrying the insertion of 31 basepairs in intron 17 

(r.1992_1993ins1992+1_1992+31;1992+6g>u; p.D664_D665ins 664+1_664+10) (Figure 2). 
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Table 1. CONSEQUENCES OF INTRONIC MUTATIONS AT RNA LEVEL 

 

Intronic 

sequence variant 

* 

Alternative 

acceptor/donor 

site, position 

Effect at RNA level 
Theoretical effect  at 

protein level * 
Methods Interpretation 

c.1030-1G>A A1/ c.1030-1 r.1030delG 
deletion of the 

first bp exon 8 
p.V344SfsX8 cDNA amplification, sequencing pathogenetic 

D1/c.1426 r.1425_1524del 
deletion of 

99 bp exon 11 
p.V476_E508del 

cDNA amplification, gel extraction of 

aberrant band, sequencing 
pathogenetic 

c.1524+1G>C 

D2/c.1524+213 
r.1524_1525ins1524+1_1

524+31;1524+1g>c 

exonization of 

212 bp intron 11 

p.E508_V509ins 

508+1_508+70 
Splicing specific-PCR, sequencing pathogenetic 

WT D/c.1992+1 r.1915_1992del 
skipping of 

exon 17 
p.P639_D664del Splicing specific-PCR, sequencing pathogenetic 

c.1992+1G>T 

D1/c.1992+32 
r.1992_1993ins1992+1_1

992+31;1992+6g>u 

exonization of 

31 bp  intron 17 

p.D664_D665ins 

664+1_664+10 
Splicing specific-PCR, sequencing pathogenetic 

c.1193+6T>A D1/c.1193+32 
r.1193_1194ins1193+1_1

193+31;1193+6u>a 

exonization of 

31 bp intron 9 
p.M399X 

cDNA amplification, gel extraction of 

aberrant band, sequencing 
pathogenetic 

A1/ c.1746-21 
r.1745_1746ins1746-

19_1746-1;1746-20c>g 

exonization of 

19 bp intron 13 

p.E582_E583ins 

582+1_582+6fsX9 

Splicing specific-PCR, gel extraction 

of aberrant band, sequencing 
pathogenetic 

A2/ c.1746-88 
r.1745_1746ins1746-

86_1746-1;1746-20c>g 

exonization of 

86 bp intron 13 

p.E582_E583ins582+

1_582+28fsX41 

Splicing specific-PCR, gel extraction 

of aberrant band, sequencing 
pathogenetic 

A3/ c.1746-124 
r.1745_1746ins1746-

122_1746-1;1746-20c>g 

exonization of 

122 bp intron 13 

p.E582_E583ins  

582+1_582+30fsX53 

Splicing specific-PCR, gel extraction 

of aberrant band, sequencing 
pathogenetic 

A4/ c.1746-307 
r.1745_1746ins1746-

305_1746-1;1746-20c>g 

exonization of 

305 bp intron 13 
p.E583X Splicing specific-PCR, sequencing pathogenetic 

c.1746-20C>G 

WT A13/c.1537-2 
r.1745_1746ins1745+1_1

746-1;1746-20c>g 

exonization of 

entire  intron 13 
p.E583X 

Splicing specific-PCR, gel extraction 

of aberrant band, sequencing 
non pathogenetic 

 
WT: Wild type; D: donor site; D1, D2, etc: alternative cryptic donor sites; A: acceptor site; A1, A2, etc: alternative cryptic acceptor sites; exonization: intron retention; *: Human 

Genetic Variation Society (HGVS) approved guidelines (www.hgvs.org/mutnomen). GeneBank accession number AF209502.1.
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Figure 1. Splicing analysis of the c.1524+1 G>C variant. Panel A. Schematic representation of the splicing patterns 

generated by this variant: D1, carrying the deletion of the last 99bp of exon 11 (gray box), and D2, with the retention of 212bp 

of intron 11 (dashed box), resulting from the use of the alternative donor splice sites D1 and D2, respectively. The arrows 

indicate the localization of the primers used. Panel B. Sequences from PCR amplification of muscle cDNA from a 

heterozygous mutant patient, showing the co-amplification of the wild-type (WT) and the alternately spliced mRNA (D1), and 

from splicing-specific PCR amplification, which selectively amplifies the allele carrying the mutation (D2) in the same patient. 

Panel C. RT-PCR analysis of normal control (C) and a heterozygous mutant patient (Pt.) who shows the WT product and two 

additional low-abundant products corresponding to the alternately spliced mRNA (D1 and D2). Calpain-3 western blot shows 

that this mutation caused a severe reduction of protein (Pt.) corresponding to about 5% of control (C) after myosin 

normalization. 

 

Figure 2. Splicing analysis of the c.1992+1 G>T variant. Panel A. Schematic representation of the two splicing patterns 

generated by this variant: WTD, carrying the skipping of exon 17, and D1, with the retention of 31bp of intron 17 (dashed box), 

resulting from the use of the alternative donor splice site D1. The arrows indicate the localization of the primers used. Panel B. 

Sequences from splicing-specific PCR amplification of muscle cDNA from a heterozygous mutant patient, showing the two 

aberrant transcripts (WTD and D1) generated by this variant. Panel C. Splicing-specific PCR amplification showing the 

selective amplification of the aberrant transcripts generated by this variant (WTD and D1) only in the heterozygous mutant 

patient (Pt.). Calpain-3 western blot in a patient (Pt.) shows that this mutation produced absent protein. 
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Variation c.1193+6T>A (intron 9) 

This mutation was identified in 6 unrelated LGMD2A patients in our series, all from the same administrative 

district of the Veneto Region (a possible founder effect followed by genetic isolation might have occurred). 

Among the 6 patients with this mutation, one was the object of a family study (Fig. 3): we conducted both a 

segregation analysis of the mutant allele and a study of the effect of this mutation at calpain-3 protein level in 2 

different family members (a muscle biopsy was obtained from both an affected girl and her heterozygote father, 

who reported hyperCKemia before the diagnosis was obtained in his daughter).  

The deleterious effect of this mutation at translational level was demonstrated by the observation that: 1) when 

it was associated with a null mutant allele, it produced absent or very reduced amounts of protein. This variant was 

not predicted to cause the loss of the canonical donor splice site, but the score for its use was reduced by all the 

SSPPs algorithms used. This means that the generation of a correctly spliced transcript would still be possible in-

vivo, but our protein data suggest that, if this is the case, this might only take place to a very limited extent; 2) 

when it was expressed in heterozygote state, it produced one half of the amount of protein; 3) when associated 

with a missense mutant allele, which, as we had previously reported, caused the loss of functional autolytic activity 

without any quantitative defect, it produced normal protein quantities. Furthermore, following SSPPs analysis, this 

variation was expected to affect correct splicing by use of an alternative cryptic donor splice site (D1), resulting in 

the insertion of 31 basepairs at the beginning of intron 9 (r.1193_1194ins1193+1_1193+31; 1193+6u>a; 

p.M399X). The D1 transcript was sufficiently expressed to be detected by RT-PCR analysis: it produced an extra-

band which was detectable after gel electrophoresis and which was excised and sequenced (Figure 3). No previous 

functional characterization of this mutation has been provided. 

 

 

Figure 3. Splicing analysis and translational effect of the c. 1193+6 T>A variant. Panel A. Schematic representation of the 

aberrant splicing product (D1) generated by this variant, carrying the insertion of 31bp of intron 9 (dashed box) and resulting 

from the use of the alternative donor splice site D1. The arrows indicate the localization of the primers used. Panel B. Sequence 

from PCR amplification of muscle cDNA from an heterozygous mutant patient, showing the co-amplification of the WT and 

the alternately spliced mRNA (D1). Panel C. RT-PCR analysis of normal control (C) and a heterozygous mutant patient (II-1) 

who shows the WT product and one additional low-abundance product corresponding to the alternately spliced mRNA (D1). 

Family pedigree (case n. 7652) and western blot show that this intronic mutation (filled symbol) produced a reduction of 

calpain-3 protein of about 50% of control (C) after myosin normalization, as assessed in the muscle biopsy from both the 

heterozygous father (I-1) and his affected daughter (II-1), who was a compound heterozygote for a second missense mutation 

(p.E435K, dashed symbol). 

 

Page 6 of 11

John Wiley & Sons, Inc.

Human Mutation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

< Pathogenetic effect of intronic CAPN3 gene mutations > 7 
 

Variation c.1746-20C>G (intron 13) 

This mutation was identified in 6 unrelated LGMD2A patients in our series, and also in several previous 

reports, where its pathogenetic effects have been suggested [Piluso et al., 2005; Hermanova et al., 2006; Leiden 

Database], but unsupported by experimental data [Stehlikova et al., 2007; Krahn et al., 2007], or even reported as a 

polymorphism [Groen et al., 2007; Leiden Database].  

Conversely, in our study, the deleterious effect of this mutation has definitely been demonstrated at both 

translational (when this mutation was associated with another mutant allele, it always resulted in severely reduced 

protein quantity; Figure 4) and transcriptional levels. Indeed, this mutation had been predicted by the HSF 

algorithm to create a new acceptor splice site (A1), which was detected in muscle mRNA by splicing-specific 

PCR. Furthermore, numerous cryptic splicing sites in the region surrounding this mutation obtained a high score 

by SSPPs analysis and were expected to cause the insertion of different portions of intron 13. Three such 

transcripts (A2, A3, A4) were detected in our patients by cDNA analysis. However, even though none of the 

algorithms used predicted the loss of the canonical acceptor splice site (and only a slight decrease in its score was 

obtained for two of them), we identified an aberrant transcript (WTA) carrying the insertion of the entire intron 13. 

All these transcripts were variably expressed and detected in the patients, but while 4 aberrant transcripts (A1, A2, 

A3, A4) were detected only in mutant patients, suggesting their pathogenetic effect, the variant WTA was also 

expressed in 10 normal controls, indicating its non-pathogenicity. We attribute the occurrence of this latter 

transcript to the result of an alternative splicing event that takes place in normal tissues, as previously reported 

[Kawabata et al., 2003; De Tullio et al., 2003]. 

 

 
Figure 4. Splicing analysis and translational effect of the c. 1746-20 C>G variant. Panel A. Schematic representation of the 

5 splicing patterns generated by this variant, resulting from the use of the cryptic acceptor splice sites A1, A2, A3, A4, carrying 

the retention of 19, 86, 122 and 305 bp of intron 13 (dashed boxes), respectively, and WTA13, with the retention of the entire 

intron 13 (dashed box). The arrows indicate the localization of the primers used. Panel B. Splicing-specific PCR (designed to 

potentially amplify all the 5 aberrant transcripts) showing that these transcripts are variably expressed and not always detectable 

in the heterozygous mutant patients (Pt.1, II-1, and Pt.3). The WTA transcript is expressed also in normal control (C). Panel C. 

Family pedigree (case n. 6211) and western blot showing that this intronic mutation (filled symbol) produced a deleterious 

effect at protein level, as demonstrated by the complete loss of calpain-3 protein in the muscle from one affected patient (II-1) 

who was a compound heterozygote for a second missense mutation that has a deleterious effect as well (p.L204V, dashed 

symbol).
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Table 2. CONSEQUENCES OF INTRONIC MUTATIONS AT PROTEIN LEVEL 

 

Intronic sequence 

variant * 
Case N. Second mutant allele 

Protein amount 

(% of control) 

c.1030-1G>A 7161 c.550 delA, p.T184RfsX36 0 

c.1524+1G>C 7555 c.755T>C, p.M252T 5 

1324 c.1193+6T>A 0 

1754 c.1061T>G, p.V354G 0 c.1992+1G>T 

5393 c.1343G>A, p.R448H 0 

1324 c.1992+1G>T 0 

3393 c.1468C>T, p.R490W 100§ 

5427 not identified 20 

6804 c.309+4469_1116-1204del, p.E104MfsX11 20 

7652 c.1303G>A, p.E435K 50 

c.1193+6T>A 

8242 c. 1469 G>A, p.R490Q 100§ 

1338 c.1333G>A, p.G445R 0 

2522 c.245C>T, p.P82L 20 

4622 c.1061T>G, p.V354G 10 

6211 c.610C>G, p.L204V 0 

6385 c.550 delA, p.T184RfsX36 5 

c.1746-20C>G 

7894 c.697G>C, p.G233R 10 

*: Human Genetic Variation Society (HGVS) approved guidelines (www.hgvs.org/mutnomen). GeneBank accession number 

AF209502.1. §: protein with loss of function (autolytic activity) 

DISCUSSION 

Despite the frequent identification of intronic changes in the CAPN3 gene, the demonstration of their 

pathogenetic effect has only occasionally been sought or achieved, both due to the laborious investigations 

involved and, also, because mRNA/protein studies in LGMD2A are often limited by the unavailability of a muscle 

biopsy. Although assessment of the pathogenetic effects of such variants is challenging, the effort required is 

justified because successful results are crucial to offer definitive diagnoses and conclusive genetic counseling, 

when establishing genotype-phenotype correlations and in view of future therapies. 

Using in-silico predictions combined with RT-PCR analyses on muscle mRNA, we demonstrated the 

pathological significance of 5 UVs, showing their effects on splicing and protein translation.  

We showed that CAPN3 mRNA degradation by NMD is not a drawback in muscle RT-PCR analyses, provided 

that these are combined with SSPPs analysis and the use of splicing-specific PCR tests. SSPPs are valuable tools to 

select variants that are predicted to impair correct RNA splicing, for address the subsequent variant-specific 

analyses at RNA level. However, they may provide contradictory or negative results, requiring the use of multiple 

softwares to resolve the discrepancies. Among the 4 softwares we used in this study, the most reliable and 

informative was the HSF, which contains also matrices for the prediction of effects on putative enhancer/silencer 

sequences. 

Previous studies have reported different results for 3 of the 5 variants we analyzed (c.1992+1G>T, 

c.1524+1G>C and c.1746-20C>G). In particular, one study on blood mRNA identified only one aberrant transcript 
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(D1) for the mutation c.1992+1G>T and failed to detect any mRNA for the mutation c.1524+1G>C [Blazquez et 

al., 2008]. We suggest that this discrepancy could be due to the different approach used. Indeed, using splicing-

specific PCR, combined with in-silico predictions, we demonstrated that all the aberrant transcripts for the 

c.1992+1G>T mutation identified in muscle were expressed also in blood. Another possible explanation may be 

the use of a tissue other than muscle. Earlier studies reported the unreliability of RNA splicing analysis from blood 

samples, both because of its different splicing pattern and of the possibility that degenerated or illegitimate splicing 

had occurred associated with diverse storage conditions [Wimmer et al., 2000]. These observations highlight how 

critical the choice of the tissue to be studied is. Furthermore, because of the lack of a molecular proof, some 

intronic variants have been reported either as polymorphisms or as “possibly pathogenetic”, thus generating 

confusion and compromising a conclusive genetic counselling. This is the case of the variation c.1746-20C>G in 

intron 13 [Hermanova et al., 2006; Stehlikova et al., 2007; Krahn et al., 2007; Groen et al., 2007], for which we 

have provided a definite demonstration of the pathogenetic effect.  

In our study, the 3 mutations localized at conserved canonical donor/acceptor splice sites showed clearly their 

pathogenicity at both RNA and protein level, causing the loss of splice site and resulting in the absence of protein. 

For the 2 mutations localized in less conserved regions nearby the exon/intron boundaries, SSPPs did not predict 

the loss of canonical splice sites, but only provided a decreased score, indicating a higher probability of use of 

nearby cryptic splicing sites, which indeed we experimentally demonstrated. Patients carrying these 2 latter 

mutations and heterozygous for a different frame-shifting mutation showed either absent or severely reduced 

calpain-3 protein, indicating that if a correct splicing were still possible, it might occur to a very limited extent.  

The majority of the aberrant transcripts characterized in this study both contained a frame-shifting and either 

were expressed at very low abundance or were detectable only by splicing-specific-PCR. This result agrees with 

trace amounts of the corresponding transcript identified in LGMD2A patients who were compound heterozygous 

for 2 null mutations [Stehlikova et al., 2007]. Conversely, the transcripts originating from the c.1524+1G>C and 

c.1992+1G>T variants contained in-frame insertions/deletions, which were however expressed at low abundance, 

possibly because alternative splicing may limit the export of mRNA, making it a target for degradation. These 

transcripts could potentially have generated longer/truncated protein products, which were however not detected. 

One conclusion from our study is that although SSPPs analysis helps in addressing the potential effects of 

intronic variations, experimental demonstration of this is not always easy to do by mRNA analysis (low abundance 

of transcripts, NMD mechanism) and might prove unsuccessful unless the individual transcripts are identified by 

both splicing-specific-PCR tests and sequencing. Furthermore, SSPPs analysis proved to be very valuable and 

reliable in predicting aberrant splicing for variants localized in the intronic 5’ and 3’ splice-site region, whereas it 

was neither conclusive nor always successful in the prediction of the consequences of such loss. For this purpose, 

however, it was useful to check the regions surrounding the nucleotide variant for the presence of potential cryptic 

splicing sites and for the loss/gain of splicing regulatory elements [Faustino and Cooper, 2003; Shapiro and 

Senapathy, 1987]. 

We verified that a common effect of intronic variations in the CAPN3 gene, occurring in all 5 mutations 

studied, is the aberrant splicing caused by the activation of a series of cryptic splicing sites near the mutant 

nucleotide, and the creation/disruption of potential silencer/enhancer motifs. Mutation analysis by SSPPs should 

therefore involve the sequence context, in order to obtain more informative predictions. Conversely, the 

occurrence of exon skipping was observed only in one case in our series, suggesting either that this a less frequent 

mechanism used for the variants analysed (possibly because of the presence of a nearby cryptic splice site) or that 

transcripts carrying exon-skipping are more unstable and prone to degradation by NMD.  

Although experimental demonstration of the pathogenetic effects of intronic mutations is difficult and 

laborious, we found that it is often successful when this effort is based on a preliminary SSPPs analysis. This aim 

should be pursued more frequently because of its important consequences for clinical and genetic counselling, for 

establishing genotype-phenotype correlations and providing novel insights into the complex mechanism of 

splicing. 
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Suppl. Table S1. SOFTWARE PREDICTED EFFECT OF INTRONIC VARIATIONS AT cDNA LEVEL 
 

HSF (range 0-100) NetGene2 (range 0-1) SpliceView (range 0-100) NNSplice (range 0-1) 

Intronic 

sequence 

variant 

Transcripts 
CV for 

WT seq. 

CV for 

mutant 

seq. 

CV Var. %  
CV for 

WT seq. 

CV for 

mutant 

seq. 

CV 

Var. 

% 

CV for 

WT 

seq. 

CV for 

mutant 

seq. 

CV Var. 

% 

CV 

for 

WT 

seq. 

CV for 

mutant 

seq. 

CV 

Var. 

% 

WT A 79.96 51.02 -36.2 SB 0.19 0 SB 82 - SB 0.69 - SB 
c.1030-1G>A 

A1/ c.1030-1 46.54 75.48 +62.2 NS 0 0.14 NS 0 79 NS - - - 

WT D 86.1 59.27 -31.17 SB 0.93 0 SB 84 - SB 0.91 - SB 

D1/ c.1426 84.76 84.76 0 - - - 83 83 0 - - - c.1524+1G>C 

D2/ c.1524+213 86.43 86.43 0 - - - 78 78 0 - - - 

WT D 86.21 59.38 -31.13 SB 0.95 - SB 86 - SB 0.97 - SB 

D1/ c.1992+32 77.72 77.72 0 - - - 81 81 0 0.78 0.78 0 

* D2/ c.1943 85.38 85.38 0 - - - 84 84 0 - - - 
c.1992+1G>T 

* D3/ c.1992+96 81.2 81.2 0 - - - - - - - - - 

WT D 94.09 91.76 -2.48 1 0.95 -5 89 86 -3.4 0.98 0.95 -3.1 
c.1193+6T>A 

D1/ c.1193+32 92.26 92.26 0 0.89 0.93 +4.5 89 89 0 0.99 0.99 0 

WT A 93.39 93.39 0 - - - 88 87 -1.14 0.95 0.93 -2.11 

A1/ c.1746-21 54.37 83.31 +53.24 NS - - - - - - - - - 

A2/ c.1746-88 88.06 88.06 0 0.18 0.19 +5.55 81 81 0 0.67 0.67 0 

A3/ c.1746-124 82.52 82.52 0 - - - 77 77 0 - - - 

A4/ c.1746-307 84.93 84.93 0 0.43 0.43 0 85 85 0 0.60 0.60 0 

* A5/ c.1746-550 86.86 86.86 0 - - - 80 80 0 0.65 0.65 0 

c.1746-20C>G 

* A6/ c.1746-644 94.5 94.5 0 - - - 86 86 0 0.74 0.74 0 

WT A: Wild type acceptor site; WT D: Wild type donor site; D1, D2, etc: alternative cryptic donor sites; A1, A2, etc: alternative cryptic acceptor sites; CV: consensus value; 

Var.%: CV variation between WT and mutated sequence; SB: site broken. NS: new site; *: transcripts not detected by cDNA analysis;  - : site not detected by the software. 
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