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Abstract

This paper introduces the generalized forward-backward splitting algorithm for
minimizing convex functions of the form F + ∑

n
i=1Gi, where F has a Lipschitz-

continuous gradient and the Gi’s are simple in the sense that their Moreau proxim-
ity operators are easy to compute. While the forward-backward algorithm cannot
deal with more than n = 1 non-smooth function, our method generalizes it to the
case of arbitrary n. Our method makes an explicit use of the regularity of F in the
forward step, and the proximity operators of the Gi’s are applied in parallel in the
backward step. This allows the generalized forward-backward to efficiently address
an important class of convex problems. We prove its convergence in infinite dimen-
sion, and its robustness to errors on the computation of the proximity operators
and of the gradient of F . Examples on inverse problems in imaging demonstrate
the advantage of the proposed methods in comparison to other splitting algorithms.

1 Introduction

Throughout this paper, H denotes a real Hilbert space endowed with scalar product
⟨⋅ ∣ ⋅⟩ and associated norm ∣∣ ⋅ ∣∣, and n is a positive integer. We consider the following
minimization problem

min
x∈H

{Ψ(x)
def
= F (x) +

n

∑
i=1

Gi(x)}, (1)

where all considered functions belong to the class Γ0(H) of lower semicontinuous, proper
(its domain is non-empty) and convex functions from H to ]−∞,+∞].

1.1 State-of-the-Art in Splitting Methods

The decomposition (1) is fairly general, and a wide range of iterative algorithms
takes advantage of the specific properties of the functions in the summand. One crucial
property is the possibility to compute the associated proximity operators [54], defined as

proxG(x)
def
= argmin

y∈H

1

2
∣∣x − y∣∣2 +G(y). (2)

1



This is in itself a convex optimization problem, which can be solved efficiently for many
functions, e.g. when the solution, unique by strong convexity, can be written in closed
form. Such functions are referred to as “simple”.

Another important feature is the differentiability of the functional to be minimized.
However, gradient-descent approaches do not apply as soon as one of the functions Gi is
non-smooth. For n ≡ 1 and G1 simple, the forward-backward algorithm circumvents this
difficulty if F is differentiable with a Lipschitz-continuous gradient. This scheme consists
in performing alternatively a gradient-descent (corresponding to an explicit step on the
function F ) followed by a proximal step (corresponding to an implicit step on the function
G1). Such a scheme can be understood as a generalization of the projected gradient
method. This algorithm has been well studied [50, 40, 67, 16, 69, 24, 7]. Accelerated
multistep versions have been proposed [55, 70, 6], that enjoy a faster convergence rate
of O(1/t2) on the objective Ψ.

Other splitting methods do not require any smoothness on some part of the composite
functional Ψ. The Douglas-Rachford [27] and Peaceman-Rachford [57] schemes were
developed to minimize G1(x)+G2(x), provided that G1 and G2 are simple [47, 45, 33, 17]
and rely only on the use of proximity operators. The backward-backward algorithm [46,
56, 1, 5, 17] can be used to minimize Ψ(x) = G1(x)+G2(x) when the functions involved
are the indicator functions of non-empty closed convex sets, or involve Moreau envelopes.
Interestingly, if one of the functions G1 or G2 is a Moreau envelope and the other is
simple, the forward-backward algorithm amounts to a backward-backward scheme.

If L is a bounded injective linear operator, it is possible to minimize Ψ(x) = G1 ○

L(x) +G2(x) by applying these splitting schemes on the Fenchel-Rockafellar dual prob-
lem. It was shown that applying the Douglas-Rachford scheme leads to the alternat-
ing direction method of multipliers (ADMM) [39, 40, 41, 42, 33]. For non-necessarily
injective L and G2 strongly convex with a Lipschitz-continuous gradient, the forward-
backward algorithm can be applied to the Fenchel-Rockafellar dual [36, 19]. Dealing
with an arbitrary bounded linear operator L can be achieved using primal-dual methods
motivated by the classical Kuhn-Tucker theory. Starting from methods to solve saddle
function problems such as the Arrow-Hurwicz method [2] and its modification [60], the
extragradient method [44], this problem has received a lot of attention more recently
[15, 68, 64, 53, 12, 9].

It is also possible to extend the Douglas-Rachford algorithm to an arbitrary number
n > 2 of simple functions. Inspired by the method of partial inverses [65, Section 5], most
methods rely either explicitly or implicitly on introducing auxiliary variables and bringing
back the original problem to the case n = 2 in the product space Hn. Doing so yields
iterative schemes in which one performs independent parallel proximal steps on each of
the simple functions and then computes the next iterate by essentially averaging the
results. Variants have been proposed in [21] and [34], who describe a general projective
framework that does not reduce the problem to the case n = 2. Note however that these
extensions do not apply to the forward-backward scheme that can only handle n ≡ 1. It
is at the heart of this paper to present such an extension.

Recently proposed methods extend existing splitting schemes to handle the sum of
any number of n ≥ 2 composite functions of the form Gi = Hi ○ Li, where the Hi’s are
simple and the Li’s are bounded linear operators. Let us denote Li∗ the adjoint operator
of Li. If Li satisfies LiLi∗ = ν Id for any ν > 0 (it is a so-called tight frame), Hi ○ Li is
simple as soon as Hi is simple and Li∗ is easy to compute [20]. This case thus reduces to
the previously reviewed ones. If Li is not a tight frame but (Id+Li

∗Li) or (Id+LiLi
∗)

is easily invertible, it is again possible to reduce the problem to the previous cases by
introducing as many auxiliary variables as the number of Li’s each belonging to the range
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of Li. Note however that, if solved with the Douglas-Rachford algorithm on the product
space, the auxiliary variables are also duplicated, which would increase significantly the
dimensionality of the problem. Some dedicated parallel implementations were specifically
designed for the case where (∑iLi

∗Li) or (∑iLiLi∗) is (easily) invertible, see for instance
[32, 58]. If the Li’s satisfy none of the above properties, it is still possible to call on primal-
dual methods, either by writing Ψ(x) = ∑ni=1Hi(Lix) = G(Lx) with L(x) = (Li(x))i and
G( (xi)i ) = ∑iHi(xi), see for instance [29]; or Ψ((xi)i) = ιS((xi)i) + ∑iHi(Lixi) [9],
where S is the closed convex set defined in Section 3.2.

In spite of the wide range of already existing proximal splitting methods, none seems
satisfying to address explicitly the case where n > 1 and F is smooth but not necessarily
simple. A workaround that has been proposed previously used nested algorithms to com-
pute the proximity operator of ∑iGi within sub-iterations, see for instance [30, 14]; this
leads to practical as well as theoretical difficulties to select the number of sub-iterations.
More recently, [53] proposed an algorithm for minimizing Ψ(x) = F (x) + G(x) under
linear constraints. We show in Section 5 how this can be adapted to adress the general
problem (1) while achieving full splitting of the proximity operators of the Gi’s and using
the gradient of F . It suffers however from limitations, in particular the introduction of
many auxiliary variables and the fact that the gradient descent can’t be directly applied
to the minimizer; see Section 5 and 6 for details. The generalized forward-backward
algorithm introduced in this paper is intended to avoid all those shortcomings.

As this paper was being finalized, the authors in [23] independently developed a
primal-dual algorithm to solve a class of problems that cover those we consider here.
Their approach and algorithm are however very different from ours in many important
ways. We will provide a detailed comparison with this work in Section 5 and will also
show on numerical experiments in Section 6 that our algorithm seems more adapted for
problems of the form (1).

1.2 Applications in Image Processing

Many imaging applications require solving ill-posed inverse problems to recover high
quality images from low-dimensional and noisy observations. These challenging problems
necessitate the use of regularization through prior models to capture the geometry of
natural signals, images or videos. The resolution of the inverse problem can be achieved
by minimizing objective functionals, with respect to a high-dimensional variable, that
takes into account both a fidelity term to the observations and regularization terms
reflecting the priors. Clearly, such functionals are composite by construction. Section 6
details several examples of such inverse problems.

In many situations, this leads to the optimization of a convex functional that can
be split into the sum of convex smooth and non-smooth terms. The smooth part of the
objective is in some cases a data fidelity term and reflects some specific knowledge about
the forward model, i.e. the noise and the measurement/degradation operator. This is for
instance the case if the operator is linear and the noise is additive Gaussian, in which case
the data fidelity is a quadratic function. The most successful regularizations that have
been advocated are non-smooth, which typically allow to preserve sharp and intricate
structures in the recovered data. Among such priors, sparsity-promoting ones have
become popular, e.g. the `1-norm of coefficients in a wisely chosen dictionary [49], or total
variation (TV) prior [63]. To better model the data, composite priors can be constructed
by summing several suitable regularizations, see for instance the morphological diversity
framework [66]. The proximity operator of the `1-norm penalization is a simple soft-
thresholding [26], whereas the use of complex or mixed regularization priors justifies the
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splitting of non-smooth terms in several simpler functions (see Section 6 for concrete
examples).

The composite structure of convex optimization problems raising when solving inverse
problems in the form of a sum of simple and/or smooth functions involving linear opera-
tors explains the popularity of proximal splitting schemes in imaging science. Depending
on the structure of the objective functional as detailed in the previous section, one can
resort to the appropriate splitting algorithm. For instance, the forward-backward algo-
rithm and its modifications has become popular for sparse regularization with a smooth
data fidelity, see for instance [38, 25, 24, 35, 13, 6, 8]. The Douglas-Rachford and its
parallelized extensions were also used in a variety of inverse problems implying only non-
smooth functions, see for instance [20, 21, 30, 14, 10, 28, 31, 61]. The ADMM (which
is nothing but Douglas-Rachford on the dual) was also applied to some linear inverse
problems in [48, 37]. Primal-dual schemes [12, 29] are among the most flexible schemes
to handle more complicated priors. The interested reader may refer to [66, Chapter 7]
and [22] for extensive reviews.

1.3 Contributions and Paper Organization

This paper introduces a novel generalized forward-backward algorithm to solve (1)
when F is convex with a Lipschitz continuous gradient, and the Gi’s are convex and
simple. The algorithm achieves full splitting where all operators are used separately: an
explicit step for ∇F (single-valued) and a parallelized implicit step through the proximity
operators of the Gi’s. We prove convergence of the algorithm as well as its robustness to
errors that may contaminate the iterations. To the best of our knowledge, it is among
the first algorithms to tackle the case where n > 1 and F is smooth (see Section 5 for
relation to a recent work developed in parallel to ours). Although our numerical results
are reported only on imaging applications, the algorithm may prove useful for many
other applications such as machine learning or statistical estimation.

Section 2 presents the algorithm and state our main theoretical result. Section 3, that
can be skipped by experienced readers, sets some necessary material from the framework
of monotone operator theory. Section 4 reformulates the generalized forward-backward
algorithm for finding the zeros of the sum of maximal monotone operators, and proves
its convergence and its robustness. Special instances of the algorithm, its potential
extensions and discussion of its relation to two alternatives in the literature are given in
Section 5. Numerical examples are reported in Section 6 to show the usefulness of this
approach for applications to imaging problems.

2 Generalized Forward-Backward Algorithm
for Minimization Problems

We consider problem (1) where all functions are in Γ0(H), F is differentiable on H
with 1/β-Lipschitz gradient where β ∈]0,+∞[, and for all i, Gi is simple. We also assume
the following:

(H1) The set of minimizers of (1) argmin(Ψ) is non-empty;

(H2) The domain qualification condition holds, i.e.

(0, . . . ,0) ∈ sri{(x − y1, . . . , x − yn) ∣x ∈ H and ∀ i, yi ∈ dom(Gi)} ,

4



where dom(Gi)
def
= {x ∈ H∣Gi(x) < +∞} and sri(C) is the strong relative interior of a non-

empty convex subset C of H [4]. Under (H1)-(H2), it follows from [62, 4, Theorem 16.2
and Theorem 16.37(i)] that

∅ ≠ argmin(Ψ) = zer(∂Ψ) = zer (∇F +∑i∂Gi) ,

where ∂Gi denotes the subdifferential of Gi and zer(A) is the set of zeros of a set-valued
map A (see Definition 3.1 in Section 3.1). Therefore, solving (1) is equivalent to

Find x ∈ H such that 0 ∈ ∇F (x) +∑
i

∂Gi(x) . (3)

The generalized forward-backward we propose to minimize (1) (or equivalently to
solve (3)) is detailed in Algorithm 1.

Algorithm 1 Generalized Forward-Backward Algorithm for solving (1).
β-1 ∈]0,+∞[ is the Lipschitz constant of ∇F ; Iλ is defined in Theorem 2.1.

Require
(zi)i∈J1,nK ∈ H

n, (ωi)i∈ J1,nK ∈ ]0,1[n s.t. ∑ni=1 ωi = 1,

γt ∈ ]0,2β[ ∀t ∈N, λt ∈ Iλ ∀t ∈N .
Initialization
x← ∑i ωizi;
t← 0.
Main iteration
repeat

for i ∈ J1, nK do
zi ← zi + λt(prox γt

ωi
Gi

(2x − zi − γt∇F (x)) − x);

x← ∑i ωizi;
t← t + 1.

until convergence ;
Return x.

To state our main theorem that ensures the convergence of the algorithm and its
robustness, for each i let ε1,t,i be the error at iteration t when computing prox γt

ωi
Gi

at
its argument, and let ε2,t be the error at iteration t when applying ∇F to its argument.
Algorithm 1 generates sequences (zi,t)t∈N, i ∈ J1, nK and (xt)t∈N, such that for all i and
t,

zi,t+1 = zi,t + λt(prox γt
ωi
Gi

(2xt − zi,t − γt (∇F (xt) + ε2,t) ) + ε1,t,i − xt) . (4)

The following theorem introduces two different sets of assumptions to guarantee
convergence. Assumption (A1) allows one to use a greater range for the relaxation
parameters λt, while assumptions (A2) enables varying gradient-descent step-size γt and
ensures strong convergence in the uniformly convex case. Recall that a function F ∈

Γ0(H) is uniformly convex if there exists a non-decreasing function ϕ ∶ [0,+∞[→ [0,+∞]

that vanishes only at 0, such that for all x and y in dom(F ), the following holds

∀ρ ∈]0,1[, F (ρx + (1 − ρ)y) + ρ(1 − ρ)ϕ(∣∣x − y∣∣) ≤ ρF (x) + (1 − ρ)F (y). (5)

Theorem 2.1. Set limγt = γ̄ and define the following assumptions:

(A0) (i) 0 < limλt ≤ limλt < min (3
2 ,

1+2β/γ̄
2 );

(ii) ∑+∞
t=0 ∣∣ε2,t∣∣ < +∞, and for all i, ∑+∞

t=0 ∣∣ε1,t,i∣∣ < +∞.
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(A1) (i) ∀ t, γt = γ̄ ∈]0,2β[;

(ii) Iλ = ]0,min (3
2 ,

1+2β/γ̄
2 )[.

(A2) (i) 0 < limγt ≤ γ̄ < 2β;
(ii) Iλ =]0,1].

Suppose that (H1), (H2) and (A0) are satisfied. Then, if either (A1) or (A2) is satisfied,
(xt)t∈N defined in (4) converges weakly towards a minimizer of (1). Moreover, if (A2)
is satisfied and F is uniformly convex, the convergence is strong to the unique global
minimizer of (1).

This theorem will be proved after casting it in the more general framework of mono-
tone operator splitting in Section 4.

Remark 2.1. The sufficient condition of strong convergence in Theorem 2.1 can be weak-
ened, and other ones can be stated as well. Indeed, the generalized forward-backward
algorithm has a structure that bears similarities with the classical forward-backward,
since it consists of an explicit forward step, followed by an implicit step where the prox-
imity operators are computed in parallel. In fact, it turns out that the backward step
involves a firmly non-expansive operator (see next section), and therefore statements
of [24, Theorem 3.4(iv) and Proposition 3.6] can be transposed with some care to our
algorithm.

The formulation of Algorithm 1 is general, but it can be simplified for practical
purposes. In particular, the auxiliary variables zi can all be initialized to 0, the weights
ωi set equally to 1/n, and for simplicity the relaxation parameters λt and the gradient-
descent step-size γt can be set constant along iterations. This is typically what has been
done in the numerical experiments.

3 Monotone Operators and Inclusions

The subdifferential of a function in Γ0(H) is the best-known example of maximal
monotone operator. Therefore, it is natural to extend the generalized forward-backward,
Algorithm 1, to find the zeros of the sum of maximal monotone operators, i.e. solve
the monotone inclusion (3) when the subdifferential is replaced by any maximal mono-
tone operator. This is the goal pursued in Section 4 where we provide the proof of a
general convergence and robustness theorem whose byproduct is a convergence proof of
Theorem 2.1.

We first begin by recalling some essential definitions and properties of monotone
operators that are necessary to our exposition. The interested reader may refer to [59, 4]
for a comprehensive treatment.

3.1 Definitions and Properties

In the following, A ∶ H → 2H is a set-valued operator, and Id is the identity operator
on H. A is single-valued if the cardinality of Ax is at most 1.

Definition 3.1 (Graph, inverse, domain, range and zeros). The graph of A is the
set gra(A)

def
= {(x, y) ∈ H2 ∣ y ∈ Ax}. The inverse of A is the operator whose graph is

gra(A-1)
def
= {(x, y) ∈ H2 ∣ (y, x) ∈ gra(A)}. The domain ofA is dom(A)

def
= {x ∈ H ∣ Ax ≠ ∅}.

The range of A is ran(A)
def
= {y ∈ H ∣ ∃x ∈ H ∶ y ∈ Ax}, and its zeros set is zer(A)

def
=

{x ∈ H ∣ 0 ∈ Ax} = A-1 (0).
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Definition 3.2 (Resolvant and reflection operators). The resolvant of A is the operator
JA

def
= ( Id+A)

-1. The reflection operator associated to JA is the operator RA
def
= 2JA− Id.

Definition 3.3 (Maximal monotone operator). A is monotone if

∀x, y ∈ H, u ∈ Ax and v ∈ Ay⇒ ⟨u − v ∣x − y⟩ ≥ 0 .

It is moreover maximal if its graph is not strictly contained in the graph of any other
monotone operator.

Definition 3.4 (Non-expansive and α-averaged operators). A is non-expansive if

∀x, y ∈ H, u ∈ Ax and v ∈ Ay⇒ ∣∣u − v∣∣ ≤ ∣∣x − y∣∣ .

For α ∈]0,1[, A is α-averaged if there exists R non-expansive such that A = (1−α) Id+αR.
We denote A(α) the class of α-averaged operators on H. In particular, A(1

2
) is the class

of firmly non-expansive operators.

Note that non-expansive operators are necessarily single-valued and 1-Lipschitz con-
tinuous, and so are α-averaged operators since they are also non-expansive. The following
lemma gives some useful characterizations of firmly non-expansive operators.

Lemma 3.1. Let A ∶ dom (A) = H → H. The following statements are equivalent:

(i) A is firmly non-expansive;

(ii) 2A − Id is non-expansive;

(iii) ∀x, y ∈ H, ∣∣Ax −Ay∣∣2 ≤ ⟨Ax −Ay ∣x − y⟩;

(iv) A is the resolvent of a maximal monotone operator A′, i.e. A = JA′.

Proof. (i)⇔ (ii), A ∈ A(1
2
) ⇔ A = Id+R

2 for some R non-expansive. (i)⇔ (iii), see [72].
(i) ⇔ (iv), see [51].

We now summarize some properties of the subdifferential that will be useful in the
sequel.

Lemma 3.2. Let F ∶ H → R be a convex differentiable function, with 1/β-Lipschitz
continuous gradient, β ∈]0,+∞[, and let G ∶ H →]−∞,+∞] be a function in Γ0(H).
Then,

(i) β∇F ∈ A(1
2
), i.e. is firmly non-expansive;

(ii) ∂G is maximal monotone;

(iii) The resolvent of ∂G is the proximity operator of G, i.e. proxG = J∂G.

Proof. (i) This is Baillon-Haddad theorem [3]. (ii) See [62]. (iii) See [54].

We thus consider in the following n maximal monotone operators
Ai ∶ H → 2H indexed by i ∈ J1, nK, and a (single-valued) operator B ∶ H → H and
β ∈]0,+∞[ such that βB ∈ A(1

2
). Therefore, solving (3) can be translated in the more

general language of maximal monotone operators as solving the monotone inclusion

Find x ∈ H such that 0 ∈ Bx +∑
i

Aix, (6)

where it is assumed that zer (B +∑iAi) ≠ ∅.
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3.2 Product Space

The previous definitions being valid for any real Hilbert space, they also apply to
the product space Hn endowed with scalar product and norm derived from the ones
associated to H.

Let (ωi)i∈J1,nK ∈ ]0,1[n such that ∑ni=1 ωi = 1. We considerH def
= Hn endowed with the

scalar product ⟨⟨⋅ ∣∣ ⋅⟩⟩, defined as

∀x = (xi)i ,y = (yi)i ∈H, ⟨⟨x ∣∣y⟩⟩ =
n

∑
i=1

ωi ⟨xi ∣ yi⟩

and with the corresponding norm ∣∣ ⋅ ∣∣. S ⊂ H denotes the closed convex set defined
by S def

= {x = (xi)i ∈H ∣ x1 = x2 = ⋯ = xn}, whose orthogonal complement is the closed
linear subspace S� = {x = (xi)i ∈H ∣ ∑i ωixi = 0}. We denote by Id the identity operator
on H, and we define the canonical isometry

C ∶ H → S, x↦ (x, . . . , x) .

ιS ∶H→]−∞,+∞] and NS ∶ H → 2H are respectively the indicator function and the
normal cone of S, that is

ιS(x)
def
=

⎧⎪⎪
⎨
⎪⎪⎩

0 if x ∈ S ,

+∞ otherwise ,
and NS(x)

def
=

⎧⎪⎪
⎨
⎪⎪⎩

S� if x ∈ S ,

∅ otherwise .

Since S is non-empty closed and convex, it is straightforward to see that NS is maximal
monotone. To lighten the notation in the sequel, we introduce the following concatenated
operators. For every i ∈ J1, nK, let Ai and B as defined in (6). For γ = (γi)i∈J1,nK ∈

]0,+∞[
n, we define γA ∶H→ 2H,x = (xi)i ↦ ⨉

n
i=1 γiAi(xi), i.e. its graph is

gra (γA)
def
=

n

⨉
i=1

gra (γiAi)

= {(x,y) ∈H2 ∣ x = (xi)i,y = (yi)i, and ∀ i, yi ∈ γiAixi} ,

and B ∶H→H,x = (xi)i ↦ (Bxi)i.
Using the maximal monotonicity of A1, . . . ,An and B it is an easy exercise to establish

that γA and B are maximal monotone on H.

4 Generalized Forward-Backward Algorithm
for Monotone Inclusions

Now that we have set all necessary material, we are ready to solve the monotone
inclusion (6). First, we derive an equivalent fixed point equation satisfied by any solution
of (6). From this, we draw an algorithmic scheme and prove its convergence towards a
solution, as well as its robustness to errors. Finally, we derive the proof of Theorem 2.1.

4.1 Fixed Point Equation

From now on, we denote the set of fixed points of an operator T ∶ H → H by
FixT

def
= {z ∈H ∣ Tz = z}.
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Proposition 4.1. Let (ωi)i∈J1,nK ∈ ]0,1[n. For any γ > 0, x ∈ H is a solution of (6) if
and only if there exists (zi)i∈J1,nK ∈ H

n such that

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∀ i, zi = R γ
ωi
Ai(2x − zi − γBx) − γBx ,

x = ∑
i

ωizi .
(7)

Proof. set γ > 0, we have the equivalence

0 ∈ Bx +∑
i

Aix ⇔ ∃ (zi)i ∈ H
n
∶ {

∀ i, ωi (x − zi − γBx) ∈ γAix ,
x = ∑i ωizi .

Now,

ωi (x − zi − γBx) ∈ γAix ⇔ (2x − zi − γBx) − x ∈
γ

ωi
Aix

(by Lemma 3.1 (iv)) ⇔ x = J γ
ωi
Ai(2x − zi − γBx)

⇔ 2x − (2x − zi) = 2J γ
ωi
Ai(2x − zi − γBx)

− (2x − zi − γBx) − γBx

⇔ zi = R γ
ωi
Ai(2x − zi − γBx) − γBx .

Before formulating a fixed point equation, consider the following preparatory lemma.

Lemma 4.1. For all z = (zi)i ∈H, b = (b)i ∈ S, and γ = (γi)i ∈ ]0,+∞[
n,

(i) JNS is the orthogonal projector on S, and JNSz = C (∑i ωizi);

(ii) RNS (z − b) = RNSz − b;

(iii) RγAz = (RγiAi(zi))i.

Proof.
(i). From Lemma 3.2 (iii), we have for z ∈H,

JNS(z) = argminy∈S ∣∣z − y∣∣ def
= projS(z) .

Now, argminy∈S ∣∣z − y∣∣2 = C (argminy∈H∑i ωi∣∣zi − y∣∣
2), where the unique minimizer of

∑i ωi∣∣zi − y∣∣
2 is the barycenter of (zi)i, i.e. ∑i ωizi.

(ii). JNS is obviously linear, and so is RNS . Since b ∈ S, RNSb = b and the result
follows.

(iii). This is a consequence of the separability of γA in terms of the components of z
implying that JγAz = (JγiAizi)i. The result follows from the definition of RγA.

Proposition 4.2. (zi)i∈J1,nK ∈ H
n satisfies (7) if and only if z = (zi)i is a fixed point of

the following operator

H Ð→ H
z z→ 1

2
[RγARNS + Id][Id − γBJNS ](z) ,

(8)

with γ = (
γ
ωi

)
i
.
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Proof. Using Lemma 4.1 in (7), we have C(x) = JNSz, C(Bx) = BJNS(z) and RNS −
γBJNS = RNS [Id − γBJNS ]. Altogether, this yields,

z satisfies (7) ⇔ z = RγARNS [Id − γBJNS ]z − γBJNSz

⇔ 2z = RγARNS [Id − γBJNS ]z + [Id − γBJNS ]z

⇔ z =
1

2
[RγARNS + Id][Id − γBJNS ]z

4.2 Algorithmic Scheme and Convergence

The expression (8) gives us the operator on which is based the generalized forward-
backward. We first study the properties of this operator before establishing convergence
and robustness results of our algorithm derived from the Krasnoselskij-Mann scheme
associated to it.

Proposition 4.3. For all γ ∈ ]0,+∞[
n, define

T1,γ ∶
H Ð→ H
z z→ 1

2
[RγARNS + Id]z .

(9)

Then, T1,γ is firmly non-expansive, i.e. T1,γ ∈ A(1
2
).

Proof. From Lemma 3.1, RγiAi and RNS are non-expansive. In view of Lemma 4.1 (iii),
RγA is non-expansive as well. Finally, as a composition of non-expansive operators,
RγARNS is also non-expansive, and the proof is complete by the definition of A(1

2
).

Proposition 4.4. For all γ ∈]0,2β[, define

T2,γ ∶
H Ð→ H
z z→ [Id − γBJNS ]z .

(10)

Then, T2,γ ∈ A(
γ
2β).

Proof. By hypothesis, βB ∈ A(1
2
) and so is βB. Then, we have for any x,y ∈H

∣∣βBJNSx − βBJNSy∣∣2 ≤ ⟨⟨βBJNSx − βBJNSy ∣∣JNSx − JNSy⟩⟩

= ⟨⟨βJNSBJNSx − βJNSBJNSy ∣∣x − y⟩⟩

= ⟨⟨βBJNSx − βBJNSy ∣∣x − y⟩⟩ , (11)

where we derive the first equality from the fact that JNS is self-adjoint (Lemma 4.1
(i)), and the second equality using that for all x ∈ S, Bx ⊂ S and JNSx = x. From
Lemma 3.1 (iii)⇔(i), we establish that βBJNS ∈ A(1

2
). We conclude using [17, Lemma

2.3].

Proposition 4.5. For all γ ∈ ]0,+∞[
n and γ ∈ ]0,2β[, T1,γT2,γ ∈ A(α), with α =

max (2
3 ,

2
1+2β/γ ).

Proof. As T1,γ and T2,γ are α-averaged operators by Proposition 4.3 and Proposition 4.4,
it follows from [17, Lemma 2.2 (iii)] that their composition is also α-averaged with the
given value of α.
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The following proposition defines a maximal monotone operator A′
γ which will be useful

for caracterizing fixed points of T1,γT2,γ as monotone inclusions.

Proposition 4.6. For all γ ∈ ]0,+∞[
n there exists a maximal monotone operator A′

γ

such that T1,γ = JA′γ . Moreover for all γ > 0,

FixT1,γT2,γ = zer (A′
γ + γBJNS) . (12)

Proof. The existence of A′
γ is ensured by Proposition 4.3 and Lemma 3.1 (iv). Then for

z ∈H,

z = T1,γT2,γz ⇔ z = (Id +A′
γ)

-1
(Id − γBJNS)z

⇔ z − γBJNSz ∈ z +A
′
γz

⇔ 0 ∈A′
γz + γBJNSz

Now, let us examine the properties of A′
γ .

Proposition 4.7. For all γ ∈ ]0,+∞[
n and u,y ∈H

u ∈A′
γy⇔ uS − y� ∈ γA (yS −u�) , (13)

where we denote for y ∈H, yS def
= projS (y) and y� def

= projS� (y).

Proof. First of all, by definition of T1,γ we have

T1,γ = 1
2
[(2JγA − Id) (2JNS − Id) + Id]

= 1
2
[2JγA(projS −projS�) − (projS −projS�) + projS +projS�]

= JγA(projS −projS�) + projS� . (14)

By definition we have A′
γ = T1,γ

-1 − Id so that

u ∈A′
γy ⇔ u + y ∈ T1,γ

-1y

⇔ T1,γ (u + y) = y

(by (14)) ⇔ JγA ((u + y)S − (u + y)�) = y − (u + y)�

⇔ (u + y)S − (u + y)� ∈ yS −u� + γA (yS −u�)

⇔ uS − y� ∈ γA (yS −u�) .

We are now ready to state our main result, establishing convergence and robustness
of the generalized forward-backward algorithm to solve (6).

Theorem 4.1. Let
(γt)t∈N be a sequence in ]0,2β[,
(γt)t∈N be a sequence in ]0,+∞[

n such that ∀ t, γt = (
γt
ωi

)
i
,

(λt)t∈N be a sequence such that ∀ t, λt ∈ Iλ (made explicit below),
set z0 ∈H, and for every t ∈N, set

zt+1 = zt + λt(T1,γt(T2,γtzt + ε2,t) + ε1,t − zt) (15)

where T1,γt (resp. T2,γt) is defined in (9) (resp. in (10)), and ε1,t,ε2,t ∈H. Set limγt = γ̄
and define the following conditions:
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(A0) (i) zer (B +∑iAi) ≠ ∅;

(ii) 0 < limλt ≤ limλt < min (3
2 ,

1+2β/γ̄
2 );

(iii) ∑+∞
t=0 ∣∣ε1,t∣∣ < +∞ and ∑+∞

t=0 ∣∣ε2,t∣∣ < +∞.

(A1) (i) ∀ t, γt = γ̄ ∈]0,2β[;

(ii) Iλ = ]0,min (3
2 ,

1+2β/γ̄
2 )[.

(A2) (i) 0 < limγt ≤ γ̄ < 2β;

(ii) Iλ =]0,1].

Suppose that (A0) is satisfied. Then, If either (A1) or (A2) is satisfied,

(i) (T1,γtT2,γtzt − zt)t∈N converges strongly to 0.

(ii) (zt)t∈N converges weakly to a point z ∈ F def
= ⋂t∈NFixT1,γtT2,γt .

(iii) (xt
def
= ∑i ωizi,t)t∈N converges weakly to x def

= ∑i ωizi ∈ zer (B +∑iAi).

Moreover, if (A2) is satisfied and B is uniformly monotone, then

(iv) (xt)t∈N converges strongly.

Proof. For sequences in a Hilbert space, strong convergence is denoted by Ð→ and weak
convergence is denoted by ÐÐ⇀.

(i)-(ii). Suppose first that (A0) and (A1) are satisfied.
Under (A1)-(i), T def

= T1,γ̄T2,γ̄ does not depend on t (stationary operator). For all t ∈ N,
we have

zt+1 = zt + λt(Tzt + εt − zt) , (16)

with εt
def
= T1,γ̄(T2,γ̄zt+ε2,t)−T1,γ̄(T2,γ̄zt)+ε1,t. Proposition 4.3 shows that T1,γ̄ ∈ A(1

2
)

is in particular non-expansive, so that ∣∣εt∣∣ ≤ ∣∣ε2,t∣∣ + ∣∣ε1,t∣∣, and we deduce from (A0)-
(iii) that ∑+∞

t=0 ∣∣εt∣∣ < +∞. Moreover, by Proposition 4.5 and (A1)-(i), T ∈ A(α) with
α = max (2

3 ,
2

1+2β/γ̄ ). In particular, T is non-expansive and thus F = FixT is closed and

convex. Now, for t ∈N, set Tt
def
= Id + λt (T − IdH), the iterations (16) can be rewritten

zt+1 = Ttzt + λtεt . (17)

Since for all t, αt
def
= λtα < 1 by (A1)-(ii), [17, Lemma 2.2 (i)] shows that Tt ∈ A(αt),

and (17) is thus a particular instance of [17, Algorithm 4.1]. Also, it is clear that
for all t, FixTt = FixT . By Proposition 4.1 and Proposition 4.2, (A0)-(i) provides
F = ⋂t∈NFixTt ≠ ∅. According to (A0)-(ii), limλt > 0 and limαt < 1, so we deduce from
[17, Theorem 3.1 and Remark 3.4] that

∑
t∈N
∣∣Ttzt − zt∣∣

2
< +∞. (18)

and that (zt)t is quasi-Fejér monotone with respect to F. By definition of Tt, (18) gives

∑t∈N λt
2∣∣Tzt − zt∣∣

2
< +∞, which in turn implies Tzt − zt Ð→ 0 since limλt > 0. Then T

being non-expansive, it follows from the demiclosed principle [11][4, Corollary 4.18] that
any weak cluster point of (zt)t belongs to FixT , so that [4, Theorem 5.5] provides weak
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convergence towards z ∈ F.

Suppose now that (A0) and (A2) are satisfied.
Again with Proposition 4.1, Proposition 4.2 and (A0)-(i), F ≠ ∅. From Proposition 4.3,
Proposition 4.4 and (A2)-(i), T1,γt ∈ A(1

2
) and T2,γt ∈ A(

γt
2β) for all t. So, under assump-

tions (A0)-(iii) and (A2), [17, Theorem 3.1 and Remark 3.4] provides that T1,γtT2,γtzt −
zt Ð→ 0 (establishing (i)), that for any z ∈ F

(Id − T2,γt)zt − (Id − T2,γt)z ÐÐÐ→
t→+∞

0 , (19)

and that (zt)t is quasi-Fejér monotone with respect to F. Again, by non-expansivity F
is closed and convex, and with [4, Theorem 5.5], (zt)t converges weakly to some point
in F if, and only if, all of its weak cluster points lie in F.
Let thus y be a weak cluster point of (zt)t. (γt)t being bounded, we can extract a
subsequence (ztτ )τ converging weakly towards y such that (γtτ )τ converges strongly
to some γ∞ (0 < γ∞ < 2β by (A2)-(i)). Fix then z ∈ F and observe that (19) implies
BJNSztτ Ð→BJNSz.
Since βBJNS ∈ A(1

2
), BJNS is continuous and monotone, hence maximal monotone

[4, Corollary 20.25]. Consequently, its graph is sequentially weakly-strongly closed [4,
Corollary 20.33(ii)]. Because BJNS is single-valued and ztτ ÐÐ⇀ y, we deduce BJNSy =

BJNSz.
Now denote for all t, yt

def
= T1,γtT2,γtzt and ut

def
= (Id − T1,γt)T2,γtzt. It follows from (i)

that yt−zt Ð→ 0, implying ytτ ÐÐ⇀ y. Then, ut = T2,γtzt−T1,γtT2,γtzt = zt−γtBJNSzt−

yt, so that utτ Ð→ −γ∞BJNSy.
Moreover, ut ∈ ((Id +A′

γt) − Id)T1,γtT2,γtzt, hence ut ∈ A′
γtyt. Thus for all t, utS −

yt
� ∈ γtA (yt

S −ut
�) by Proposition 4.7. If (v,u) ∈ gra (γ∞A) with γ∞

def
= (

γ∞
ωi

)
i
, then

γt
γ∞
u ∈ γtAv, and by monotonicity

⟨⟨ut
S
− yt

�
−

γt
γ∞
u ∣∣yt

S
−ut

�
− v⟩⟩ ≥ 0 ,

by bilinearity and taking into account orthogonality

⟨⟨ut
S
−

γt
γ∞
u ∣∣yt

S
−ut

�
− v⟩⟩ + ⟨⟨yt

� ∣∣ut
�
+ v⟩⟩ ≥ 0 .

By weak convergence, (ytτ )τ is bounded. Together with strong convergence of (utτ )τ
and (γtτ )τ , [4, Lemma 2.36] allows to take the limit as τ tends to infinity in the above
inequality. Using BJNSy ∈ S,

⟨⟨−γ∞BJNSy −u ∣∣yS − v⟩⟩ + ⟨⟨y� ∣∣v⟩⟩ ≥ 0

⟨⟨−γ∞BJNSy − y
�
−u ∣∣yS − v⟩⟩ ≥ 0 .

Hence maximality of γ∞A forces (yS ,−γ∞BJNSy − y
�) ∈ gra (γ∞A),

i.e. −γ∞BJNSy − y
� ∈ γ∞A (yS). Thus Proposition 4.7 provides −γ∞BJNSy ∈ A′

γ∞y,
and by Proposition 4.6, y ∈ FixT1,γ∞T2,γ∞ = F.

(iii). In both cases, for any y ∈ H, ⟨y ∣xt − x⟩ = ⟨y ∣∑i ωi(zi,t − zi)⟩ = ∑i ωi ⟨y ∣zi,t − zi⟩ =
⟨⟨C(y) ∣∣zt − z⟩⟩ Ð→ 0 since zt ÐÐ⇀ z, hence weak convergence of (xt)t∈N towards x, which
is a zero of B +∑iAi by Proposition 4.1.
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(iv). If B is uniformly monotone, then there exists a non-decreasing function ϕ ∶ [0,+∞[→

[0,+∞] that vanishes only at 0, such that for all x, y ∈ H

⟨Bx −By ∣x − y⟩ ≥ ϕ(∣∣x − y∣∣) .

For all t ∈N,

⟨⟨BJNSzt −BJNSz ∣∣zt − z⟩⟩ = ∑iωi ⟨B (∑iωizi,t) −B (∑iωizi) ∣ zi,t − zi⟩

= ⟨B (∑iωizi,t) −B (∑iωizi) ∣∑iωi(zi,t − zi)⟩

≥ ϕ (∣∣∑iωi(zi,t − zi)∣∣) = ϕ (∣∣xt − x∣∣) .

Recall that under (A0) and (A2), BJNSzt Ð→ BJNSz and zt ÐÐ⇀ z, so that
⟨⟨BJNSzt −BJNSz ∣∣zt − z⟩⟩ Ð→ 0. In view of the properties of ϕ, we obtain strong con-
vergence of (xt)t towards x.

Remark 4.1. In statements (i)-(iii) of Theorem 4.1 under (A0)-(A1) (stationary case), as-
sumptions (A0) can be weakened. More precisely, (A0)-(ii) can be replaced by∑t∈N λt(1−
αλt) = +∞ where α = max(2/3,2/(1 + 2β/γ̄)), and (A0)-(iii) by ∑t∈N λt(∣∣ε1,t∣∣ + ∣∣ε2,t∣∣) <
+∞. The proof would follow the same lines as [17, Lemma 5.1]. Let’s note also that a
part of assumption (A0)-(ii) on limλt is not needed under (A2).
Remark 4.2 (Strong Convergence). Assumption of uniform monotonicity in the proof
of statement (iv) can be relaxed. For instance, the sequence (zt)t∈N is indeed quasi-
Fejér monotone with respect to F. Thus, if intF ≠ ∅, strong convergence occurs by [17,
Lemma 2.8(iv)].

Corollary 4.1. Theorem 2.1 holds.

Proof. Let (zi,t)t∈N and (xt)t∈N be the sequences defined in (4). Identifying B with
∇F and Ai with ∂Gi and skipping some calculations, ((zi,t)i)t∈N follows iterations (15)
with ε1,t = (ε1,t,i)i and ε2,t = C (−γtε2,t), providing (A0)-(ii)-(iii) in Theorem 4.1. Now,
under (H1)-(H2), argmin(F + ∑iGi) = zer(∇F + ∑i ∂Gi) ≠ ∅, providing (A0)-(i) in
Theorem 4.1. The proof of weak convergence of (xt)t∈N follows from Theorem 4.1-(iii).
The proof of strong convergence is a consequence of Theorem 4.1-(iv) together with the
fact that uniform convexity of a function in Γ0(H) implies uniform monotonicity of its
subdifferential [4].

5 Discussion

5.1 Special instances

The generalized forward-backward algorithm can be viewed as a hybrid splitting
algorithm whose special instances turn out to be classical splitting methods; namely the
forward-backward and Douglas-Rachford algorithms.

Relaxed Forward-Backward For n ≡ 1, we have JNS = Id, A def
= A = A1, B = B and

the operator (8) specializes to

1

2
[RγA + Id ][ Id−γB] = JA( Id−γB) , (20)

so that xt = zt = z1,t given by (15) (resp. (4) in the optimization case) follows exactly the
iterations of the relaxed forward-backward algorithm [17, Section 6], and its convergence
properties under assumptions (A0) and (A2).
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This comparison is of particular interest in the convex optimization case since it may
be inspiring to study the convergence rate of the generalized forward-backward on the
objective. Indeed, it is now known that the exact forward-backward algorithm enjoys a
convergence rate in O(1/t) on the objective [55, 7]. Furthermore, there has been several
accelerated multistep versions of the exact forward-backward in the literature [55, 6, 70]
with a convergence rate of O(1/t2) on the objective (although no convergence guarantee
on the iterate itself is given). Therefore, two possible perspectives of this work would
be to investigate the convergence rate (on the objective of course) of the generalized
forward-backward and to design a potential multistep acceleration.

Relaxed Douglas-Rachford If we set B ≡ 0, the operator (8) becomes

1

2
[RγARNS + Id] . (21)

Taking γt = γ̄ ∈]0,+∞[,∀t, zt provided by (15) (resp. (4) in the optimization case) would
be equivalent to applying the relaxed Douglas-Rachford algorithm on the product space
H for solving 0 ∈ ∑iAix [65, 21]. The convergence statements of Theorem 4.1-(i)-(iii)
holds in this case under (A0)-(i), λt ∈]0,2[ with ∑t∈N λt(2−λt) = +∞ and ∑t∈N λt(∣∣ε1,t∣∣+
∣∣ε2,t∣∣) < +∞; see Remark 4.1 where α = 1

2 by Proposition 4.3.

Resolvents of the sum of monotone operators The generalized forward-backward
algorithm provides yet another way for computing the resolvent of the sum of maximal
monotone operators at a point y ∈ ran(Id+∑iAi). It is sufficient to take in (6) Bx = x−y
and β = 1. It would be interesting to compare this algorithm with the Douglas-Rachford
and Dykstra-based variants [18]. This will be left to a future work.

5.2 Relation to other work

Relation to [53] In a finite-dimensional setting, these authors propose an algorithm
for the monotone inclusion problem consisting of the sum of a continuous monotone
map and a set-valued maximal monotone operator, introducing a “block-decomposition”
hybrid proximal extragradient (HPE).They also derive the corresponding convergence
rates.

More precisely, our optimization problem can be rewritten in the form considered
in [53, Section 5.3, (51)]. Indeed, (1) is equivalent to the linearly constrained convex
problem

min
z=(zi)i∈H

F (∑iωizi) +∑
i

Gi(zi) such that projS�(z) = 0 , (22)

As projS� is self-adjoint, z is an optimal solution if and only if there exists v = (vi)i ∈H
such that

0 ∈ (∇F (∑iωizi))i + (∂Gi(zi)/wi)i + projS�(v) and projS�(z) = 0 ,

and the minimizer is given by x = ∑i ωizi.
Let ς ∈]0,1] and γ = ς 2ςβ

1+
√

1+4ς2β2
. Transposed to our setting, their iterations read:
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Algorithm 2 Iterations Block-Decomposition HPE [53].
for i ∈ J1, nK do

zi ← prox γ
ωi
Gi

(γ2x + (1 − γ2) zi − γ∇F (x) + γ (vi − u) );

for i ∈ J1, nK do
vi ← vi − γzi + γx;

x← ∑i ωizi;
u← ∑i ωivi.

The update of the zi’s in this iteration shares similarities with the one in Algorithm 1,
where γ is identified with γt. Nonetheless, the two algorithms are different in some
important ways. Our algorithm is robust to errors while there is no proof of such robust-
ness for HPE. Furthermore, HPE carries additional (dual) variables hence increasing the
computational load of the algorithm. Finally, unlike our algorithm, the step-size in HPE
γ cannot be iteration-varying, and γ < ς whatever the Lipschitz constant of ∇F , which
is a stronger condition than ours. The latter can have important practical impact.

Relation to [23] While this paper was being released, these authors independently
developed another algorithm to solve a class of problems that covers (6). They rely
on the classical Kuhn-Tucker theory and propose a primal-dual splitting algorithm for
solving monotone inclusions involving a mixture of sums, linear compositions, and paral-
lel sums (inf-convolution in convex optimization) of set-valued and Lipschitz operators.
More precisely, the authors exploit the fact that the primal and dual problems have
a similar structure, cast the problem as finding a zero of the sum of a Lipschitz con-
tinuous monotone map with a maximal monotone operator whose resolvent is easily
computable. They solve the corresponding monotone inclusion using an inexact version
of Tseng’s forward-backward-forward splitting algorithm [69].

Removing the parallel sum and taking the linear operators as the identity in [23,
(1.1)], one recovers problem (6). For the sake of simplicity and space saving we do not
reproduce here in full their algorithm. However, adapted to the optimization problem
minx F (x) + ∑iGi(Lix), where each Li is a bounded linear operator, their algorithm
reads (Gi∗ is the Legendre-Fenchel conjugate of Gi):

Algorithm 3 Iterations Primal-Dual Combettes-Pesquet [23].
y ← x − γt (∇F (x) +∑ni=1Li

∗vi)
for i ∈ J1, nK do

zi ← vi + γtLix;
vi ← vi − zi + proxγtGi∗(zi) + γtLiy;

x← x − γt (∇F (y) +∑ni=1Li
∗(proxγtGi∗(zi)));

Recall that the proximity operator of Gi∗ can be easily deduced from that of Gi using
Moreau’s identity. Taking Li = Id in Algorithm 3 solves (1). Similarly to the the
generalized forward-backward, this algorithm allows for inexact computations of the
involved operators and for varying step-size γt. However, if `

def
= 1/β denotes the Lipschitz

constant of F , the bound on our step-size sequence is 2/` while theirs is 1/(` +
√
n), at

least twice lower and degrading as n increases. While we solve the primal problem, their
algorithm solves both the primal and dual ones, which at least doubles the number of
auxiliary variables required. Moreover, it also requires two calls to the gradient of F per
iteration. Nonetheless, their algorithm is able to solve a more general class of problems.
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Finally, let us notice that if one want to use the composition with linear operators,
each iteration requires two calls to each one of them and two calls to their adjoints, what
can be computationally more expensive than computing directly the proximity operators
of the Gi ○Li’s (see Section 6).

It is also noteworthy to point out that Tseng’s forward-backward-forward algorithm
they used is a special case of the HPE method whose iteration complexity results were
derived in [52].

6 Numerical experiments

This section applies the generalized forward-backward to image processing problems.
The problems are selected so that other splitting algorithms can be applied as well and
compared fairly. In the following, Id denotes the identity operator on the appropriate
space to be understood from the context, N is a positive integer and I ≡ RN×N is the
set of images of size N ×N pixels.

6.1 Variational Image Restoration

We consider a class of inverse problem regularizations, where one wants to recover
an (unknown) high resolution image y0 ∈ I from noisy low resolution observations y =

Φy0 + w ∈ I. We report results using several ill-posed linear operators Φ ∶ I → I, and
focus our attention to convolution and masking operator, and a combination of these
operators. In the numerical experiments, the noise vector w ∈ I is a realization of an
additive white Gaussian noise of varianceσ2

w.
The restored image ŷ0 = Wx̂ is obtained by optimizing the coefficients x̂ ∈ H in

a redundant wavelet frame [49], where W ∶ H → I is the wavelet synthesis operator.
The wavelet atoms are normalized so that W is a Parseval tight frame, i.e. it satisfies
WW ∗ = Id. In this setting, the coefficients are vectors x ∈ H ≡ IJ where the redundancy
J = 3J0 + 1 depends on the number of scales J0 of the wavelet transform.

The general variational problem for the recovery reads

min
x∈H

{Ψ(x)
def
=

1

2
∣∣y −ΦWx∣∣2 + µ∣∣x∣∣B1,2 + ν∣∣Wx∣∣TV} . (23)

The first term in the summand is the data-fidelity term, which is taken to be a squared
`2-norm to reflect the additive white Gaussianity of the noise. The second and third
terms are regularizations, enforcing priors assumed to be satisfied by the original image.
The first regularization is a `1/`2-norm by blocks, inducing structured sparsity on the
solution. The second regularization is a discrete total variation semi-norm, inducing
sparsity on the gradient of the restored image. The scalars µ and ν are weights – so-
called regularization parameters – to balance between each terms of the energy Ψ. We
now detail the properties of each of these three terms.

6.1.1 Data-Fidelity 1
2 ∣∣y −ΦWx∣∣2

For the inpainting inverse problem, one considers a masking operator

(M y)p
def
=

⎧⎪⎪
⎨
⎪⎪⎩

0 if p ∈ Ω,

yp otherwise.

Where Ω is a set of pixels, taking into account missing or defective sensors that deteriorate
the observations; we will denote ρ = ∣Ω∣/N2 the ratio of missing pixels. For the deblurring
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inverse problem, we consider a convolution with a discrete Gaussian filter of width σ,
K ∶ y ↦ gσ ∗ y, normalized to a unit mass. This simulates a defocus effect or low-
resolution sensors. In the following, we thus consider Φ being equal either to M , K or
the composition MK.

Denoting L def
= ΦW , the fidelity term thus reads F (x) = 1

2 ∣∣y − Lx∣∣
2. The function F

corresponds to the smooth term in (1). Its gradient ∇F ∶ x ↦ L∗ (Lx − y) is Lipschitz-
continuous with constant β−1 ≤ ∣∣ΦW ∣∣2 = 1.

For any γ > 0, the proximity operator of F reads

proxγF (x) = (Id+γL∗L)
-1
(x + γL∗y) . (24)

The vector L∗y can be precomputed, but inverting Id+γL∗L may be problematic. For
L ≡ Id, this is trivial. For inpainting or deblurring alone, as Φ is associated to a Parseval
tight frame, L ≡MW or L ≡KW , the Sherman-Morrison-Woodbury formula gives

(Id+γL∗L)
-1
= Id−L∗(Id+γLL∗)

-1
L

= Id−W ∗Φ∗(Id+γΦΦ∗)
-1

ΦW . (25)

SinceM (resp. K) is a diagonal operator in the pixel domain (resp. Fourier domain), (25)
can be computed in O(N2) (resp. O(N2 logN)) operations. However, the composite
case L ≡MKW is more involved. An auxiliary variable is required, replacing F ∶ H → R

by F̃ ∶ H × I →]−∞,+∞] defined by

F̃ (x,u) =
1

2
∣∣y −Mu∣∣2 + ιCKW (x,u) = G1(x,u) +G2(x,u) , (26)

where CKW
def
= {(x,u) ∈ H × I ∣ u =KWx}. Only then, proxγG1

can be computed from
(24), and proxγG2

is the orthogonal projection on
ker([Id,−KW ]) [29, 10], which involves a similar inversion as in (25).

6.1.2 Regularization µ∣∣x∣∣B1,2

Sparsity-promoting regularizations over wavelet (and beyond) coefficients are popular
to solve a wide range of inverse problems [49]. Figure 1(a), left, shows an example of
orthogonal wavelet coefficients of a natural image, where most of the coefficients have
small amplitude, they are thus quite sparse. A way to enforce this sparsity is to use the
`1-norm of the coefficients ∣∣x∣∣1 = ∑p ∣xp∣.

The presence of edges or textures creates structured local dependencies in the wavelet
coefficients of natural images. A way to take into account those dependencies is to replace
the absolute value of the coefficients in the `1-norm by the `2-norm of groups (or blocks)
of coefficients [71]. This is known as the mixed `1/`2-norm by

∣∣x∣∣B1,2 = ∑
b∈B

µb∣∣xb∣∣ = ∑
b∈B

µb

√

∑
p∈b

x2
p , (27)

where p indexes the coefficients, the blocks b are sets of indexes, the block-structure B
is a collection of blocks and xb

def
= (xp)p∈b is a subvector of x. The positive scalars µb

are weights tuning the influence of each block. It is a norm on H as soon as B covers
the whole space, i.e. ∀p ∈ J1,NK2 × J1, JK, ∃b ∈ B s.t. p ∈ B. Note that for B ≡ ⋃p{p} and
µ{p} ≡ 1 for all p, it reduces to the `1-norm.

We mentionned in the introduction that the proximal operator of a `1-norm is a
soft-thresholding on the coefficients. Similarly, it is easy to show that whenever B is

18



non-overlapping, i.e. ∀b,b′ ∈ B, b ∩ b′ = ∅, the proximity operator of ∣∣ ⋅ ∣∣B1,2 is a soft-
thresholding by block

proxµ∣∣⋅∣∣B1,2
( (xb)b ) = (Θµb⋅µ(xb))b ,

with

Θµ(xb) =

⎧⎪⎪
⎨
⎪⎪⎩

0 if ∣∣xb∣∣ < µ ,
(1 − µ

∣∣xb∣∣)xb otherwise ,

and the coefficients xp not covered by B remaining unaltered.
Non-overlapping block structures break the translation invariance that is underlying

most traditional image models. To restore this invariance, one can consider overlapping
blocks, as illustrated in Figure 1(c). Computing prox∣∣⋅∣∣B1,2 in this case is not as simple as
for the non-overlapping case, because the blocks cannot be treated separately. For tree-
structured blocks (i.e. b ∩ b′ ≠ ∅ ⇒ b ⊂ b′ or b′ ⊂ b), [43] proposes a method involving
the computation of a min-cost flow. This could be computationally expensive and do not
address the general case anyway. Instead, it is always possible to decompose the block
structure as a finite union of non-overlapping sub-structures B = ⋃iBi. The resulting
term can finally be split into ∣∣x∣∣B1,2 = ∑b∈B ∣∣xb∣∣ = ∑i∑b∈Bi ∣∣xb∣∣ = ∑i ∣∣x∣∣

Bi
1,2, where each

∣∣ ⋅ ∣∣
Bi
1,2 is simple.

(a) ∣∣x∣∣1 = ∑p∣xp∣ (b) ∣∣x∣∣B1,2 = ∑b∈B ∣∣xb∣∣ (c) ∣∣x∣∣B1,2 = ∣∣x∣∣
B1
1,2 + ∣∣x∣∣

B2
1,2

Figure 1: Illustration of the block `1/`2-norm. (a) sparsity of the image in an orthogonal
wavelet decomposition (gray pixels corresponds to low coefficients); (b) a non-overlapping
block structure; (c) splitting of a more complex structure into two non-overlapping layers.

In our numerical experiments where H ≡ IJ , coefficients within each resolution level
(from 1 to J) and each subband are grouped according to all possible square spatial
blocks of size S ×S; which can be decomposed into S2 non-overlapping block structures.

6.1.3 Regularization ν∣∣Wx∣∣TV

The second regularization favors piecewise-smooth images, by inducing sparsity on
its gradient [63]. The total variation semi-norm can be viewed as a specific instance of
`1/`2-norm, ∣∣y∣∣TV = ∣∣∇Iy∣∣

BTV
1,2 , with

∇I ∶ {
I Ð→ I2

y z→ (V ∗ y,H ∗ y)
and ∣∣ (v, h) ∣∣BTV

1,2 = ∑
p∈J1,NK2

√

vp2 + hp
2 ,

where the image gradient is computed by finite differences through convolution with a
vertical filter V and a horizontal filter H, and BTV is clearly non-overlapping. For some
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special gradient filters, the modified TV semi-norm can be splitted into simple functions,
see for instance [21, 61]. However, we consider more conventional filters

V = (
−1 0
1 0

) and H = (
−1 1
0 0

)

centered in the upper-left corner. Introducing an auxiliary variable as advocated in
(26), the main difficulty remains to invert the operator (Id+γ∇I∇I

∗). Under appro-
priate boundary conditions, this can be done in the Fourier domain in O(N2 log(N))

operations.

6.2 Resolution with Splitting Methods

6.2.1 Tested Algorithms

We now give the details of the different splitting strategies required to apply the
three tested algorithms to (23).

Generalized Forward-Backward (GFB) The problem is rewritten under the form
(1) as

min
x∈H
u∈I2

1

2
∣∣y −MKWx∣∣2 + µ

S2

∑
i=1

∣∣x∣∣Bi1,2 + ν∣∣u∣∣
BTV
1,2 + ιC∇

I
W
(x,u) , (28)

with F (x) ≡ 1
2 ∣∣y −MKWx∣∣2 and n ≡ S2 + 2. The indicator function ιC∇

I
W

is defined
similarly as in (26). In Algorithm 1, we set equal weights ωi ≡ 1/n, a constant gradient
step-size γ ≡ 1.8β and a constant relaxation parameter to λ ≡ 1.

Relaxed Douglas-Rachford (DR) Here the problem is split as

min
x∈H
u1∈I
u2∈I2

1

2
∣∣y −M u1∣∣

2
+ ιCKW (x,u1) + µ

S2

∑
i=1

∣∣x∣∣Bi1,2 + ν∣∣u2∣∣
BTV
1,2 + ιC∇

I
W
(x,u2) ,

and solved with Algorithm 1, where F ≡ 0 and n ≡ S2+4. As mentioned in Section 5, this
corresponds to a relaxed version of the Douglas-Rachford algorithm, with best results
when γ ≡ 1/n.

Primal-Dual Chambolle-Pock (ChPo) A way to avoid operator inversions is to
rewrite the original problem as

min
x∈H

G(Λx)

where

Λ ∶ {
H Ð→ I × (H)

S2

× I2

x z→ (MKWx,x, . . . , x,∇IWx)
,

and

G ∶

⎧⎪⎪
⎨
⎪⎪⎩

I × (H)
S2

× I2 Ð→ R

(u1, x1, . . . , xS2 , g) z→ 1
2 ∣∣y − u1∣∣

2 + µ∑S
2

i=1 ∣∣xi∣∣
Bi
1,2 + ν∣∣g∣∣

BTV
1,2

.

The operator Λ is a concatenation of linear operators and its adjoint is easy to compute,
and G is simple, being a separable mixture of simple functions. Note that this is not the
only splitting possible. For instance, one can write the problem on a product space as
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min
(xi)i∈H

ιS((xi)i) + ∑iGi(Λixi), where Gi is each of the functions in G above, and Λi is

each of the linear operators in Λ.
To solve this, we here use the primal-dual relaxed Arrow-Hurwicz algorithm described

in [12]. According to the notations in that paper, we set the parameters σ ≡ 1, τ ≡
0.9

σ(1+S2+8) and θ ≡ 1.

Block-Decomposition Hybrid Proximal Extragradient (HPE) We split the prob-
lem written in (28) according to (22), and set equals weights wi ≡ 1/n. According to
Section 5.2, we set the parameter ς ≡ 0.9.

Primal-Dual Combettes-Pesquet (CoPe) Finally, the problem takes its simplest
form

min
x∈H

1

2
∣∣y −MKWx∣∣2 + µ

S2

∑
i=1

∣∣x∣∣Bi1,2 + ν∣∣∇IWx∣∣BTV
1,2 . (29)

As long as ν ≡ 0 (no TV-regularization), this is exactly (28); we apply Algorithm 3
where Li ≡ Id for all i and γ ≡ 0.9/(1+S). However with TV-regularization, we avoid the
introduction of the auxiliary variable u with LS2+1 ≡ ∇IW and γ ≡ 0.9/(1 +

√
S2 + 8).

6.2.2 Results

All experiments were performed on a discrete image of width N ≡ 256, with values in
the range [0,1]. The additive white Gaussian noise has standard-deviation σw ≡ 2.5⋅10−2.
The reconstruction operator W uses non-separable, bi-dimensional Daubechies wavelets
with 2 vanishing moments. It is implemented such that each atom has norm 2−j , with
j ∈ J1, J0K and where J0 is the coarsest resolution level. Accordingly, we set the weights
µb in the `1/`2-norm to 2−j at the resolution level j of the coefficients in block b. We
use J0 ≡ 4, resulting in a dictionary with redundancy J = 3J0 + 1 = 13. All algorithms
are implemented in Matlab1.

Results are presented in Figures 2, 3, 4 and 5. For each problem, the five algorithms
were run 1000 iterations (initialized at zero), while monitoring their objective functional
values Ψ along iterations. Ψmin is fixed as the minimum value reached over the five
algorithms (in our experiments, this was always the generalized forward-backward), and
evolution of the objectives compared to Ψmin is displayed for the first 100 iterations.
Because the computational complexity of an iteration may vary between algorithms,
computation times for 100 iterations (no parallel implementation) are given beside the
curves. Below the energy decay graph, one can find from left to right the original image,
the degraded image and the restored image after 100 iterations of generalized forward-
backward. Degraded and restored images quality are given in term of the signal-to-noise
ratio (SNR).

Comparison to algorithms that do not use the (gradient) explicit step (ChPo,
DR) For the first three experiments, there is no total variation regularization. In the
deblurring task (Figure 2), blocks of size 2 × 2 are used. GFB is slightly better than
the others and iteration cost of ChPo is too high for this problem. When increasing
the number of block structures (inpainting, Figure 3, size 4 × 4) computation times
tends to be similar but GFB clearly outperforms the others for the task. However, one
advantage of using the gradient becomes obvious in the composite case (i.e. Φ ≡MK):

1An implementation of the generalized forward-backward, as well as the codes and materials for the
experiments, are available at http://www.ceremade.dauphine.fr/~raguet/
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in Figure 4, DR performs hardly better than ChPo. Indeed, in contrast to previous cases
(see Section 6.1.1), F is not simple anymore and the introduction of the auxiliary variable
decreases the efficiency of each iteration of DR. This phenomenon is further illustrated in
the last case, where the total variation is added, introducing another auxiliary variable.

Comparison to algorithms that use the (gradient) explicit step (HPE, CoPe)
In the first experiment where n is small, the iterations of HPE and CoPe are almost as
efficient as the iterations of GFB but take more time to compute, especially for CoPe
that needs twice more calls to ∇F . In the second setting, HPE and CoPe are hardly
better than DR, maybe suffering from small gradient step-sizes. They perform better in
the composite setting, but require more computional time than GFB. In the last setting,
iterations of CoPe are still not as efficient as iterations of GFB in spite of their higher
computational load due to the composition by the linear operator ∇IW (see (29)).

Finally, let us note that in the composite case (i.e. Φ ≡ MK), the SNR of the
restored image is greater when using both regularizations rather than one or the other
separately. Moreover, we observed that it yields restorations more robust to variations of
the parameters µ and ν. Those arguments seem to be in favor of mixed regularizations.

7 Conclusion

We have introduced in this paper a novel proximal splitting method able to handle
convex functionals that are the sum of a smooth term and several simple functions.
It generalizes existing schemes by enlarging the class of problems that can be solved
efficiently with proximal methods to the case where one of the function is smooth but
not simple. We provided theoretical guarantees on the convergence and robustness of the
algorithm even for the more general problem of finding the zeros of the sum of maximal
monotone operators, one of which is also co-coercive. Numerical experiments on convex
optimization problems encountered in inverse problems show evidence of the advantages
of our approach for large-scale imaging problems.

In analogy with first-order methods such as the forward-backward algorithm, estab-
lishing convergence rates (on the objective) and designing multistep accelerations are
possible perspectives that we leave to a future work.
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(a) log(Ψ −Ψmin) vs. iteration #
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(b) computing time

tChPo = 153 s
tDR = 95 s
tHPE = 148 s
tCoPe = 235 s
tGFB = 73 s

(c) LaBoute y0 (d) y =Ky0 +w, 19.63 dB (e) ŷ0 =Wx̂, 22.45 dB

Figure 2: Deblurring: σ = 2; µ = 1.3 ⋅ 10−3; S = 2; ν = 0.

(a) log(Ψ −Ψmin) vs. iteration #
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(b) computing time

tChPo = 229 s
tDR = 219 s
tHPE = 352 s
tCoPe = 340 s
tGFB = 203 s

(c) LaBoute y0 (d) y =My0 +w, 1.54 dB (e) ŷ0 =Wx̂, 21.66 dB

Figure 3: Inpainting: ρ = 0.7; µ = 2.6 ⋅ 10−3; S = 4; ν = 0.
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(a) log(Ψ −Ψmin) vs. iteration #
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(b) computing time

tChPo = 313 s
tDR = 256 s
tHPE = 342 s
tCoPe = 268 s
tGFB = 233 s

(c) LaBoute y0 (d) y =MKy0 +w, 3.93 dB (e) ŷ0 =Wx̂, 20.77 dB

Figure 4: Composite: σ = 2; ρ = 0.4; µ = 1.0 ⋅ 10−3; S = 4; ν = 0.

(a) log(Ψ −Ψmin) vs. iteration #
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(b) computing time

tChPo = 358 s
tDR = 294 s
tHPE = 409 s
tCoPe = 441 s
tGFB = 286 s

(c) LaBoute y0 (d) y =MKy0 +w, 3.93 dB (e) ŷ0 =Wx̂, 22.48 dB

Figure 5: Composite: σ = 2; ρ = 0.4; µ = 5.0 ⋅ 10−4; S = 4; ν = 5.0 ⋅ 10−3.
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