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This paper deals with the sedimentation of highly concentrated sediment suspensions (cohesive as well as non-cohesive) and the beginning of the consolidation of cohesive sediments. Based on a comparison of existing empirical formulas and experimental data, the particle Reynolds number was shown to be of importance for the behaviour of particularly non-cohesive sediments. In addition it plays a role in determining whether one or two interfaces develop during the sedimentation phase. In the case of cohesive sediments, the estimation of the gelling concentration, although difficult, seems to be fundamental. Some suggestions on the estimation of the permeability coefficient and total settling function are then given in order to improve the modelling of the sedimentation and consolidation behaviour for concentrations close to the gelling concentration.

Introduction

The interest in understanding physical characteristics of cohesive sediment has increased significantly during the last 30 years. Cohesive sediments play an important role in river and estuary engineering because of their capability to bind pollutants. Another important issue is the transport, sedimentation and consolidation of fine sediments in reservoir, navigation channels or harbour basins.

Most of the research has been carried out on the settling of low-concentration mud suspensions [START_REF] Van Leussen | Aggregation of particles, settling velocity of mud flocs -a review[END_REF]Dyer & Manning, 1999, among others) or on the consolidation regime [START_REF] Gibson | The theory of onedimensional consolidation of saturated clays. i. finite nonlinear consolidation of thin homogeneous layers[END_REF]Been & Sills, 1981 among others). Few authors [START_REF] Winterwerp | On the dynamics of high-concentrated mud suspensions[END_REF][START_REF] Camenen | Settling velocity of sediments at high concentrations[END_REF] have studied hindered settling of cohesive sediments where large concentrations of sediments do affect the settling velocity. [START_REF] Dankers | Hindered settling of mud flocs: theory and validation[END_REF] attempted to link the hindered regime with the consolidation regime intro-ducing a total settling velocity or settling function including permeability effects. It seems however that many unknowns still exist about the behaviour of a mud suspension at the onset of its gelling concentration (defined as the concentration for which the flocs form a space-filling network, [START_REF] Winterwerp | Introduction to the physics of cohesive sediment in the marine environment[END_REF]. In estuaries, wave induced turbulence can strongly affect the hindered regime [START_REF] Gratiot | On the determination of the settling flux of cohesive sediments in a turbulent fluid[END_REF], which can create highly concentrated fluid mud layer with concentrations close to the gelling concentration. On the other hand, the mechanics of lutocline (interface where a sharp gradient in sediment concentration exists and generally maintained thanks to turbulence) and fluid mud are also strongly affected by the hindered settling velocity of the sediments [START_REF] Wolanski | Mixing across a lutocline[END_REF]. [START_REF] Mehta | Review notes on cohesive sediment erosion[END_REF] also showed that erosion processes are deeply influenced by the state of the mud (fluid, non-consolidated, and consolidated). It is thus fundamental to better understand the behaviour of cohesive sediments close to the gelling concentration.

A study on the effects of the choice of hindered settling formulas for the sedimentation regime is presented in this paper using the Kynch theory (1952). Based on experiments of sedimentation in a quiescent fluid (where turbulence is negligible), the ability of the formulas to induce one or two interfaces depending on the particle Reynolds number is emphasized. The second part of this paper establishes a permeability equation and a total settling function that can be used in an advection-diffusion model.

1DV equations for a sedimentation-consolidation model

Equation for sedimentation and consolidation

Assuming that solid particles are of the same size, shape and density (a1), that both the solid particles and the fluid of the suspension are incompressible (a2), that the flow is one-dimensional (a3), and that the settling velocity of particles in a dispersion and the dissipation coefficient can be determined by the local particle concentration only (a4), a general 1D equation for the sedimentation and consolidation regimes may be [START_REF] Toorman | Sedimentation and self-weight consolidation: general unifying theory[END_REF][START_REF] Toorman | Sedimentation and self-weight consolidation: constitutive equations and numerical modelling[END_REF] :

∂c ∂t + ∂ ∂z [W sk (c)c] + ∂ ∂z D(c) ∂c ∂z = 0 (1)
where W sk (c) is the total settling velocity function including permeability effects and D(c) is the total dissipation coefficient, and c the volumetric concentration of matter. The total dissipation coefficient is the sum of the molecular diffusion effects (D m ), consolidation diffusion effects (D c ), and eddy diffusivity or turbulence effects (D t ). The molecular diffusion D m is generally negligible and the eddy diffusivity D t may be estimated using a kǫ turbulence model. However, for an experiment with no hydrodynamic constraints (waves or current) and considering the flow is one-dimensional, the turbulence effects are negligible. A sedimentation consolidation experiment is thus represented by three main regimes [START_REF] Toorman | A hindered settling model for the prediction of settling and consolidation of cohesive sediment[END_REF][START_REF] Dankers | Hindered settling of mud flocs: theory and validation[END_REF]; cf. Fig. 1) :

1. hindered regime, where the settling velocity is mainly driven by the concentration of particles ( the total pressure minus the neutral pressure of water in pores or effective stress σ ′ = 0) ; 2. permeability regime, where the settling velocity function is mainly driven by the permeability. This mode physically represents compression and expulsion of pore water (σ ′ ≈ 0) ; 3. effective stress regime, where particle deformation causes further compression (σ ′ > 0; diffusion term due to D c , cf. Eq. 1).

The first regime corresponds to the sedimentation regime, whereas the two last regimes correspond to the consolidation regime. However, the permeability regime may be modelled in a similar way as the sedimentation regime, i.e. with D = 0. The following study will focus on the estimation of the total settling velocity function. [START_REF] Kynch | A theory on sedimentation[END_REF] developed a theory on sedimentation based on the batch experiment. This experiment consists of an initially well-mixed suspension of particles with a concentration uniformly initialized to c 0 in a settling column subject to gravity only. This suspension will separate into three different phases (one approaching the maximum packing particle concentration c = c max at the bottom of the container, one with a well-mixed suspension c = c 0 in the middle of the container at the initial average concentration, and clear water at the top of the container). Using the same assumptions as for Eq. 1 and adding that solid particles are all small with respect to the settling column, the mass-balance of the suspended sediments (Eq. 1) simplifies into the simple wave equation in z-direction, known as the Kynch equation:

The Kynch model for the sedimentation of particles

∂c ∂t + ∂Φ ∂z = 0 (2)
where Φ = W sh c is the sediment flux or the Kynch batch flux density function, and W sh , the hindered settling velocity, which is assumed to be a function of c and W s0 (settling velocity of a single particle) only.

Sedimentation and batch theory

The Kynch sedimentation experiment is a simple and interesting test to quantify and calibrate the hindered settling velocity formulas, including the beginning of the permeability regime for cohesive sediments. As larger uncertainties are observed for cohesive sediments because of their stochastic characteristics (density, size and shape of the population of sediments), the hindered settling velocity formulas were first tested against non-cohesive data. The hindered settling formulas studied in this paper were previously presented and compared by [START_REF] Camenen | Settling velocity of sediments at high concentrations[END_REF]. Equations are reported in appendix A.

Non-cohesive sediments

In case of non-cohesive sediments, the Kynch equation (Eq. 2) is fully valid. Assuming W sh is a function of concentration only, [START_REF] Kynch | A theory on sedimentation[END_REF] showed that Eq. 2 may be rewritten as follows:

∂c ∂t + W s0 F(c) ∂c ∂z = 0 (3)
where f (c) = W sh /W s0 corresponds to any semi-empirical equation for the hindered effects on the settling velocity, and

F(c) = ∂[c f (c)] ∂c (4) 
Eq. 3 may be solved by integrating along the characteristic lines dz/dt = W s0 F(c) (method of characteristics). Concentration gradients increase when the characteristic lines converge [START_REF] Winterwerp | Introduction to the physics of cohesive sediment in the marine environment[END_REF]. Moreover, F , and therefore ∂Φ/∂c, may have a minimum at c = c cr . For c < c cr , dF/dc < 0, and two interfaces (upper interface corresponding to the settling front and lower interface corresponding to the bed front) will develop (cf. Fig. 2a). For c > c cr , dF/dc > 0, and only the upper interface develops (cf. Fig. 2b).

The choice of the hindered settling formulas may significantly influence the results for the Kynch theory, even if the formulas yield similar prediction for the settling velocity. Indeed, if two hindered functions f a and f b yield same result for

c = c 1 ( f a (c 1 ) ≈ f b (c 1 )), F a (c 1 ) = {∂[c f a (c)]/∂c} c=c 1 may differ significantly from F b (c 1 ) = {∂[c f b (c)]/∂c} c=c 1 .
It results from the variability of the semi-empirical expressions for the hindered functions (see appendix A). Thus, the prediction of c cr , which separate the two regimes or of c m for which the maximum flux density Φ = cW s is reached may vary significantly with the choice of the hindered settling formula as c cr and c m correspond to the 1st and 2nd derivatives of the function F with respect to c, respectively.

The particle Reynolds number R e * = W s d/ν (ν is the kinematic viscosity of water), which characterizes the flow regime around a settling particle, is a measure of the relative weight of the inertial forces and frictional forces to the total drag forces. For a single particle, the drag coefficient decreases with the particle Reynolds number. And for large particle Reynolds numbers, the velocity of a particle may thus be less affected by the wake of the surrounding particles. Based on experimental results, [START_REF] Richardson | Sedimentation and fluidisation: Part I[END_REF] suggested the formula f = (1c) n where the index n decreases with the particle Reynolds number from 4.8 (R e * ≪ 1) to 2.2 (R e * ≫ 1). With this formula, the maximum of the function c f increases from 0.06 to 0.14 for large R e * ; and, as a consequence, knowing that d(c m f (c m ))/dc = 0 and f (c max ) = 0, the curve steepens when c > c m , and the coordinate of the inflection point (c = c cr ) also increases with the particle Reynolds number (see also in Fig. 4). Using [START_REF] Rowe | A convenient empirical equation for estimation of the Richardson-Zaki exponent[END_REF] [START_REF] Oliver | The sedimentation of suspensions of closely-sized spherical particles[END_REF][START_REF] Shannon | Batch and continuous thickening: Prediction of batch settling behavior from initial rate data with results for rigid spheres[END_REF][START_REF] Baldock | Setting velocity of sediments at high concentrations[END_REF], the flux density function (c f = Φ/W s0 ) is plotted in Fig. 3 versus the relative concentration c/c max with the particle Reynolds number emphasized. The general behaviour of the Richardson & Zaki formula is confirmed by the data. A hindered settling formula should thus take into account the effect of the particle Reynolds number. Due to the scatter in the data and relatively small number of data points, it is however difficult to precisely identify the position of the critical concentration c cr (inflection point). Only an analytical expression of f (or a curve fitting of the data) can be used to estimate c cr . Expressions for c f and F are reported in the literature (cf. Camenen, 2008 for details). The [START_REF] Richardson | Sedimentation and fluidisation: Part I[END_REF]), Souslby (1997, p.135-136), [START_REF] Winterwerp | On the dynamics of high-concentrated mud suspensions[END_REF] and [START_REF] Dankers | Hindered settling of mud flocs: theory and validation[END_REF] formulas, as well as the modified Richardson & Zaki formula and Camenen formula based on mixture theory [START_REF] Camenen | Settling velocity of sediments at high concentrations[END_REF] are plotted as a function of concentration in Fig. 4 (see Appendix for the description of the formulas). Following [START_REF] Camenen | Settling velocity of sediments at high concentrations[END_REF], the modified Richardson & Zaki formula will be used as a reference : The flux density function c f using several formulas is plotted against the volumetric concentration in Figs. 4a and4c for two different particle Reynolds numbers (R e * = 0.1 and 100, respectively). It is observed that the formulas yield quite different results for the prediction of the hindered settling velocity. Consequently, the formulas also yield large differences in the prediction of c m , and especially c cr . In Table 1, the results (c m , c m f (c m ), and c cr ) are presented for two different particle Reynolds numbers (R e * = 0.1 and 100, respectively) depending on the formula used, together with an estimation based on polynomial fits over experimental data. An estimation of the error made on the estimation of c m , c m f (c m ), and c cr is also provided. The [START_REF] Winterwerp | On the dynamics of high-concentrated mud suspensions[END_REF] and [START_REF] Dankers | Hindered settling of mud flocs: theory and validation[END_REF] formulas (obtained for cohesive sediments) seem inaccurate for non-cohesive sediments as they do not take into account the effect of the particle Reynolds number, even though it clearly influences the results. Even for small Reynolds number, the Winterwerp formula fails to predict c m or c cr (see Tab. The Souslby formula (1997, p.135-136), modified Richardson & Zaki formula and Camenen formula based on mixture theory [START_REF] Camenen | Settling velocity of sediments at high concentrations[END_REF] yield very similar results, all implying that c m and c cr do vary with the particle Reynolds number. They show, however, different behaviour for large concentrations close to c max : the Soulsby formula tends to overestimate the flux as it yields Φ > 0 when c = c max ; for relatively high particle Reynolds number (R e * > 100, cf. Figs. 4d and5), the modified Richardson & Zaki yields no value for c cr , whereas for relatively low particle Reynolds number, it yields two values for c cr (as observed by [START_REF] Shannon | Batch and continuous thickening: Prediction of batch settling behavior from initial rate data with results for rigid spheres[END_REF]; the Camenen formula yields a function F = 0 when c = c max (c f tangential to the line y(c) = 0), which seems to disagree with experimental data.
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In Fig. 5, c m and c cr were estimated using the Richardson & Zaki, modified Richardson & Zaki, Soulsby, and Camenen formulas as well as experimental data. Results based on experimental data were obtained using polynomial fits over data points (cf. Fig. 3). For small R e * , c m is less than 0.3c max , and increases to 0.4-0.5c max at higher R e * . The four formulas are in good agreement with experimental estimations. A slight dispersion occurs depending on the formula for large particle Reynolds numbers. For small R e * , c cr is less than 0.55c max , and increases to 0.9c max at higher R e * . The modified Richardson & Zaki formula predicts a second value for c cr (called c cr,2 ) for low R e * which decreases from 0.95 (R e * ≪ 1) to 0.85 at a critical particle Reynolds number ℜ * ,cr ≈ 50. Above this critical value, no solution exist for c cr , which means that the modified Richardson & Zaki formula will always result in the occurrence of two interfaces in a settling suspension, whatever the initial concentration. Again, the four formulas are in good agreement with experimental estimations when R e * < 200. For R e * > 200, it is difficult to conclude as there are large uncertainties on the experimental estimation; c cr was actually not always observed depending on the polynomial fit. 

Cohesive sediments

Batch theory is not exactly applicable to cohesive suspensions, because they correspond to a population of sediments with varying size, density and shape. Moreover, as a floc is made of sediment matter and water, the volumetric concentration c does not properly describe the floc volumes. Assuming that this population may be represented by a single particle with fixed characteristics, [START_REF] Kranenburg | Hindered settling and consolidation of mud -analytical results[END_REF] applied Eq. 2 to the volumetric concentration of flocs φ (φ = (ρ sρ)/(ρ fρ)c , where ρ, ρ s , and ρ f are the water, sediment, and flocs densities, respectively), and rewrote the equation as follows:

∂φ ∂t + W s0 F(φ) ∂φ ∂z = 0 (8) F(φ) = ∂[φ f (φ)] ∂φ (9) 
where f (φ) = W sh /W s0 .

Eq. 8 may be solved by integrating along the characteristic lines dz/dt = W s F(φ) as for the non-cohesive sediments case. In the same way as for the non-cohesive sediments, the function F may have a minimum at φ = φ cr . For φ < φ cr , dF/dφ < 0, two interfaces will also develop (cf. Fig. 6a). For φ > φ cr , dF/dφ > 0, only the upper interface is visible (cf. Fig. 6b). One main difference with sand is that cohesive particles are deformable. It explains why φ max > c max (cf. Camenen, 2008). First, water is ejected from pore space only (0.6 φ < φ max ). When the gelling concentration is reached (φ = φ max ≈ 0.85 when c = c gel ) and consolidation begins, the volumetric concentration of flocs ceases to increase; the floc density ρ f increases, and so, the volumetric concentration of matter increases (c gel < c bed,1 < c bed,2 < c bed,3 < c max ).

In Fig. 7, flux density functions φ f and F are plotted versus φ/φ max using the formulas considered earlier, and using a typical particle Reynolds number for cohesive sediments : R e * = 0.1. For all of the following tests, a constant gelling concentration C gel = 100 g/l (or c gel = 0.038) was assumed, however, this value may also vary with the particle Reynolds number. The maximum volumetric concentration of flocs φ max was set to 0.85. Following [START_REF] Camenen | Settling velocity of sediments at high concentrations[END_REF], the reference formula was the modified Richardson & Zaki. For cohesive sediments, assuming the size and density of the floc to be constant, and n > 2, Eq. 7 may be modified as : This differs slightly from the original suggestion (Eq. 11 in [START_REF] Camenen | Settling velocity of sediments at high concentrations[END_REF], which had a factor of (1c) n-2 instead of (1c) n/2 ; Because of buoyancy effects, one should have (1c) x with x ≥ 1 whereas n -2 could be less than 1). In Table 2, the results (φ m , φ m f (φ m ), and φ cr ) are presented for R e * = 0.1 depending on the formula used, together with an estimation based on polynomial fits over experimental data. An estimation of the error made on the estimation of φ m , φ m f (φ m ), and φ cr is also provided. The Soulsby and the Richardson & Zaki equations yield similar results as both equations include the effect of the hindered settling velocity using a coefficient (1φ) n with n ≈ 4.7 for small R e * . These minimize F at φ cr = 2/(n + 1) (cf. Eq. 6), i.e. φ cr ≈ 0.4φ max for fine sediments, which appears to be too low. Both equations underestimate Φ-values as they underestimate the settling velocity [START_REF] Camenen | Settling velocity of sediments at high concentrations[END_REF]. The Winterwerp, modified Richardson & Zaki and Camenen relationships behave similarly for the function f at low volumetric concentrations (φ/φ max < 0.5). As the Winterwerp formula does not take into account the possibility that φ max < 1 (the assumption φ max = 1 is stated), it yields a larger flux for large concentrations. However, a different calibration of C gel for the Winterwerp formula would produce estimates similar to Richardson & Zaki and Camenen relationships. On the other hand, it does not yield any minimum for the function F, and thus will always predict the existence of two interfaces in a settling suspension. Dankers & Winterwerp proposed a modification that improved this behaviour and derived a minimum for the function F. However, this modification significantly decreased the magnitude of the density function.

W s W s0 = (1 -c) n/2 (1 -φ) n/2-1 1 - φ φ max φ max (10) (a) (b) φ 0 φ cr < c bed
φ m /φ max Φ(φ m ) φ cr /
To confirm these results, experimental data obtained with cohesive sediments were analysed [START_REF] Thorn | Physical processes of siltation in tidal channels[END_REF][START_REF] Ross | Vertical structure of estuarine fine sediment suspensions[END_REF][START_REF] Wolanski | Mixing across a lutocline[END_REF][START_REF] Wolanski | The role of turbulence in settling of mudflocs[END_REF][START_REF] Mory | CBS layers in a diffusive turbulence grid oscillation experiment[END_REF][START_REF] Gratiot | Floculation des vases de gironde: mesure experimentale du flux de chute en colonne[END_REF][START_REF] Dankers | A preliminary study on the hindered settling of kaolinite flocs[END_REF]. All of these studies used natural mud with the exception of the [START_REF] Wolanski | Mixing across a lutocline[END_REF] and [START_REF] Dankers | A preliminary study on the hindered settling of kaolinite flocs[END_REF] data sets (kaolinite) and one data set from [START_REF] Mory | CBS layers in a diffusive turbulence grid oscillation experiment[END_REF] where the mud was pretreated. In the case of cohesive sediments, large uncertainties occur as the size and density of the floc cannot be measured accurately and because these values represent a statistical measure of a population. In dilute suspensions, the size (and the density) of the floc varies with the concentration (due to flocculation). It is assumed that the floc characteristics (size and density) did not change during the sedimentation experiments, and were identical to the flocs at the maximum concentration, below which hindered effects were not observed (C ≈5 to 10 g/l). The assumption of a constant mean floc size may be justified since the flocculation effects (increase of the mean size of the flocs with concentration) may be balanced by the concentration effects (decrease of the mean size of the flocs with concentration due to floc breakup). The density of the floc is then calculated using the estimated gelling concentration, i.e. ρ f = ρ + (ρ sρ)c gel /φ max (with φ max = 0.85). This latter was evaluated to maximize the fit to experimental data points (C gel varying from from 30g/l to 90g/l depending on the data set), with the exception of the Dankers et al. data set, where the gelling concentration (C gel ≈ 85 g/l) was estimated experimentally.

In Fig. 8, the flux density function (Φ/W s0 = φ f ) is plotted versus the relative concentration φ/φ max using the data collected for cohesive sediments, with particle Reynolds number R e * emphasized. The results show a lot of scatter due to experimental uncertainties (including estimation of gelling concentration) and the variability in floc characteristics, as they were assumed constants. The data corresponding to φ > φ max should correspond to the consolidation regime. As data points are based on volumetric concentration of matter c, physically unrealistic values of φ are observed in Fig. 8 when c > c gel as φ should be lower than φ max . When c > c gel , φ = φ max but the floc density increases as water is expelled from the floc. It is difficult to determine the influence of the particle Reynolds number from these experimental results, because of the scatter in the data and also because they cover a narrow range of particle Reynolds numbers (2 × 10 -2 < R e * < 2). Using polynomial fits over data sets, φ m and φ cr were approximated (see also Tab. 2 and Fig. 9) and a rough estimation of φ m and φ cr may be suggested : 0.2 < φ m /φ max < 0.4 and 0.6 < φ cr /φ max < 0. [START_REF] Dankers | A preliminary study on the hindered settling of kaolinite flocs[END_REF] found from observations in their settling column (where C gel = 85 g/l and R e * = 3 × 10 -2 ) and by comparing the rising bed in the concentration time series, that the settling behaviour changed for 0.53 < φ cr < 0.55, which means φ cr /φ max ≈ 0.68. These values are consistent with results of the modified Richardson & Zaki and Camenen equations (φ cr ≈ 0.6-0.7φ max , cf. Tab. 2).

In Fig. 9, φ m and φ cr were estimated using the Richardson & Zaki, modified Richardson & Zaki, Soulsby, and Camenen formulas as well as experimental data. Results based on experimental data were obtained using polynomial fits over data points when possible (cf. Fig. 8). The φ m and φ cr values vary significantly among empirical formulas. The sen-
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Permeability regime

As proposed by [START_REF] Toorman | Sedimentation and self-weight consolidation: general unifying theory[END_REF][START_REF] Toorman | Sedimentation and self-weight consolidation: constitutive equations and numerical modelling[END_REF] and also [START_REF] Winterwerp | On the dynamics of high-concentrated mud suspensions[END_REF], the initial phase of the consolidation regime (ejection of pore water) may be included in the 1D equation for sedimentation through the total settling velocity function W sk (cf. Eqs. 1 and 2). The difficulty lies in determining the permeability of mud.

Estimation of the permeability

Many relationships have been proposed to estimate permeability. Permeability is often a function of the void ratio e vr = 1/c-1. Among others, Townsend & McVay (1990) used a power law relationship (cf. Eq. 11) whereas [START_REF] Bartholomeeusen | Compound shock waves and creep behaviour in sediment beds[END_REF] used an exponential function (cf. Eq. 12) :

k = A kp e vr B kp (11) k = A ke exp(B ke e vr ) (12) 
Both formulations, however, require the calibration of two coefficients. It should also be noted that these relations (Eqs. 11 and 12) are mainly empirical and derived from data where effective stress are expressed in kPa or even MPa (far from the permeability regime defined in section 2.1). [START_REF] Merckelbach | Consolidation and strength evolution of soft mud layers[END_REF] and [START_REF] Merckelbach | Equations for effective stress and permeability of soft mud Űsand mixtures[END_REF] suggested a fractal approach to estimate permeability, and their formulation includes the effect of sand content :

k = A k f c mud 1 -c sand -2 3-n f (13)
where c mud and c sand are the volumetric concentrations for mud and sand, respectively (c mud = (1p sand )c and c sand = p sand c where p sand is the sand content (in %) and c is then the total volumetric concentration of matter), and n f ≤ 3 is the fractal dimension. When sand content is negligible, c mud /(1c sand ) ≈ c. The degree to which permeability depends on concentration may be indicated by n f . The coefficient A k f (A kp or A ke ) remains to be determined. [START_REF] Bartholomeeusen | Sidere: numerical prediction of large-strain consolidation[END_REF] made a prediction exercise (named "Sidere"), using a batch of sediments from the river Scheldt (Antwerpen, Belgium). The grain size distribution were given approximately by the parameters d 10 , d 50 , d 90 , equal to 6, 70, and 210 µm, respectively, with a specific gravity equal to s = 2.72. Different experiments were performed with an initial density 1300 < ρ mix,init < 1550kg/m 3 greater than the structural density, which corresponds approximately to a gelling concentration c gel ≈ 0.1-0.15. Several scientists (Bartholomuseeusen, Carrier, Lin & Penumadu, Masada & Chan, Merckelbach, Van Kesteren, Winterwerp, and Znidarcic;cf. Bartholomeeusen et al., 2002 for details) calibrated their own model using the same experimental data (cf. Fig. 10). Though large differences were observed for the calibration of the coefficients "A" and "B" depending on the specific formulations used (Eq. 11, 12 or 13, see also [START_REF] Bartholomeeusen | Sidere: numerical prediction of large-strain consolidation[END_REF], similar results were observed when 0.2 < c < 0.5, i.e. c gel < c < 4c gel , which corresponds to the limit of validity of the present model (consolidation included as a sedimentation effect). However, one can observe in Fig. 10 that all these formulas yield a large variability in the results when c ≈ c gel .

To fit Eqs. 11,12,and 13 to the data requires the estimation of two coefficients with significant risks of disconnection with the settling characteristics of the sediment. One way to estimate the permeability coefficients may be use the hindered settling characteristics of the sediment since the permeability function reads W k = (s -1)kc (where s = ρ s /ρ is the relative density of matter). Eq. 13 with p sand = 0% gives k = A k c B k (with B k = -2/(3-n f )). Fixing B k , it is possible to find a concentration c = c gel /χ (with χ a fixed parameter to be calculated, χ > 1) such that the slope of the hindered velocity function is the same as the permeability function, i.e. d{log(W sh for c > c gel /χ, we obtain :

)}/dc = d{log(W k )}/dlog(c) = B k + 1. The parameter A k is determined from the relationship W k (c = c gel /χ) = (s -1)k(c = c gel /χ)c gel /χ. Then,
k = W sh (c = c gel /χ) (s -1)c gel /χ c c gel /χ B k (14)

Total settling function

As hindered settling functions yield W s = 0 when c ≥ c gel and permeability functions (Eqs. 11,12, and 13) cannot be linked to the settling velocity when c ≤ c gel , [START_REF] Winterwerp | On the dynamics of high-concentrated mud suspensions[END_REF] suggested defining a fitting function to obtain an unique equation for W sk :

W sk = W sh + (s -1)kc 1 + ξ(s -1)kc (15) 
with ξ ≈ 10 4 -10 5 being a heuristic parameter to obtain a smooth transition between the descriptions for the hindered settling regime and the permeability regime (cf. Fig. 11). Using Eq. 14, a second method to compute the total settling function may be suggested : Estimates of the total settling velocity function W sk are presented in Fig. 11 and are compared to experimental data (a) from [START_REF] Wolanski | Mixing across a lutocline[END_REF] and (b) from [START_REF] Dankers | Hindered settling of mud flocs: theory and validation[END_REF]. For both cases, Eq. 10 has been plotted versus data (after an estimation of W s0 and c gel ) as well as W k based on Eq. 13 (with p sand = 0%) and fitted with the experimental data (fit of the coefficients A k and B k ). The total settling function W sk was then plotted using Eqs. 15 and 16. For Eq. 16, a second equation for the permeability function was estimated by using Eq. 14 with the same slope B k as for W k .

W sk =              W sh if c ≤ c gel χ W k = W sh (c = c gel /χ) χc c gel B k +1 if c > c gel χ ( 
If W k > W sh ∀c (cf. Fig. 11b), both equations yield unsatisfactory results. The Winterwerp method tends to overestimate results for the hindered settling regime. On the other hand, the present method tend to underestimate results for the permeability regime. On the other hand, if the W k function intersects the W sh function (cf. Fig. 11a), both equations yield satisfactory results. Eq. 15 does however induce a discontinuity in the slope dW sk /dc at c = c gel which seems to be unrealistic. Indeed, in reality, because of the variability of the cohesive particles in the suspension, the consolidation regime may start locally before the concentration reaches its gelling point (which is defined globally). As shown in Fig. 11, data points present a smooth transition between the hindered regime and the permeability regime , which is not reproduced by Eq. 15. Moreover, Eq. 15 needs to fit three parameters (A k , B k , and ξ) whereas Eq. 16 needs to fit only one parameter (B k ).

It is important to realize how the use of the total settling velocity function influences sedimentation dynamics. In Fig. 12, the flux density functions F (calculated using total settling velocity function W sk based on Eq. 15 or on Eq. 16 fitted with the experimental data of Dankers & Winterwerp, see also Fig. 11) have been plotted versus the relative concentration φ/φ max . It appears that Eq. 16 induces a slight decrease of the value for φ cr compared to the original formula for the hindered settling (Eq. 10). On the other hand, Eq. 15 yields a discontinuity in the function F for φ = φ max = φ gel with a change in the sign of dF/dφ. Following the study of [START_REF] Concha | A century of research in sedimentation and thickening[END_REF], it yields an interface for φ = φ max = φ gel , which does not seem to be physically realistic. 

Conclusions

The effect of the hindered settling formula on predicting sedimentation has been presented. For non-cohesive sediments, the particle Reynolds number strongly affected estimates of the critical concentrations c m , where the flux reaches a maximum, and c cr , above which only one interface will be observed during a batch experiment (if c 0 > c cr ). For cohesive sediments, as the particle Reynolds number is generally smaller than 1, the effect of R e * was not as significant. One main difficulty remains in determining the gelling concentration. The modified Richardson & Zaki formula suggested by [START_REF] Camenen | Settling velocity of sediments at high concentrations[END_REF] appeared to yield the best overall results among the studied formulas compared to the experimental data, i.e. the best representation of the density function for both non-cohesive (c m , Φ(c m ), and c cr ) and cohesive (φ m , Φ(φ m ), and φ cr ) sediments. However, the valida-tion with cohesive experimental data remains difficult because of the uncertainties and the inherent variability of cohesive sediments.

Several propositions for the estimation of permeability were also discussed for concentrations two to three times larger than the gelling concentration. A fundamental issue, which is the link between the hindered regime and the permeability regime, was discussed. It appeared preferable to obtain a relationship for W sk that remains smooth at c = c gel to avoid prediction of a physically unrealistic interface at this concentration. A solution was suggested using a permeability function that is tangential to the hindered settling function.

Many uncertainties remain in the description of cohesive sediments, hindered settling velocities and consolidation of cohesive sediments : i.e. the influence of organic content and flocculation, the interaction between particles of different sizes (as muds often have a large particle size distribution), and sediment history for consolidation. The model proposed in this paper suggests some improvements compared to the existing literature. Some efforts are still needed to better understand the dynamics of suspensions close to the gelling concentration, and to be able to represent them in a relatively simple way hat could be applicable in engineering models.

Figure 1 :

 1 Figure 1: Schematic view of the three different prevailing processes in a sedimentation consolidation experiment from the flux curve (Φ = cW sk ) as a function of concentration c.

Figure 2 :

 2 Figure 2: Schematic view of the development of two (a) or one (b) interfaces in the Kynch sedimentation test with non-cohesive sediments depending on the initial concentration c 0 (the lines with an arrow correspond to the iso-concentration lines with c 0 < c 1 < c 2 < c max ).

Figure 3 :

 3 Figure 3: Flux density function (Φ/W s0 = c f ) as a function of the relative concentration c/c max for a range of particle Reynolds numbers R e * .

Figure 4 :

 4 Figure 4: Variation of the flux density functions Φ = c f (a and c) and F (b and d) with the relative concentration c/c max using the different studied formulas for two different particle Reynolds numbers R e * = 0.1 (a and b) and R e * = 100 (c and d).

  1). The Dankers & Winterwerp formula yields better results when R e * = 0.1 although it slightly overestimates c cr . Moreover, the Winterwerp and Dankers & Winterwerp formulas, as well as the Richardson & Zaki and Soulsby formulas, yield a flux density function Φ > 0 when c = c max , whereas it should be zero.

Figure 5 :

 5 Figure 5: Concentrations c m and c cr as a function of the particle Reynolds number using the Richardson & Zaki (RZ), modified Richardson & Zaki (RZm), Soulsby, and Camenen formulas as well as experimental results (cf. Fig. 3).

Figure 6 :

 6 Figure 6: Schematic view of the development of one (b) or two (a) interfaces in the Kynch sedimentationtest with cohesive sediments depending on the initial concentration φ 0 (the lines with an arrow correspond to the iso-concentration lines with φ 0 < φ 1 < φ 2 < φ max , and c gel < c bed,1 < c bed,2 < c bed,3 < c max ).

Figure 7 :

 7 Figure 7: Variation of the flux density functions φ f (a) and F (b) with the relative concentration φ/φ max using various formulas and assuming R e * = 0.1 and a constant gelling concentration C gel = 100 g/l for all the tests.

  8, which confirms the results from the modified Richardson & Zaki, Camenen, and Dankers & Winterwerp formulas. Using a particle Reynolds number R e * = 0.2 (median values of the collected data) and C gel = 100g/l, the curves obtained from the modified Richardson & Zaki, Camenen and Dankers & Winterwerp equations are plotted together with the data in Fig. 8. As observed before, the Dankers & Winterwerp formula seems to underestimate values for flux density. The Winterwerp and Dankers & Winterwerp formulas also yield a constant value for φ m and φ cr , no matter what the particle Reynolds number is (see Tab. 2).

Figure 8 :Figure 9 :

 89 Figure 8: Flux density function (Φ/W s0 = φ f ) as a function of the relative concentration φ/φ max using the collected data for cohesive sediments with the particle Reynolds number R e * emphasized.

Figure 10 :

 10 Figure10: Estimation of the permeability k as a function of the concentration c using various empirical formulas calibrated by several scientists for the "Sidere" exercice ((a) refers to Eq. 11; (b) to Eq. 12 and (c) to Eq. 13).

Figure 11 :

 11 Figure 11: Estimation of the total settling velocity function W sk (based on Eq. 15 or on Eq. 16) compared to experimental data (a) from Wolanski et al. (1989; C gel = 70g/l, A k = 7 × 10 -9 , B k = 3.4, and ξ = 1 × 10 4 ) and (b) from Dankers & Winterwerp (2007; C gel = 85g/l, A k = 4 × 10 -9 , B k = 3.5, and ξ = 3 × 10 4 ).

Figure 12 :

 12 Figure 12: Variation of the flux density function F with the relative concentration φ/φ max . The flux density function is calculated using total settling velocity function W sk based on Eq. 15 or on Eq. 16 fitted with the experimental data of Dankers & Winterwerp, see also Fig.11b)

  empirical fit for n, solutions may be obtained with the Richardson & Zaki equation as functions of the particle Reynolds number R e * :

	c m =	1 n + 1	=	3/4 5.7 + 0.586 R e * 1 + 0.175 R e * 3/4	(5)
	c cr =	2 n + 1	=	3/4 5.7 + 0.586 R e * 2 + 0.35 R e * 3/4	(6)
	c m and c cr are increasing functions of R e * (0.18 < c m < 0.30 and 0.36 < c cr < 0.60).	
	Using a large data set from batch experiments	

Table 2 :

 2 Estimation of the φ m , Φ(phi m ) and phi cr values for cohesive sediments with R e * = 0.1 based on experimental data and using hindered settling formulas.

	φ max
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Appendices

A. Settling functions

The following settling functions were used in the paper. They are written for cohesive sediments; in case of non cohesive sediments, φ = c.

• [START_REF] Richardson | Sedimentation and fluidisation: Part I[END_REF] : f = (1φ) n ;

• Souslby (1997) : f = [10.36 2 + 1.049(1φ) 4.7 d * 3 ] 1/2 -10.36

[10.36 2 + 1.049d * 3 ] 1/2 -10.36

where d * = [(s -1)g/ν] 1/3 d and d grain diameter;

where A, B, and N are coefficients for the settling formula, which are function of the grain shape and roundness (see [START_REF] Camenen | Simple and general formula for the settling velocity of particles[END_REF]; for natural sands, A = 24.6, B = 0.96, and N = 1.53; for flocs, A = 27, B = 2.1, and N = 1.2) and subscript mix yields that the kinetic viscosity and density were calculated for a mixture (water + sediments).

B. Table of notation

The following symbols are used in this paper : A, B

[-] : coefficients c

[-] : volumetric concentration of matter c bed [-] : volumetric concentration of matter in the bed for a batch experiment c mud , c sand [-] : volumetric concentration of matter for mud and sand, respectively

[m] : sediment grain diameter for which k% of the grain by mass is finer