
HAL Id: hal-00613713
https://hal.science/hal-00613713

Submitted on 5 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proofs as Tree Languages
Stefan Hetzl

To cite this version:

Stefan Hetzl. Proofs as Tree Languages. 2011. �hal-00613713�

https://hal.science/hal-00613713
https://hal.archives-ouvertes.fr

Proofs as Tree Languages

Stefan Hetzl
Laboratoire Preuves, Programmes et Systèmes (PPS)

Université Paris Diderot – Paris 7
175 Rue du Chevaleret, 75013 Paris, France

stefan.hetzl@pps.jussieu.fr

August 4, 2011

Abstract

In this work a new connection between proof theory and formal language theory is es-
tablished. Cut-elimination in a class of first-order proofs is characterised by a class of tree
languages in the following sense: the proof with cuts corresponds to a formal grammar, the
cut-free proof to the language of the grammar and the process of cut-elimination to the com-
putation of the language from the grammar. It is shown how to read off a grammar from a
proof and vice versa how to construct a proof from a grammar such that this correspondence
holds.

1 Introduction

Cut-elimination is one of the central techniques of proof theory. The cut-elimination theorem
has first been proved for classical and intuitionistic first-order logic by Gentzen in his seminal
work [11] where also the sequent calculus has been introduced. Since then, it has been gener-
alised to many logics and calculi. The importance of cut-elimination for computational logic has
various roots: via the Curry-Howard correspondence, cut-elimination and the related technique
of normalisation correspond to the evaluation of terms in functional programming languages.
In formalised mathematical proofs, the elimination of cuts has the effect of removing lemmas
yielding constructive information about the theorem such as witnesses or bounds. Furthermore,
a cut-elimination theorem for a logic has the cut-free completeness as a corollary which typically
allows for efficient proof search procedures.

Formal language theory plays an important role in computer science with applications in various
domains ranging from the specification of data formats to computer-aided verification. Tradi-
tionally, a formal language is defined to be a set of words. This notion can be generalised to
considering a formal language to be a set of trees. Such tree languages posses a rich theory
and many applications, see e.g. [4]. One particular application that has received considerable
attention recently is the use of tree grammars for the compression of XML documents, see [20]
for a survey.

The purpose of this paper is to develop a new connection between these two subjects. The basis
for this connection is the following relation between cut-free proofs and tree languages: Her-
brand’s theorem, in its most simple version, states that a formula ∃xA with A quantifier-free is
valid iff there are terms t1, . . . , tn s.t.

∨n
i=1A[x\ti] is a propositional tautology. Such a disjunc-

tion of instances which is a tautology is called Herbrand-disjunction. It is quite straightforward

1

to observe that from a cut-free proof it is easy to read off an Herbrand-disjunction and vice
versa, how to construct a cut-free proof from an Herbrand-disjunction. Furthermore, different
proofs may have the same Herbrand-disjunctions, so “having the same Herbrand-disjunction”
is an equivalence relation on the set of cut-free proofs of a theorem. Moreover, this equivalence
relation is natural as all the information of a proof which is mathematically interesting (in the
sense of proof analyses such as [16, 17], see also [15]) is contained in its Herbrand-disjunction.
An instance A[x\ti] is quantifier-free and hence without binding constructs. Therefore it can
be regarded as a tree over the signature compromising in addition to the first-order signature
also the propositional connectives. Identifying an Herbrand-disjunction

∨n
i=1A[x\ti] with the

set of instances {A[x\ti] | 1 ≤ i ≤ n} shows that an Herbrand-disjunction, and therefore a
natural equivalence class of cut-free proofs, is nothing but a finite tree language. Note that
Herbrand-disjunctions as well as this line of reasoning can be generalised to cover more com-
plicated quantifier-prefixes, non-prenex formulas as well as full higher-order logic by using e.g.
the expansion trees of [18].

In this paper, we will extend this connection to the class of proofs whose cuts are restricted to
containing at most one quantifier each. While this is a significant restriction of the expressive
power of the cuts, a natural extension to full first-order logic is suggested in the conclusion. We
will show that a proof with such cuts corresponds to (and asymptotically has the same length
size as) a tree grammar and that the language of this grammar is an Herbrand-disjunction.
Consequently, cut-elimination corresponds to the computation of the language of such a gram-
mar. It will turn out that the suitable kind of tree languages are rigid tree languages, a notion
that has been introduced in [13, 14] for the purpose of verification of cryptographic protocols.
Furthermore, we will describe a class of rigid tree grammars which corresponds exactly to the
considered class of proofs in the sense that also a translation in the other direction, i.e. from
grammars to proofs, is possible. Hence these results show that the combinatorial mechanism
underlying the compression power of cuts is that of a particular kind of tree grammar. This un-
covers a certainly unexpected similarity between cut-elimination and techniques used for XML
compression.

In Section 2 we will develop rigid tree grammars and prove them equivalent to the rigid tree
automata of [13, 14] as well as make several useful observations about these languages. Section 3
contains the proof-theoretic preliminaries leading to the definition of the grammar of a proof.
Sections 4 and 5 are devoted to proving the main result of this paper: the language of the
grammar of a proof is an Herbrand-disjunction. In Section 6 we show how to translate grammars
into proofs.

2 Rigid Tree Languages

Tree languages are a natural generalisation of string languages to the case of trees and constitute
a central notion in the theory of formal languages [10, 4]. A feature which is important for
applications but not present in regular tree languages is the ability to carry out equality tests
between subterms, for instance to recognise patterns of the form f(x, x). There are several
classes of tree automata providing this ability: some allow to specify local equality constraints
as side conditions of transition rules by giving term positions explicitly, see [4] for a survey,
while others consider global constraints specified via states. An important class of the latter
kind are tree automata with global equalities and disequalities (TAGED) [6, 7, 8]. For our
purposes it will turn out to be natural to work with rigid tree automata (RTA) that have been
introduced in [13, 14] and are a subclass of TAGED (characterised by having minimal equality
and disequality relations). In a rigid tree automaton, certain states are designated as rigid thus

2

demanding that only one term may appear on the different positions of this state.

Definition 1. A tree automaton on a signature Σ is a tuple 〈Q,F,∆〉 where Q is a finite set
of state symbols, F ⊂ Q is the set of final states and ∆ a set of transition rules of the form:
f(q1, . . . , qn) → q where f ∈ Σ and q, q1, . . . , qn ∈ Q.

A rigid tree automaton on Σ is a tuple 〈Q,R, F,∆〉 where 〈Q,F,∆〉 is a tree automaton and
R ⊆ Q is the set of rigid states.

As usual a position is a list of natural numbers, Pos(t) is the set of positions of the term t, ε
is the empty (root) position and concatenation of positions p1 and p2 is written as p1.p2. We
write Pos(x, t) for the set of positions of the symbol x in t and we write x ∈ t if Pos(x, t) 6= ∅.
A run of a tree automaton on a term t is a function r : Pos(t) → Q s.t. for all f ∈ Σ and
all p ∈ Pos(f, t): f(r(p.1), . . . , r(p.n)) → r(p) ∈ ∆ for all p ∈ Pos(t). A run of a rigid tree
automaton on t is a run of the underlying tree automaton satisfying the additional rigidity
condition: for all p1, p2 ∈ Pos(t): if r(p1) = r(p2) ∈ R then t|p1 = t|p2 . T (Σ) denotes the set
of ground terms over a signature Σ. The language of an automaton A in a state q is denoted
as L(A, q) and defined as the set of t ∈ T (Σ) s.t. there exists a run r on t with r(ε) = q. The
language of A is defined as L(A) =

⋃
q∈F L(A, q).

Example 1. Let Σ = {0/0, s/1}. A simple pumping argument shows that the language L =
{f(t, t) | t ∈ T (Σ)} is not regular. On the other hand, L is recognised by the rigid tree
automaton 〈Q,R, F,∆〉 where Q = {q, qr, qf}, R = {qr}, F = {qf} and ∆ = {0 → q, 0 →
qr, s(q) → q, s(q) → qr, f(qr, qr) → qf}.

Our goal in this paper is the description of the computation of an Herbrand-disjunction during
the process of cut-elimination. For this aim it is considerably more natural (and technically
advantageous) to adopt the generative viewpoint of a grammar on a language. We will therefore
first develop rigid tree grammars and prove them to be equivalent to the above rigid tree
automata.

Definition 2. A regular tree grammar is a tuple 〈α,N, T, P 〉 composed of an axiom α, a set N
of non-terminal symbols with arity 0 and α ∈ N , a set T of terminal symbols with T ∩N = ∅
and a set P of production rules of the form β → t where β ∈ N and t ∈ T (T ∪N).

A rigid tree grammar is a tuple 〈α,N,R, T, P 〉 where 〈α,N, T, P 〉 is a regular tree grammar and
R ⊆ N is the set of rigid non-terminal symbols.

The derivation relation →G of a regular tree grammar G is defined for s, t ∈ T (T ∪N) as s→G t
if there is a production rule β → u and a position p s.t. s|p = β and t is obtained from s by
replacing β at p by u. A derivation of a term t ∈ T (T) in a regular tree grammar is a list of
terms t1, . . . , tn ∈ T (T ∪N) s.t. t1 = α, tn = t and ti →G ti+1 for i = 1, . . . , n− 1. A derivation
of t in a rigid tree grammar is a derivation in the underlying regular tree grammar satisfying
the additional rigidity condition: if ti →G ti+1 and tj →G tj+1 are applications of productions
rules at positions pi, pj with the same left-hand side β ∈ R, then t|pi = t|pj . We will often omit
the subscript G of the arrow if the grammar is clear from the context. The language of a tree
grammar L(G) is the set of t ∈ T (T) that are derivable in G. A production whose left-hand
side is β will often be called β-production. A first basic but useful observation about rigid tree
grammars is the following

Lemma 1. Let G = 〈α,N,R, T, P 〉 be a rigid tree grammar and let t ∈ L(G). Then there is a
derivation α→ · · · → t which uses at most one β-production for each β ∈ R.

3

Proof. Suppose both β → s1 and β → s2 are used at positions p1 an p2 respectively. Then by
the rigidity condition t|p1 = t|p2 and we can replace the derivation at p2 by that at p1 (or the
other way round). This transformation does not violate the rigidity condition because it only
copies existing parts of the derivation.

It is a well-known result that regular tree grammars and tree automata are equivalent in the
sense that they describe the same class of tree languages. We will now show the analogous
result for the rigid versions. The proof essentially follows the lines of that in [4] for the regular
case, however it is more involved due to the necessity of respecting the rigidity condition.

Definition 3. A grammar is called normalised if every production rule has the form γ → a or
γ → f(γ1, . . . , γn) for a, f ∈ T and γ, γ1, . . . , γn ∈ N .

For a term t, P ⊆ Pos(t) and a substitution σ we write t ◦P σ for the term obtained from
application of σ to the subterms of t at the positions in P .

Lemma 2. If G is a rigid tree grammar, then there is a normalised rigid tree grammar G∗ s.t.
L(G) = L(G∗).

Proof. Let G be a rigid tree grammar which is not normalised. W.l.o.g. G has a rigid axiom
α which does not appear on the right-hand side of any production and G does not contain
productions of the form β → β. Let β → f(t1, . . . , tn) be a production rule where at least one
ti is not a non-terminal symbol. Define a new rigid tree grammar G′ by adding new non-rigid
non-terminal symbols β1, . . . , βn and replacing the production rule β → f(t1, . . . , tn) by β →
f(β1, . . . , βn), β1 → t1, . . . , βn → tn. Then every G-derivation can obviously be transformed to a
G′-deviation preserving rigidity. Derivations can also be transformed in the other direction: let
α = t0 →G′ · · · →G′ tn = t. As t does not contain βi, for every application of β → f(β1, . . . , βn)
at a position p there must be an application of βi → ti at p.i later in the derivation. On the
other hand, as βi is a new symbol every application of βi → ti at p.i must be preceded by
an application of β → f(β1, . . . , βn). By permuting independent derivation steps one can join
the corresponding rule applications thus collapsing a G′-derivation to a G-derivation – again –
preserving rigidity. By iterating this process one eventually obtains a rigid tree grammar whose
only non-normalised production rules are of the form β → γ for non-terminals β, γ. The rest
of this proof will be concerned with the removal of these production rules, distinguishing cases
based on rigidity of β and γ. Let the weight of a grammar w(G) be defined as the sum of the
lengths of all possible derivations of the form β1 → · · · → βk where βi ∈ N and βi 6= βj for
i 6= j.

Let G = 〈α,N,R, T, P 〉 be a rigid tree grammar and β → γ a production with γ non-rigid, let
γ → s1, . . . , γ → sk be all γ-productions and define G′ = 〈α,N,R, T, P ′〉 where

P ′ = (P \ {β → γ}) ∪ {β → si | 1 ≤ i ≤ k, si 6= β}.

Let α = t0 →G · · · →G tn = t. If β → γ is applied at some position p ∈ Pos(t), there must be
an application of one of the γ → si at position p later and by permuting independent steps we
can collapse β → γ → si to β → si to obtain a G′-derivation of t. If some δ ∈ R is used at a
certain position in this G′-derivation then it is used at the same position in the G-derivation so
the rigidity condition is preserved. To obtain a G-derivation from a G′-derivation we replace
applications of β → si by β → γ → si. The rigidity condition is preserved as γ is not rigid,
hence L(G) = L(G′). Every derivation β1 → · · · → βk with βi ∈ N and βi 6= βj for i 6= j in G′

has a corresponding (and longer) one in G obtained from replacing β → si by β → γ → si but
β → γ does no longer exist in G′ so w(G′) < w(G).

4

If β → γ is a production rule where β is non-rigid let α1 → s1, . . . , αk → sk be all productions
that contain β on their right-hand side and define G′ by changing the productions P to

P ′ = (P \ {β → γ}) ∪ {αi → si ◦P [β\γ] | 1 ≤ i ≤ k, P ⊆ Pos(β, si), si ◦P [β\γ] 6= αi}.

Let α = t0 → · · · → tn = t be a G-derivation. If β → γ is applied at a position p then (as
β 6= α because β is non-rigid) a production αi → si at or above p is applied before it in the
G-derivation. After permutation of independent steps, replace applications of αi → si and all
applications of β → γ to this copy of si by an application of αi → si ◦P [β\γ] to obtain a
G′-derivation. If a non-terminal δ is used at a certain position in the G′-derivation it is used at
the same position in the G-derivation so the rigidity condition transfers. For the other direction
one obtains a G-derivation from a G′-derivation from replacing αi → si ◦P [β\γ] by αi → si
followed by copies of β → γ. Now if δ ∈ R is used at a certain position in the G-derivation
then δ 6= β by assumption so δ is used at the same position in the G′-derivation and rigidity
transfers. As above it is easy to check that w(G′) < w(G).

These transformations decrease the weight, so we eventually arrive at a grammar G all of whose
non-normalised productions are of the form β → γ for both β, γ rigid; let {βi → γi | 1 ≤ i ≤ m}
be these productions. If α = t0 → · · · → tn = t is a G-derivation using β → γ then by Lemma 1
we can assume that it uses β → γ on all β-positions; let {p1, . . . , pn} be the set of β-positions
of this derivation. The set M ⊆ {1, . . . ,m} of indices of the βi → γi used in the derivation is
non-branching in the sense that it does not contain i, j with βi = βj but γi 6= γj . Furthermore it
is also acyclic in the sense that there are no i1, . . . , ik ∈M s.t. γij = βij+1

for j ∈ {1, . . . , k− 1}
and γik = βi1 because cycles can trivially be eliminated.

For such a non-branching and acyclic M denote with β∗ the image of the non-terminal β under
exhaustive application of the productions {βi → γi | i ∈M}. This image is well-defined (by M
being acyclic) and unique (by M being non-branching). Define GM = 〈α,N ′, R′, T, P ′〉 by

N ′ = N \ {βi | i ∈M},

R′ = N ′ ∩R, and

P ′ = (P \ {βi → γi | 1 ≤ i ≤ m})[βi\β
∗
i]i∈M .

Let α = t0 → · · · → tn = t be a G-derivation and M its acyclic and non-branching index
set, then we obtain a GM -derivation from replacing βi by β

∗
i everywhere hence removing the

applications of the βi → γi. The rigidity condition is still fulfilled as using some δ ∈ R at a
position in the GM -derivation implies that it is used at the same position in the G-derivation.
For the other direction, we translate a GM -derivation to a G-derivation by inserting βi → γi-
applications. The rigidity condition for the βi is fulfilled because they are newly introduced at
only the positions of the rigid β∗i which ensure equality of the subterms at these positions.

Define G′ as disjoint union of the GM for all acyclic and non-branching M joined by a single
axiom. Then G′ is normalised and L(G′) = L(G).

Theorem 1. A set of terms is language of a rigid tree grammar iff it is language of a rigid tree
automaton.

Proof. It is straightforward to translate between normalised rigid tree grammars and rigid tree
automata by reversing the direction of the arrows, translating non-terminal symbols as states
and the axiom as final state. The result then follows from Lemma 2.

Definition 4. A rigid tree grammar 〈α,N,R, T, P 〉 is called totally rigid if N = R.

5

Totally rigid tree grammars will simply be written as 〈α,R, T, P 〉. If G = 〈α,R, T, P 〉 is totally
rigid and t0 = α → · · · → tn = t ∈ T (T) is a derivation in G we can by Lemma 1 assume
that for every non-terminal at most one production rule is applied. A set S of production rules
induces an order <S on the non-terminals as transitive closure of α <S β if α → t ∈ S and
β ∈ t. Given a derivation in G, the order induced by its set S of production rules is acyclic.
For suppose it would be cyclic, then either because it permits a derivation α → · · · → α which
can be removed or because one of the form α → · · · → s where α 6= s but α ∈ s. But in this
case the derivation cannot finish with a term built from terminals only due to the rigidity of α.

So while every single derivation induces an acyclic order, this is not necessarily the case for the
whole set of productions of a grammar as can be seen in the simple example

α→ h(β)|h(γ), β → f(γ)|a, γ → g(β)|b

by deriving h(f(b)) and h(g(a)).

Definition 5. A grammar is called acyclic if the order induced by the set of its productions is.

So an acyclic totally rigid grammar is a totally rigid grammar with a uniform order. Such
grammars are central for this paper. They allow the following simple description of their
language in terms of substitutions:

Lemma 3. If G is totally rigid and acyclic, then up to renaming of the non-terminals G =
〈α0, {α0, . . . , αn}, T, P 〉 with L(G) = {α0[α0\t0] · · · [αn\tn] | αi → ti ∈ P}.

Proof. Acyclicity permits a renaming of non-terminals s.t. αi >P αj implies i > j. The right-
to-left inclusion is obvious. For the left-to-right inclusion, let α0 = s0 → . . . → sn = s ∈ T (T)
be a derivation in G. By Lemma 1 we can assume that for each i at most one production
whose left-hand side is αi is applied, say αi → ti. By acyclicity we can rearrange the derivation
so that αi → ti is only applied after αj → tj if i > j. For those αi which do not appear
in the derivation we can insert any substitution without changing the final term so we obtain
s = α0[α0\t0] · · · [αn\tn].

We finish this section on tree languages with basic observations that will be useful later on.

Lemma 4. If a rigid tree grammar G′ is obtained from another rigid tree grammar G by
deletion of production rules, then L(G′) ⊆ L(G).

Proof. Every G′-derivation is a G-derivation.

Lemma 5. If a rigid tree grammar G′ is obtained from another rigid tree grammar G by
identifying two rigid non-terminals, then L(G′) ⊆ L(G).

Proof. Let β and γ be two non-terminals in G and call (βγ) the new non-terminal in G′ which
replaces all occurrences of both β and γ. Let α→ · · · → t be a G′-derivation then by Lemma 1
we can assume that only one (βγ)-rule is used in it, say (βγ) → s. If s = (βγ) we obtain
a G-derivation by dropping all applications of (βγ) → (βγ). If s 6= (βγ), then (βγ) /∈ s as
(βγ) ∈ s would contradict rigidity. Then either β → s or γ → s must be a production in G so
α→ · · · → t can be transformed to a derivation in G.

Lemma 6. Let G = 〈α,N,R, T, P 〉 be a rigid tree grammar, β ∈ R, β → t1, . . . , β → tn ∈ P ,
γ /∈ N and G′ = 〈α,N ∪ {γ}, R ∪ {γ}, T, P ′〉 where P ′ = (P \ {β → t1, . . . , β → tn}) ∪ {β →
γ, γ → t1, . . . , γ → tn}. Then L(G) = L(G′).

6

Proof. Let t ∈ L(G) then by Lemma 1 there is a G-derivation α → · · · → t which uses at
most one β-production. If it does not use a β-production at all, then t ∈ L(G′), so assume
it uses β → s as only β-production. If s ∈ {t1, . . . , tn}, obtain a G′-derivation by replacing
all applications of β → s by β → γ → s. The rigidity of γ in the G′-derivation follows from
γ /∈ N and the rigidity of β in the G-derivation. For the other direction, let t ∈ L(G′), then by
Lemma 1 there is a G′-derivation α → · · · → t which uses at most one γ-production. If it does
not use a γ-production, then t ∈ L(G), so assume it uses γ → ti. As γ is only introduced by
β → γ we can permute independent steps and collapse β → γ → ti to β → ti thereby obtaining
a G-derivation which satisfies the rigidity condition.

3 The Grammar of a Proof

Definition 6. A sequent is a pair of multisets of formulas. A proof is a tree that starts with
sequents of the form A→ A for an atomic formula A and is built up using the following rules.

Γ → ∆, A Π → Λ, B

Γ,Π → ∆,Λ, A ∧B
∧r

A,Γ → ∆

A ∧B,Γ → ∆
∧l1

B,Γ → ∆

A ∧B,Γ → ∆
∧l2

A,Γ → ∆ B,Π → Λ

A ∨B,Γ,Π → ∆,Λ
∨l

Γ → ∆, A

Γ → ∆, A ∨B
∨r1

Γ → ∆, B

Γ → ∆, A ∨B
∨r2

Γ → ∆, A

¬A,Γ → ∆
¬l

A,Γ → ∆

Γ → ∆,¬A
¬r

A[x\t],Γ → ∆

∀xA,Γ → ∆
∀l

Γ → ∆, A[x\α]

Γ → ∆, ∀xA
∀r

A[x\α],Γ → ∆

∃xA,Γ → ∆
∃l

Γ → ∆, A[x\t]

Γ → ∆, ∃xA
∃r

Γ → ∆
A,Γ → ∆

wl
Γ → ∆

Γ → ∆, A
wr

A,A,Γ → ∆

A,Γ → ∆
cl

Γ → ∆, A,A

Γ → ∆, A
cr

Γ → ∆, A A,Π → Λ

Γ,Π → ∆,Λ
cut

The quantifier rules are subject to the usual conditions:

1. t must not contain a bound variable,

2. α is called eigenvariable and must not occur in Γ ∪∆ ∪ {A} (eigenvariable condition).

We consider A ⊃ B to be an abbreviation of ¬A ∨ B and also allow free use of corresponding
rule abbreviations ⊃l and ⊃r. A proof is called regular if different strong quantifier inferences
have different eigenvariables. Positive universal and negative existential quantifiers are called
strong, the others are called weak.

Definition 7. A proof π is called simple if

1. π is regular,

2. the end-sequent is of the form Γ → ∃xA where A is quantifier-free and Γ consists only of
formulas of the form ∀x1 · · · ∀xnB where B is quantifier-free, and

3. every cut-formula in π contains at most one quantifier.

7

The regularity of a proof is a useful and harmless assumption in the context of cut-elimination.
Also the second condition does not present a severe restriction; it is a standard result that
strong quantifiers can be removed from formulas and proofs by Skolemisation. Prenexifying
and possibly moving the formulas to the left then yields an end-sequent as demanded. The
only of the above restrictions that substantially decreases the scope of the present analysis and
justifies the terminology “simple” is the third one concerning the use of quantifiers in cuts.
The results in this paper can be extended to a slightly more general class of proofs where the
existential prefix in the end-sequent is a block of quantifiers and also cut-formulas are allowed
to contain an arbitrary number of quantifiers as long they do not contain both a strong and a
weak quantifier. The class of simple proofs has been chosen here for expositional clarity.

Definition 8. Let π be a simple proof of Γ → ∃xA and ψ a subproof of π. The Herbrand-set
H(ψ, π) of ψ w.r.t. π is defined as follows. If ψ is an axiom, then H(ψ, π) = ∅. If ψ is of the
form

(ψ′)
Π → Λ, A[x\t]

Π → Λ, ∃xA
∃r

where the main formula ∃xA is ancestor of the formula ∃xA in the end-sequent, then H(ψ, π) =
H(ψ′, π) ∪ {A[x\t]}. If ψ ends with any other unary inference and ψ′ is its immediate subproof
then H(ψ, π) = H(ψ′, π). If ψ ends with a binary rule and ψ1, ψ2 are its immediate subproofs,
then H(ψ, π) = H(ψ1, π) ∪H(ψ2, π). We write H(π) for H(π, π).

Example 2. Define the axioms A1 = P (a) ∨ P (b), A2 = ∀x (P (x) ⊃ Q(f(x))) and A3 =
∀x∀y (P (x) ⊃ Q(y) ⊃ R(g(x, y))) and the simple proof π =

(π1)
A1 → P (a), P (b)

A1 → ∃xP (x), P (b)
∃r

A1 → ∃xP (x), ∃xP (x)
∃r

A1 → ∃xP (x)
cr

(π2)
P (α), A2 → Q(f(α))

P (α), A2 → ∃xQ(x)
∃r

(π3)
P (α), Q(β), A3 → R(g(α, β))

P (α), Q(β), A3 → ∃xR(x)
∃r

P (α), ∃xQ(x), A3 → ∃xR(x)
∃l

P (α), A2, A3 → ∃xR(x)
cl, cut

∃xP (x), A2, A3 → ∃xR(x)
∃l

A1, A2, A3 → ∃xR(x)
cut

where π1, π2 and π3 are the obvious cut-free proofs. Then H(π) = {R(g(α, β))}.

Definition 9. Let π be a proof and Q be a quantifier occurrence in π. Define a set of terms t(Q)
associated with Q as follows: if Q occurs in the main formula of a weakening, then t(Q) = ∅.
If Q is introduced by a quantifier inference from a term t or a variable x, then t(Q) = {t} or
t(Q) = {x} respectively. If Q occurs in the main formula of a contraction and Q1, Q2 are the two
corresponding quantifiers in the auxiliary formulas of the contraction, then t(Q) = t(Q1)∪t(Q2).
In all other cases Q has exactly one immediate ancestor Q′ and t(Q) = t(Q′).

Let π be a simple proof and c be a cut in π that contains a quantifier. Write Qc for the
strong occurrence of the quantifier in one cut-formula of c and Q′

c for the corresponding weak
occurrence in the other cut-formula. For C being the set of cuts in π which contain a quantifier,
define the base substitutions of π as B(π) :=

⋃
c∈C{[α\t] | α ∈ t(Qc), t ∈ t(Q′

c)}.

Example 3. The proof π of Example 2 has B(π) = {[α\a], [α\b], [β\f(α)]}.

Definition 10. For a simple proof π define the totally rigid grammar G(π) = 〈ϕ,N, T, P 〉 by

N = {ϕ} ∪ EV(π),

T = Σ(π) ∪ {∧,∨,¬}, and

P = {ϕ→ F | F ∈ H(π)} ∪ {α→ t | [α\t] ∈ B(π)}.

8

a b

α

f(α)

β

R(g(α, β))

ϕ

jjVVVVVVVVVVVVVVVVVVVVV

::ttttttttttt

WW/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

Figure 1: The Grammar of Example 4

where Σ(π) is the signature of the proof π.

Let |G| be the number of production rules of the grammar G and |π| be the number of inferences
in a proof π. From the above definition, it is easy to show that |G| ≤ |π|2. We will later (in
Lemma 11) construct a G′ with |G′| ≤ |π|.

Example 4. The proof π of Example 2 has G(π) = 〈ϕ,N, T, P 〉 where N = {ϕ, α, β}, T =
{a, b, f, g, P,Q,R,∧,∨,¬} and P = {ϕ → R(g(α, β)), β → f(α), α → a, α → b}, see also the
diagram in Figure 1. The language of this grammar is L(G(π)) = {R(g(a, f(a))), R(g(b, f(b)))}.

Lemma 7. If π is a simple proof, then G(π) is acyclic.

Proof. By induction on the number of cuts in the proof. The grammar of a cut-free proof is
trivially acyclic. For the induction step, let ι be the lowest binary inference with subproofs π1
and π2 s.t. either 1. ι is a cut or 2. ι is not a cut but both π1 and π2 contain a cut. Let P1

be the productions induced by the cuts in π1, P2 that induced by the cuts in π2 and P that
induced by cuts in π. In case 2, <P = <P1

∪ <P2
which is acyclic by induction hypothesis.

In case 1, let Pι be the productions induced by the cut ι, then <1
P = <1

P1
∪ <1

P2
∪ <1

Pι
. By

induction hypothesis, <P1
and <P2

are acyclic and as ι contains at most one quantifier, also
<Pι is acyclic. Therefore, a cycle in <P must be of the form α1 ≤P1

β1 <Pι α2 ≤P2
β2 <Pι α1

where α1, β1 are eigenvariables of strong quantifier inferences in π1 and α2, β2 of inferences in
π2. However, ι contains only one quantifier and depending on its polarity all substitutions in
B(ι) lead from π1 to π2 or from π2 to π1 but not both, so <P is acyclic.

4 Some Algebraic Preliminaries

Before proving the main result, it will be useful to make some simple but rather abstract
observations. We will work in a structure (U,<1,∼) where <1 is a binary relation on U and ∼

9

is an equivalence relation on U . The results of this section will only be applied to the situation
U = B(π), <1 being the one step scope order of Definition 13 and [α\t] ∼ [β\s] iff α = β. The
author has found it useful to think about such structures in terms of diagrams such as the one
depicted in Figure 1.

We use letters X,Y, . . . for subsets of U , letters X,X1, . . . for subsets of the power set of U
and the letters C,D, . . . for ∼-classes. We write x <X y if there are x1 = x, x2, . . . , xn =
y ∈ X with xi <

1 xi+1 for 1 ≤ i < n. We write x < y for x <U y. For X ⊆ U define
X ↑ x = {y ∈ X | x <X y} which for the case x /∈ X entails X ↑ x = ∅. For X ⊆ U define
X∗ = {Y ⊆ X | for every C ∈ X/∼ there is exactly one x ∈ C ∩Y } which entails ∅∗ = {∅}. For
a set X of subsets of U we define X ↑ x := {X ↑ x | x ∈ X ∈ X}. We will often use sets of the
form X∗ ↑ x = {X0 ↑ x | x ∈ X0 ∈ X∗}.

Example 5. Let U = {[α\a], [α\b], [β\f(α)]} = B(π) where π is the proof of Example 2, let
[β\f(α)] <1 [α\a] and [β\f(α)] <1 [α\b] be all pairs in the <1-relation and let [α\a] ∼ [α\b] be
the only pair in the equivalence relation ∼. Then U∗ ↑ α = {{[α\a]}, {[α\b]}} and U∗ ↑ β =
{{[β\f(α)], [α\a]}, {[β\f(α)], [α\b]}}.

Lemma 8 (Monotonicity). If X1 ⊆ X2, then X1 ↑ x ⊆ X2 ↑ x.

Proof. If y ∈ X1 ↑ x then there are x1 = x, . . . , xn = y ∈ X1 with xi <
1 xi+1 and the xi also

being in X2 we have y ∈ X2 ↑ x.

X and Y are called class-disjoint if for every C ∈ U/∼ we have X ∩ C = ∅ or Y ∩ C = ∅.

Lemma 9 (Context). If X,Y are class-disjoint and x ∈ X with (X ∪ Y) ↑ x = X ↑ x then
(X ∪ Y)∗ ↑ x = X∗ ↑ x.

Proof. First note that due to class-disjointness we have

(X ∪ Y)∗ ↑ x = {(X0 ∪ Y0) ↑ x | x ∈ X0 ∪ Y0, X0 ∈ X∗, Y0 ∈ Y ∗}

but (X ∪ Y) ↑ x = X ↑ x implies (X0 ∪ Y0) ↑ x = X0 ↑ x for all X0 ⊆ X,Y0 ⊆ Y and therefore

= {X0 ↑ x | x ∈ X0 ∈ X∗} = X∗ ↑ x.

For X,Y ⊆ U we write Y <1 X if there are x ∈ X, y ∈ Y s.t. y <1 x and Y ≮1 X if this is not
the case. For sets X,Y write X ↑ Y for

⋃
y∈Y X ↑ y.

Definition 11. Let X,Y ⊆ U , a class C ∈ Y/∼ is called entrance of Y for X if i) x <1 z for
all x ∈ X and all z ∈ C and ii) for all x ∈ X, y ∈ Y with x <X∪Y y there is a z ∈ C s.t.
x <1 z <Y y.

Lemma 10 (Splitting). Let X,Y be class-disjoint with Y ≮1 X, let C ∈ Y/∼ be the entrance
of Y for X and D ∈ X/∼, let X0 ∈ X∗ and Y0 ∈ Y ∗, then

(X0 ∪ Y0) ↑ D = X0 ↑ D ∪ Y0 ↑ C.

Proof. As D ∈ X/∼ and X0 ∈ X∗ we have D ∩X0 = {x0} = D ∩ (X0 ∪ Y0) for some x0, so it
suffices to show

(X0 ∪ Y0) ↑ x0 = X0 ↑ x0 ∪ Y0 ↑ C.

10

For the left-to-right inclusion let z ∈ (X0∪Y0) ↑ x0. If z ∈ X0 then x0 <X0
z because Y ≮1 X so

z ∈ X0 ↑ x0. If z ∈ Y0 then x <X0∪Y0
z implies z ∈ Y0 ↑ C because C is entrance of Y for X. For

the other direction, let x ∈ X0 ↑ x0, then x ∈ (X0 ∪ Y0) ↑ x0 by monotonicity. For y ∈ Y0 ↑ C
we have z ∈ C with z <Y0

y and as C is entrance of Y for X we obtain x0 <
1 z <Y0

y.

5 From Proofs to Tree Languages

The grammar of a proof is invariant under many proof transformations including most local
cut-reduction rules. A notable exception are the duplications of proofs induced by the removal
of contractions: such a transformation duplicates parts of the grammar. However – and this is
the technical key point of this paper – this transformation can be done in a way which does not
change the language of the grammar. To achieve this we will exercise a tight control over the
removal of contractions by imposing an uppermost reduction strategy as well as a particular
normal form for proofs (also for those containing cuts).

This normal form for simple proofs requires the cuts to be prenex. The transformation to prenex
cuts will partially be the one used in [2] on first-order proofs as well as by [19, Theorem 5.13] in
quantified propositional calculus, see also [5, Theorem VII.4.7]. In order to control the changes
of the language of the grammar induced by this transformation we introduce a new dummy
constant d which does not appear in the original proof and we write Gnd(π) for G(π) without
productions of the form β → d.

In a proof where all formulas are prenex and without quantifier alternations, a weak quantifier
inference ι can be shifted downwards until either: it reaches the premise sequent of a cut or the
end-sequent where the quantifier is introduced, or: it reaches the premise sequent of a strong
quantifier inference whose eigenvariable appears in the term of ι. Such a sequent will be called
blocking sequent for ι.

Definition 12. A proof π is said to be in normal form if the following conditions are fulfilled:

1. π is simple.

2. The dummy constant d appears only in a context of the form

Γ → ∆, A

Γ → ∆, A ∨B[x\d]
∨r1

Γ → ∆, ∃x (A ∨B)
∃r

or

Γ → ∆, A

Γ → ∆, B[x\d] ∨A
∨r2

Γ → ∆, ∃x (B ∨A)
∃r

where x /∈ A and ∃x (A ∨B) or ∃x (B ∨A) respectively is ancestor of a cut-formula.

3. For every ∃r-inference ι: the only inferences between ι and its blocking sequent are other
∃r-inferences, contractions and ∨r-inferences deleting d.

4. All cut-formulas are of the form ∃xA for some quantifier-free A and appear in a context
of the form

(ψ1)
Γ → ∆, ∃xA

(ψ2)
A[x\α],Π → Λ

∃xA,Π → Λ
∃l

Γ,Π → ∆,Λ
cut

where ψ1 contains at least one ∃r-inference whose main formula is ancestor of ∃xA in the
cut and two different such ∃r-inferences introduce different terms,

11

Lemma 11 (normal form). If π is a simple proof then there is a proof π′ in normal form and
a totally rigid acyclic grammar G′ with |G′| ≤ |π| and L(Gnd(π

′)) = L(G′) ⊆ L(G(π)).

Proof. For showing this lemma we will consider proofs using the inference rule

Γ → ∆, A ∃xB,Π → ∆

Γ,Π → ∆,Λ
p− cut

where B is quantifier-free and A can be transformed to ∃xB using the usual quantifier shifting
rules. This inference rule is sound and the definition of the base substitutions extends naturally
to simple proofs containing p-cuts because each p-cut still has one weak and one strong occur-
rence of a quantifier. Furthermore we use the notation |π|w for the number of weak quantifier
inferences in π.

First, define π1 from π by shifting down weakenings as far as possible removing pairs of connected
weakenings and contractions and deleting subproofs of binary inferences as in the replacement
of

(ψ1)
Γ → ∆

Γ → ∆, A
wr

(ψ2)
A,Π → Λ

Γ,Π → ∆,Λ
cut

by
(ψ1)

Γ → ∆
Γ,Π → ∆,Λ

w∗ .

Then all weakenings in π1 appear in a block above the end-sequent, |π1|w ≤ |π|w and L(G(π1)) ⊆
L(G(π)) by Lemma 4.

Each cut that contains a quantifier has a strong side (the side of the occurrence of the strong
quantifier) and a weak side (defined analogously). Define π2 from π1 by replacing each cut

(ψ1)
Γ → ∆, A

(ψ2)
A,Π → Λ

Γ,Π → ∆,Λ
cut

whose strong side is ψ1 by

(ψ2)
A,Π → Λ

Π → Λ,¬A
¬r

(ψ1)
Γ → ∆, A

¬A,Γ → ∆
¬l

Γ,Π → ∆,Λ
cut

.

Then |π2|w = |π1|w, G(π2) = G(π1) and in π2 the strong side of every cut is the right one.

Define π3 from π2 by replacing each cut

(ψ1)
Γ → ∆, A

(ψ2)
A,Π → Λ

Γ,Π → ∆,Λ
cut

by

(ψ1)
Γ → ∆, A

(ψ′
2)

B[x\α],Π → ∆

∃xB,Π → ∆
∃l

Γ,Π → ∆,Λ
p− cut

where ψ′
2 is obtained from ψ2 by leaving out all strong quantifier inferences that introduce

the quantifier in A and identifying their eigenvariables. Then |π3|w = |π2|w and by Lemma 5:
L(G(π3)) ⊆ L(G(π2)). Defining G′ = G(π3) we obtain |G′| ≤ |π3|w ≤ |π| and L(G′) ⊆ L(G(π)).

12

It remains to construct π′. To that aim, we will first define π4 from π3 by prenexifying the weak
side of a cut through the introduction of additional cuts. Apply the following transformation
top-down to the whole proof: Suppose QxA is a ancestor of a cut-formula on the weak side of
the cut and auxiliary formula of an inference that is about to destroy its prenex property, for
example Qx = ∃x and the inference being ¬l,

(ψ)
Γ → ∆, ∃xA

¬∃xA,Γ → ∆
¬l
,

then replace the above inference by

(ψ)
Γ → ∆, ∃xA

(η)
A[x\α] → A[x\α]

A[x\α],¬A[x\α] →
¬l

A[x\α], ∀x¬A→
∀l

∃xA, ∀x¬A→
∃l

∀x¬A,Γ → ∆
cut

where α is a new eigenvariable. Similarly, replace inferences of the form

(ψ)
Γ → ∆, ∃xA

Γ → ∆, ∃xA ∨B
∨r1

by
(ψ)

Γ → ∆, ∃xA

(η)
A[x\α] → A[x\α]

A[x\α] → A[x\α] ∨B
∨r1

A[x\α] → ∃x (A ∨B)
∃r

∃xA→ ∃x (A ∨B)
∃l

Γ → ∆, ∃x (A ∨B)
cut

and

(ψ1)
Γ → ∆, ∃xA

(ψ2)
Π → Λ, B

Γ,Π → ∆,Λ, ∃xA ∧B
∧r

by

(ψ2)
Π → Λ, B

(ψ1)
Γ → ∆, ∃xA

(η)
A[x\α] → A[x\α]

(η)
B → B

A[x\α], B → A[x\α] ∧B
∧r

A[x\α], B → ∃x (A ∧B)
∃r

∃xA,B → ∃x (A ∧B)
∃l

B,Γ → ∆, ∃x (A ∧B)
cut

Γ,Π → ∆,Λ, ∃x (A ∧B)
cut

.

Such a transformation replaces a set of production rules {β → t1, . . . β → tn} by {β → α, α →
t1, . . . α→ tn} where α is a new non-terminal, so by Lemma 6 the language is not changed. The
symmetric cases for Qx = ∀x are treated analogously.

Furthermore, replace inferences of the form

(ψ)
Γ → ∆, B

Γ → ∆, ∃xA ∨B
∨r2

by (ψ)
Γ → ∆, B

(η)
B → B

B → A[x\d] ∨B
∨r2

B → ∃x (A ∨B)
∃r

Γ → ∆, ∃x (A ∨B)
cut

.

This transformation introduces productions of the form β → d which leave Gnd unchanged.
Again, the symmetric case for the universal quantifier is treated analogously. So we have
obtained a proof π4 with L(Gnd(π4)) = L(G′).

13

Finally, we shift down ∃r-inferences together with contractions having their main formulas as
auxiliary formulas and with the corresponding ∨r-inferences that delete d until there are no other
inferences between the ∃r-inference and its blocking sequent. If one quantifier is introduced from
the same term t two times we replace

(ψ)
Γ → ∆, A[x\t], A[x\t]

Γ → ∆, A[x\t], ∃xA
∃r

Γ → ∆, ∃xA, ∃xA
∃r

Γ → ∆, ∃xA
cr

by

(ψ)
Γ → ∆, A[x\t], A[x\t]

Γ → ∆, A[x\t]
cr

Γ → ∆, ∃xA
∃r

.

The result of these transformations is a proof π′ in normal form having L(Gnd(π
′)) = L(G′).

The proof transformations used for showing the above lemma illustrate an important point:
on the level of the grammar one can carry out transformations, in particular simplifications,
which are impossible on the level of the proof (i.e. they necessitate tricks like p-cuts and dummy
constants). This is due to the fact that the equality of languages is sufficient for validity and
local soundness criteria as in a formal proof are no longer needed. The small grammar G′ can
neither be read off from π nor from π′; both of them have larger grammars.

A proof in normal form exhibits a one-to-one correspondence between cuts and eigenvariables.
Consequently, for an eigenvariable α we write cα for the cut corresponding to it. The set of
eigenvariables of a proof π is denoted as EV(π). For a proof π in normal form and α ∈ EV(π),
define EVL̂(π, α) = {β ∈ EV(π) | cβ is on the left above cα} and EVL(π, α) = {α}∪EVL̂(π, α).
Define EVR(π, α) and EVR̂(π, α) analogously for the right side of cα. Given a set V of variables
and a set S of unary substitutions, define SV = {σ ∈ S | dom(σ) ⊆ V }. Write BV (π) for
(B(π))V and define BX(π, α) = BEVX(π,α)(π) for X ∈ {L,R, L̂, R̂}.

During the elimination of contractions, proof parts are duplicated and the eigenvariables intro-
duced there are copied hence renamed. The final value of an eigenvariable develops gradually
through such renamings. It will turn out to be very useful to name an eigenvariable by the
current state of development of its final value. To that aim, we label an eigenvariable α of the
original proof π by a set of substitutions S ⊆ B(π) which is denoted as αS . By convention we
identify α and α∅. An indexed variable αk with label S is written as αk,S .

A variable-renaming is a substitution whose range contains only variables. For a set of variables
V , a variable-renaming ρ is called V -fresh if rge(ρ) ∩ V = ∅. For a substitution σ, a variable-
renaming ρ is called σ-fresh if rge(ρ) ∩ (dom(σ) ∪ rge(σ)) = ∅ and for a set S of substitutions
ρ is called S-fresh if it is σ-fresh for all σ ∈ S. Define SR = {[xρ\tρ] | [x\t] ∈ S, ρ ∈ R} for a
set of S-fresh variable renamings R and a set of substitutions S. For a variable-renaming ρ we
write Bρ(π) for (B(π))ρ. For a variable-renaming ρ, a set of unary substitutions S and a set of
variables V we write Sρ

V for (SV)
ρ, so Bρ

V (π) is ((B(π))V)
ρ.

Definition 13 (scope order). For a proof π in normal form and [α\t], [β\s] ∈ B(π) we write
[α\t] <o1 [β\s] if the ∃r-inference of t is above the ∃l-inference of β. We furthermore write <o

for the transitive and ≤o for the reflexive and transitive closure of <o1 .

Note that [α\t] <o [β\s1] iff [α\t] <o [β\s2] so we often just write [α\t] <o β. Furthermore,
[α\t] <o1 [β\s] is necessary (although not sufficient) for β ∈ t. Hence the scope order includes
the order induced by the productions of the grammar as in Section 2 and is equal to it if every
term introduced by a weak quantifier inference contains all variables introduced underneath it
by strong quantifier inferences. For technical reasons (the applicability of Lemma 10) it is more

14

convenient to work with the scope order in this section. We apply the notation and results of
Section 4 to the set B(π) with order <o1 and equivalence relation [α\t] ∼ [β\s] iff α = β; the
upset formation ↑ as well as the choice-operation ∗ have the meaning defined in Section 4. We
write B∗(π) for (B(π))∗. For a set of unary substitutions A we define the variable renaming
ρA = [α\αA↑α]α∈A. As we will see later, this renaming plays an important role because it labels
α with the partial value given by A. A cut c in a proof π in normal form is called active if its
cut-formula ∃xA is introduced from more than one term in the left subproof. The following
lemma is the central technical result of this paper.

Lemma 12 (Contraction Lemma). If π is a proof in normal form, then there is a proof π′ in
normal form without active cuts s.t. H(π′) = H(π){ρA | A ∈ B∗(π)} and B(π′) =

⋃
A∈B∗(π)A

ρA .

Proof. Let EV(π) = {α1, . . . , αn} be ordered s.t. cαi
is uppermost in {cαi

, . . . , cαn}. The fol-
lowing equalities hold for all i ∈ {1, . . . , n} and follow from simple properties of the scope order
and the uppermost order of the cαi

:

B{α1,...,αi}(π) ↑ αi = BL(π, αi) ↑ αi (1)

B{α1,...,αi}(π) ↑ α = BR̂(π, αi+1) ↑ α for α ∈ EVR(π, αi+1) (2)

By Lemma 9 one obtains the ∗-ed version of these equalities. For k ∈ {0, . . . , n} let

Rk = {ρA | A ∈ B∗
{α1,...,αk}

(π)}.

We will show by induction on k that there is a proof πk in normal form s.t.

1. the only active cuts in πk are cαj
for some j > k,

2. EV(πk) = EV(π)Rk,

3. H(πk) = H(π)Rk, and

4. B(πk) =
⋃

A∈B∗
{α1,...,αk}

(π)(A ∪ B{αk+1,...,αn}(π))
ρA .

The result then follows from letting π′ = πn.

If k = 0 then π = π0 trivially satisfies the conditions. For the case k + 1 we obtain πk from
induction hypothesis and observe that αk+1 ∈ EV(πk) and that cαk+1

appears in a context of
the form

(ψ1)
Γ → ∆, ∃xA

(ψ2)
A[x\αk+1],Π → Λ

∃xA,Π → Λ
∃l

Γ,Π → ∆,Λ
cut(cαk+1

)
.

Let {t1, . . . , tm} be the terms inserted for ∃xA in ψ1, then {t1, . . . , tm} = αk+1B{αk+1}(πk). We
will first describe this set of terms by suitably chosen upsets in the base substitutions of the
original proof π. By induction hypothesis we have

B{αk+1}(πk) =
⋃

A∈B∗
{α1,...,αk}

(π)

BρA
{αk+1}

(π)

which together with (1) shows that the mapping

τ : B∗
L(π, αk+1) ↑ αk+1 −→ {t1, . . . , tm}, A 7→ αk+1AρA

15

is well-defined. It is also bijective; for surjectivity let i ∈ {1, . . . ,m}, then there is [αk+1\ti] ∈
B{αk+1}(πk) hence there are A ∈ B∗

{α1,...,αk}
(π) and [αk+1\s] ∈ B{αk+1}(π) s.t. ti = sρA. Let

A′ = {[αk+1\s]}
⋃

α∈sA ↑ α and observe that A′ ∈ B∗
{α1,...,αk+1}

(π) ↑ αk+1 = B∗
L(π, αk+1) ↑ αk+1

and A ↑ α = A′ ↑ α for all α ∈ s hence ti = αk+1A
′ρA′ . For injectivity let {[αk+1\s1]} ∪

A1, {[αk+1\s2]} ∪ A2 ∈ B∗
L(π, αk+1) ↑ αk+1 s.t. s1ρA1

= s2ρA2
. As the ρAi

only add labels and
the si are label-free we have s1 = s2 hence A1 ↑ α = A2 ↑ α for all α ∈ si. If σ ∈ Ai then there
is α ∈ si with α ≤o σ so we can conclude A1 = A2.

Let B∗
L(π, αk+1) ↑ αk+1 = {C1, . . . , Cm} where the indices are obtained from τ and for 1 ≤ i ≤ m

define a variable renaming

δi = [αA\αA∪Ci
]α∈EVR(π,αk+1),A∈B∗

R̂
(π,αk+1)↑α.

Let ψ′
1 be the proof of Γ → ∆, ∃xA, . . . , ∃xA obtained from ψ1 by omitting all contractions on

ancestors of ∃xA that contain the existential quantifier and define πk+1 by replacing cαk+1
by

(ψ′
1)

Γ → ∆, ∃xA, . . . , ∃xA

(ψ2δ1)
A[x\αk+1,C1

],Π → Λ

∃xA,Π → Λ
∃l

Γ,Π → ∆,Λ, ∃xA, . . . , ∃xA
cut

....
Γ,Π, . . . ,Π → ∆,Λ, . . . ,Λ, ∃xA

(ψ2δm)
A[x\αk+1,Cm

],Π → Λ

∃xA,Π → Λ
∃l

Γ,Π, . . . ,Π → ∆,Λ, . . . ,Λ
cut

Γ,Π → ∆,Λ
c∗

where ψ2δi is linked to ti via a cut.

After this transformation each logical inference, each axiom and each cut in πk+1 has a unique
ancestor in πk and – by induction – in π. This ancestor relation extends naturally to auxiliary
and main formulas of inferences. Observe that this proof transformation has the property that
whenever an inference is above another one in one of the πk then the same is true about their
ancestors in π. Therefore we obtain

EV(ψ2) = EVR(π, αk+1)Rk

from the induction hypothesis which using (2) entails

EV(ψ2) = {αA | α ∈ EVR(π, αk+1), A ∈ B∗
R̂
(π, αk+1) ↑ α}.

For αA ∈ EV(ψ2) and i, j ∈ {1, . . . ,m}, the equality αAδi = αAδj entails Ci = Cj hence i = j
so the regularity of πk+1 follows from that of πk. It is then easy to check that πk+1 is in normal
form.

Let A ∈ B∗
R̂
(π, αk+1), i ∈ {1, . . . ,m}, Ci ⊆ C ∈ B∗

L(π, αk+1), A ∪ C ⊆ A′ ∈ B∗
{α1,...,αk+1}

(π).

Let F be a main formula of an inference in π which is ancestor of one in ψ2. If α ∈ F but
α /∈ EVR(π, αk+1) then α = αl for some l > k + 1 hence αρAδi = α. If α ∈ EVR(π, αk+1),
then αρAδi = αA↑α∪Ci

, so FρAδi = F [α\αA↑α∪Ci
]α∈EVR(π,αk+1). Now αk+1 is the entrance of

BL(π, αk+1) for BR̂(π, αk+1) and BL(π, αk+1) ≮o BR̂(π, αk+1) because cαk+1
is a purely existen-

tial cut, so by Lemma 10 FρAδi = F [α\α(A∪C)↑α]α∈EVR(π,αk+1) and from the context lemma we
obtain

FρAδi = FρA′ . (3)

16

Let G be a main formula of an inference in π which is not ancestor of one in ψ2 and let α ∈ G.
Then α /∈ EVR(π, αk+1) and α ≤o

B{α1,...,αk+1}
(π) αk+1 is impossible because all cuts below cαk+1

have index higher than k + 1. Therefore

GρA = GρAδi = GρA′ (4)

by the context lemma. Summing up, (3) and (4) entail HRk+1 = HRk{δi | 1 ≤ i ≤ m} for any
formula H in π which together with the respective induction hypothesis shows 2. and 3.

It remains to show 4. First we will establish

B{αk+1}(πk+1) =
⋃

A∈B∗
{α1,...,αk+1}

(π)

AρA
{αk+1}

. (5)

We start with the left-to-right inclusion: let [αk+1,Ci
\ti] ∈ B(πk+1), then from τ and (1) we

obtain a Ci ∈ B∗
{α1,...,αk+1}

(π) ↑ αk+1 with ti = αk+1CiρCi
and so [α\s] ∈ Ci for some s. Let

Ci ⊆ A ∈ B∗
{α1,...,αk+1}

(π), then [αk+1\s]
ρA = [αk+1\s]

ρCi = [αk+1,Ci
\ti]. For the other direction

let [αk+1\s] ∈ A ∈ B∗
{α1,...,αk+1}

(π) and let i ∈ {1, . . . ,m} s.t. Ci = A ↑ αk+1 ∈ B∗
L(π, αk+1) ↑

αk+1. Then [αk+1\s]
ρA = [αk+1\s]

ρCi = [αk+1,Ci
\ti] ∈ B(πk+1).

Let us show
B{α}(πk+1) =

⋃

A∈B∗
{α1,...,αk+1}

(π)

AρA
{α} for α ∈ EVR̂(π, αk+1) (6)

next. If [αA∪Ci
\t′] ∈ B(πk+1) then there is [αA\t] ∈ B(πk) with tδi = t′ and [α\s] ∈ A ∈

B∗
R̂
(π, αk+1) ↑ α with αρA = αA and sρA = t by induction hypothesis and (2). Let A ∪ Ci ⊆

A′ ∈ B{α1,...,αk+1}(π), then [α\s] ∈ A′ and by (3) we have αρA′ = αρAδi = αA∪Ci
and sρA′ =

sρAδi = t′. For the other direction let A ∈ B∗
{α1,...,αk+1}

(π), then there is i ∈ {1, . . . ,m} and

A0 ∈ BR̂(π, αk+1) s.t. Ci∪A0 ⊆ A and [α\s] ∈ A0. By induction hypothesis [αρA0
\sρA0

] ∈ B(πk)
so [αρA0

δi\sρA0
δi] ∈ B(πk+1) and by (3) we have αρA0

δi = αρA and sρA0
δi = sρA.

The equality

B{α}(πk+1) =
⋃

A∈B∗
{α1,...,αk+1}

(π)

BρA
{α}(π) for α ∈ {α1, . . . , αk} \ EVR̂(π, αk+1) (7)

follows from induction hypothesis and the observation that Bα(π) �o αk+1 for such α. It
remains to show

B{α}(πk+1) =
⋃

A∈B∗
{α1,...,αk+1}

(π)

BρA
{α}(π) for α ∈ {αk+2, . . . , αn} (8)

Let [α\t′] ∈ B(πk+1), then there is [α\t] ∈ B(πk) where either (case i) t′ is introduced by
an ∃r-inference in one of the ψ2δi, then t′ = tδi for some i ∈ {1, . . . ,m} or otherwise (case
ii) [α\t]ρA = [α\t] for all A ∈ B∗

{α1,...,αk+1}
(π) which directly entails the claim. In case i) we

obtain A ∈ B∗
R̂
(π, αk+1) and [α\s] ∈ B(π) with sρA = t from induction hypothesis and (1).

Let A ∪ Ci ⊆ A′ ∈ B∗
{α1,...,αk+1}

(π) then sρA′ = sρAδi = t′ by (3). For the other direction let

A ∈ B∗
{α1,...,αk+1}

(π), [α\s] ∈ B(π) and A0 ∈ BR̂(π, αk+1), i ∈ {1, . . . ,m} s.t. A0∪Ci ⊆ A. If s is

introduced by an ∃r-inference on the right above cαk+1
in π then by (3) we have sρA = sρA0

δi.
By induction hypothesis and (2) we have [α\sρA0

] ∈ B(πk) which entails [α\sρA0
δi] ∈ B(πk+1).

If s is not introduced on the right above cαk+1
in π, then sρA = sρA0

by (3). By induction
hypothesis [α\sρA0

] ∈ B(πk) hence [α\sρA0
] ∈ B(πk+1).

17

Lemma 13. If π is a proof in normal form, then there is a proof π′ in normal form without
active cuts s.t. L(G(π′)) = L(G(π)).

Proof. Let π′ be the proof obtained in Lemma 12 having H(π′) = H(π){ρA | A ∈ B∗(π)} and
B(π′) =

⋃
A∈B∗(π)A

ρA . Note that every substitution in B(π′) is of the form [αρA\tρA] for

[α\t] ∈ A ∈ B∗(π). Let us first show that for every G(π′)-derivation ϕ → F ′
1 → · · · → F ′

l there
is a G(π)-derivation ϕ → F1 → · · · → Fl and an A ∈ B∗(π) s.t. FiρA = F ′

i for 1 ≤ i ≤ l and
every production γ → s used in F1 → · · · → Fl satisfies [γ\s] ∈ A. We proceed by induction
on l: for l = 1 this follows immediately. Let ϕ → F ′

1 → · · · → F ′
l+1 be given and obtain A

and ϕ → F1 → · · · → Fl from induction hypothesis. Let αρA′ → tρA′ with A′ ∈ B∗(π) be the
production rule applied in F ′

l → F ′
l+1. So αρA′ appears in F ′

l = FlρA hence A′ ↑ α = A ↑ α.
As [α\t] ∈ A′ we have [α\t] ∈ A and A ↑ β = A′ ↑ β for all β ∈ t. Hence αρA = αρA′ and
tρA = tρA′ so αρA → tρA applied to F ′

l gives F ′
l+1. Applying α → t at the same position to Fl

leads to a formula Fl+1 with Fl+1ρA = F ′
l+1. By induction hypothesis the only α-production

used in F1 → · · · → Fl is α → t, and as all non-terminals of t are rigid, the rigidity condition
on α is preserved.

For the other direction, suppose we are given a G(π)-derivation. By Lemma 1 it induces a set
A ∈ B∗(π) and by applying ρA can be converted to a G(π′)-derivation. Rigidity is preserved as
ρA is an injective renaming of non-terminals.

Lemma 14. If π is a proof of Γ → ∃xA in normal form without active cuts, then Γ → L(Gnd(π))
is provable.

Proof. We will first produce a proof π′ in normal form without active cuts that does no longer
contain d. If d appears in π, then it does so in a context of the form

(ψ1)
Π → Λ, A

Π → Λ, A ∨B[x\d]
∨r1

Π → Λ, ∃x (A ∨B)
∃r

(ψ2)
A ∨B[x\α],Σ → Θ

∃x (A ∨B),Σ → Θ
∃l

Π,Σ → Λ,Θ
cut

or in a symmetric variant. Let ψ′
2 be the proof of A,Σ → Θ obtained from ψ2 by replacing

A ∨B[x\α] by A until arriving at inferences of the form

(ξ1)
A,Σ1 → Θ1

(ξ2)
B[x\α],Σ2 → Θ2

A ∨B[x\α],Σ1,Σ2 → Θ1,Θ2
∨l

which are replaced by ξ1. Let π1 be the proof obtained from replacing the above cut by

(ψ1)
Π → Λ, A

(ψ′
2)

A,Σ → Θ

Π,Σ → Λ,Θ
cut

.

Repeating this transformation for all occurrences of d we obtain a proof π′ which does not
contain d anymore and by Lemma 4 satisfies L(G(π′)) ⊆ L(G(π)) hence L(G(π′)) ⊆ L(Gnd(π)).

Let α→ t be any production in G(π′), then [α\t] is the only base substitution of cα. We define
a proof π′′ as follows: we shift cα upwards to the left (observing that inference permutations
do not change the grammar) until we reach the ∃r-inference introducing t. The standard cut-
reduction of the existential quantifier then yields the proof π′′ with H(π′′) = H(π′)[α\t] and

18

B(π′′) = (B(π′) \ {[α\t]})[α\t]. A G(π′′)-derivation is then translated to a G(π′)-derivation by
replacing applications of a production β → s[α\t] by β → s followed by a sufficient number of
applications of α→ t. Let p1, p2 be two positions of α in the G(π′)-derivation. As α→ t is the
only α-production and all non-terminals in t are rigid, the rigidity condition is also fulfilled for
α at p1, p2. For the other direction, observe that whenever α is introduced, say by a production
β → s it must be followed by α→ t on all positions of α. After permutation of independent steps
we can thus collapse β → s and the appropriate applications of α→ t to a single application of
β → s[α\t] which preserves rigidity. We have obtained L(G(π′′)) = L(G(π′)).

By iterating this procedure we obtain a proof π∗ with L(G(π∗)) = L(G(π′)) ⊆ L(Gnd(π)) all of
whose cuts are quantifier-free. Therefore B(π∗) = ∅, i.e. there are no B-productions in G(π∗) and
using the standard proof of the mid-sequent theorem (i.e. inference permutations) one obtains
a proof of Γ → H(π∗) i.e. Γ → L(G(π∗)) from which by adding weakenings one obtains a proof
of Γ → L(Gnd(π)).

We can now prove the main results of this paper.

Theorem 2. If π is a simple proof of Γ → ∃xA then there is a totally rigid acyclic grammar
G′ with |G′| ≤ |π| and L(G′) ⊆ L(G(π)) s.t. Γ → L(G′) is provable.

Proof. From Lemma 11 we obtain a proof π1 in normal form and a grammar G′ satisfying
|G′| ≤ |π| and L(G′) = L(Gnd(π1)) ⊆ L(G(π)). Applying Lemma 13 to π1 we obtain a proof
π2 in normal form without active cuts satisfying L(G(π2)) = L(G(π1)) hence L(Gnd(π2)) =
L(Gnd(π1)) = L(G′). Applying Lemma 14 to π2 then shows that Γ → L(G′) is provable.

Corollary 1. If π is a simple proof of Γ → ∃xA then Γ → L(G(π)) is provable.

Proof. Append weakenings to the proof of Γ → L(G′) obtained from Theorem 2.

Example 6. Applying Corollary 1 to the proof π of Example 2 shows that

A1, A2, A3 → R(g(a, f(a))), R(g(b, f(b)))

is provable.

The following corollary shows how the logical restriction on the cut-formulas (of having at most
one quantifier) induces a combinatorial restriction on the Herbrand-disjunctions obtainable from
simple proofs.

Corollary 2. If π is a simple proof of Γ → ∃xA, then there are variables x1, . . . , xn and sets
of terms U1, . . . , Un s.t.

Γ →
∨

(u1,...,un)∈U1×···×Un

A[x1\u1] · · · [xn\un]

is provable and
∑n

i=1 |Ui| ≤ |π|.

Proof. By Theorem 2 there is G′ with |G′| ≤ |π| and Γ → L(G′) being provable. By Lemma 3
we can write L(G′) using sets Ui as above.

Example 7. Applying Corollary 2 to the proof π of Example 2 yields the representation

A1, A2, A3 →
∨

(u1,u2,u3)∈U1×U2×U3

R(x)[x\u1][β\u2][α\u3]

where U1 = {g(α, β)}, U2 = {f(α)} and U3 = {a, b}.

19

6 From Tree Languages to Proofs

Already the results in [12] show that a simple proof induces an acyclic regular(!) tree grammar
whose finite language is an Herbrand-disjunction. So what have we gained from the strength-
ening of this result by adding total rigidity? On the one hand, we have gained an exponent:
we have seen in Lemma 3 that in the totally rigid case the size of the language is bound by nn,
but:

Lemma 15. There is an acyclic regular tree grammar G with 2n productions and L(G) = nn
n
.

Proof. Let f be an n-ary function symbol, then the productions

α0 → f(α1, . . . , α1), . . . , αn−1 → f(αn, . . . , αn)

create an tree with nn leaves. Let c1, . . . , cn be terminal symbols, then by adding the productions

αn → c1, . . . , αn → cn

we obtain the desired grammar G.

However there is another – more fundamental – motivation for this result: in this section we
show that the compression power of simple proofs corresponds exactly to that of totally rigid
acyclic grammars. Given such a grammar G we will obtain a simple proof π that induces G.
As L(G(π)) is a set of formulas but L(G) is a set of terms (which do not necessarily represent
formulas), we cannot expect to obtain G(π) = G. The closest possible connection is to wrap up
the term language of G in some new unary predicate symbol R1.

Theorem 3. For every totally rigid acyclic tree grammar G = 〈α1, R, T, P 〉 there is a simple
proof π with G(π) = 〈α0, R ∪ {α0}, T, P ∪ {α0 → R1(α1)}〉.

Proof. By Lemma 3 we can assume that G = 〈α1, {α1, . . . , αn}, T, P 〉 s.t. αi depends only on
αj with j > i. The proof π is defined in the language T ∪ {Ri | 1 ≤ i ≤ n} where the Ri are
unary predicate symbols with intended interpretation “being reachable from the non-terminal
αi”. For each rule αi → t define the formula

ϕαi→t = ∀xi+1 · · · ∀xn (Ri+1(xi+1) ⊃ · · ·Rn(xn) ⊃ Ri(t[αj\xj]
n
j=i+1)).

For each non-terminal αi with rules αi → t1, . . . , αi → tm define the formula

ϕi =
m∨

j=1

ϕαi→tj

and the proof ψi =

· · ·

Ri(tj) → Ri(tj)

Ri(tj) → ∃xRi(x)
∃r

ϕαi→tj , Ri+1(αi+1), . . . , Rn(αn) → ∃xRi(x)
∀∗l ,⊃

∗
l

· · ·

ϕi, Ri+1(αi+1), . . . , Rn(αn) → ∃xRi(x)
∨∗
l .

Now define proofs πi : ϕ1, . . . , ϕi, Ri+1(αi+1), . . . , Rn(αn) → ∃xR1(x) for i ∈ {0, . . . , n} and
π′i : ϕ1, . . . , ϕi, ∃xRi+1(x), Ri+2(αi+2), . . . , Rn(αn) → ∃xR1(x) for i ∈ {0, . . . , n− 1} by

π′i =

(πi)
ϕ1, . . . , ϕi, Ri+1(αi+1), . . . , Rn(αn) → ∃xR1(x)

ϕ1, . . . , ϕi, ∃xRi+1(x), Ri+2(αi+2), . . . , Rn(αn) → ∃xR1(x)
∃l

20

and

π0 =
R1(α1) → R1(α1)

R1(α1), . . . , Rn(αn) → ∃xR1(x)
w∗
l , ∃r

and

πi+1 =

(ψi+1)
ϕi+1, Ri+2(αi+2), . . . , Rn(αn) → ∃xRi+1(x) (π′i)

ϕ1, . . . , ϕi+1, Ri+2(αi+2), . . . , Rn(αn) → ∃xR1(x)
cut

.

Then it is easy to verify that π = πn : ϕ1, . . . , ϕn → ∃xR1(x) has the desired grammar.

It is worthwhile to describe the models of the end-sequent ϕ1, . . . , ϕn → ∃xR1(x) of the proof
constructed above: in a structure that satisfies ϕi at least one of the αi-productions must
be true. A structure satisfying ϕ1, . . . , ϕn hence makes one production of every non-terminal
true and therefore one formula from L(G(π)). The disjunction of the formulas in L(G(π)) is
therefore true in every model of ϕ1, . . . , ϕn and vice versa: every disjunction of instances of
∃xR1(x) which is true in all models of ϕ1, . . . , ϕn must contain L(G(π)).

7 Conclusion

We have shown that the compression power of proofs where each cut contains at most one quan-
tifier corresponds exactly to that of totally rigid acyclic tree grammars. This work constitutes a
proof-of-concept result for a new connection between proof theory and formal language theory
arising from exact characterisations of classes of proofs by classes of grammars.

A side effect of Corollary 1 is to illustrate how little information about a proof is necessary for
computing an Herbrand-disjunction: the current instances of the end-formula together with the
base substitutions suffice, not even the cut-formulas are necessary.

The following directions are left for future work.

7.1 Extensions

The strategy of describing a cut-free proof by a tree language is applicable to any system that
possesses an Herbrand-like theorem, i.e. even full higher-order logic as in [18]. The difficulty
consists in finding an appropriate type of grammars. For full first-order logic (including quanti-
fier alternations in the cuts) it would be natural to consider a stack of tree grammars, each layer
of which corresponds to one layer of quantifiers in the cuts and to prove an analogous result by
iterating Lemma 12. An extension to arithmetic would require – in addition – a mechanism for
recursion in the grammars to model induction.

7.2 Confluence

One of the original motivations for describing cut-elimination by grammars was to characterise
the set of cut-free proofs that can be obtained from a single proof by cut-elimination without
any restriction of the reduction strategy [12]; let → denote this cut-elimination relation. The
author conjectures that the result of [12] can be extended to the rigid tree grammars presented
in this paper, i.e.

Conjecture 1. If π → π′ and π′ is cut-free, then H(π′) ⊆ L(G(π)).

21

In fact, the behaviour of rigid tree grammars under the cut-reduction steps suggests the following
stronger version. Let →− be → without deletion of subproofs (e.g. in a purely multiplicative
calculus: without the reduction of weakening).

Conjecture 2. If π →− π′, then L(G(π)) = L(G(π′)).

This conjecture entails a confluence result by applying it to two arbitrary →−-normal forms
π′1 and π′2 yielding H(π′1) = L(G(π)) = H(π′2). Confluence properties of classical logic have
been the subject of many papers. This conjecture would be an important contribution to that
discussion: it states that the first-order level is confluent (though highly redundant [1]) and
that the different normal forms arise only from different choices taken at the propositional level
how to (partially) remove this redundancy.

7.3 Algorithmic Cut-Introduction

Computer-generated proofs are typically analytic, i.e. in the case of first-order logic can be writ-
ten as Herbrand-disjunctions. Due to their shorter length it is natural to try to find proofs with
cut algorithmically. One approach is to abbreviate a given cut-free proof by the introduction of
cuts, see e.g. [9, 23]. With respect to general-purpose data compression, such a procedure has
the algorithmic advantage of also reducing the runtime of operations, for example proof check-
ing, which is important in applications such as proof-carrying code. Cut-introduction (as any
compression) exploits redudancy which is present in the Herbrand-disjunction. A fundamental
problem of this approach is to understand which type of redudancy can be removed by which
cuts. The characterisation results of this paper give a solution to this problem for the case of
cuts with one quantifier: the corresponding redundancy is that of the language of a totally rigid
acyclic tree grammar.

7.4 Proof Length

From a more theoretical point of view, it is possible to view a proof with cuts as a com-
pressed representation of a cut-free proof or an Herbrand-disjunction (if we fix a particular
cut-elimination procedure, for instance the computation of the language of its grammar). The
results of this paper show that the size of the proof with cut is intimately related to measures
from formal language theory such as automatic complexity [22] or automaticity [21]. By the
size condition of Corollary 2, a lower bound on the number of rules of totally rigid acyclic tree
grammars translates to a lower bound on the length of proofs with cuts. The perspective of
exploiting this connection in order to use techniques from formal language theory for proving
lower bounds on proofs seems promising (e.g. for problems 22 and 24 in [3] on the impact of
Skolemisation and equational reasoning on the length of proofs).

7.5 Intuitionistic Logic

Another interesting application of these grammars would be the analysis of cut-elimination in
intuitionistic logic. Moving from Herbrand’s theorem to the existential witness property, the
natural expectation would be to find that |L(G(π))| = 1.

22

References

[1] Matthias Baaz and Stefan Hetzl. On the non-confluence of cut-elimination. Journal of
Symbolic Logic, 76(1):313–340, 2011.

[2] Matthias Baaz and Alexander Leitsch. Cut Normal Forms and Proof Complexity. Annals
of Pure and Applied Logic, 97:127–177, 1999.

[3] Peter Clote and Jan Kraj́ıček. Open problems. In Peter Clote and Jan Kraj́ıček, editors,
Arithmetic, Proof Theory and Computational Complexity, pages 1–19. Oxford University
Press, 1993.

[4] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree Automata: Techniques and Applications. Available on: http:

//www.grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

[5] Stephen Cook and Phong Nguyen. Logical Foundations of Proof Complexity. Perspectives
in Logic. Cambridge University Press, 2010.

[6] Emmanuel Filiot, Jean-Marc Talbot, and Sophie Tison. Satsifiability of a Spatial Logic with
Tree Variables. In Jacques Duparc and Thomas A. Henzinger, editors, Computer Science
Logic (CSL) 2007, volume 4646 of Lecture Notes in Computer Science, pages 130–145.
Springer, 2007.

[7] Emmanuel Filiot, Jean-Marc Talbot, and Sophie Tison. Tree Automata with Global Con-
straints. In Masami Ito and Masafumi Toyama, editors, Developments in Language Theory
(DLT) 2008, volume 5257 of Lecture Notes in Computer Science, pages 314–326. Springer,
2008.

[8] Emmanuel Filiot, Jean-Marc Talbot, and Sophie Tison. Tree Automata With Global
Constraints. International Journal of Foundations of Computer Science, 21(4):571–596,
2010.

[9] Marcelo Finger and Dov Gabbay. Equal Rights for the Cut: Computable Non-analytic
Cuts in Cut-based Proofs. Logic Journal of the IGPL, 15(5–6):553–575, 2007.

[10] Ferenc Gécseg and Magnus Steinby. Tree Languages. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages: Volume 3: Beyond Words, pages 1–68. Springer,
1997.

[11] Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift,
39:176–210,405–431, 1934–1935.

[12] Stefan Hetzl. On the form of witness terms. Archive for Mathematical Logic, 49(5):529–554,
2010.

[13] Florent Jacquemard, Francis Klay, and Camille Vacher. Rigid tree automata. In Adrian Ho-
ria Dediu, Armand-Mihai Ionescu, and Carlos Mart́ın-Vide, editors, Third International
Conference on Language and Automata Theory and Applications (LATA) 2009, volume
5457 of Lecture Notes in Computer Science, pages 446–457. Springer, 2009.

[14] Florent Jacquemard, Francis Klay, and Camille Vacher. Rigid tree automata and applica-
tions. Information and Computation, 209:486–512, 2011.

23

[15] Ulrich Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Mathe-
matics. Springer, 2008.

[16] Georg Kreisel. Finiteness theorems in arithmetic: An application of Herbrand’s theorem
for Σ2-formulas. In J. Stern, editor, Logic Colloquium 1981, pages 39–55. North-Holland,
1982.

[17] Horst Luckhardt. Herbrand-Analysen zweier Beweise des Satzes von Roth: Polynomiale
Anzahlschranken. Journal of Symbolic Logic, 54(1):234–263, 1989.

[18] Dale Miller. A Compact Representation of Proofs. Studia Logica, 46(4):347–370, 1987.

[19] Tsuyoshi Morioka. Logical Approaches to the Complexity of Search Problems: Proof Com-
plexity, Quantified Propositional Calculus and Bounded Arithmetic. PhD thesis, University
of Toronto, 2005.

[20] Sherif Sakr. XML compression techniques: A survey and comparison. Journal of Computer
and System Sciences, 75:303–322, 2009.

[21] Jeffrey Shallit and Yuri Breitbart. Automaticity I: Properties of a Measure of Descriptional
Complexity. Journal of Computer and System Sciences, 53:10–25, 1996.

[22] Jeffrey Shallit and Ming-Wei Wang. Automatic complexity of strings. Journal of Automata,
Languages and Combinatorics, 6(4):537–554, 2001.

[23] Bruno Woltzenlogel Paleo. Atomic Cut Introduction by Resolution: Proof Structuring and
Compression. In E. M. Clark and A. Voronkov, editors, Logic for Programming, Artifical
Intelligence and Reasoning (LPAR-16), volume 6355 of Lecture Notes in Computer Science,
pages 463–480. Springer, 2010.

24

