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GENERALIZED FORWARD-BACKWARD SPLITTING

HUGO RAGUET∗, JALAL FADILI� , AND GABRIEL PEYRÉ∗

Abstract. This paper introduces the generalized forward-backward splitting algorithm for min-
imizing convex functions of the form F +∑n

i=1 Gi, where F has a Lipschitz-continuous gradient and
the Gi's are simple in the sense that their Moreau proximity operators are easy to compute. While
the forward-backward algorithm cannot deal with more than n = 1 non-smooth function, our method
generalizes it to the case of arbitrary n. Our method makes an explicit use of the regularity of F
in the forward step, and the proximity operators of the Gi's are applied in parallel in the backward
step. This allows the generalized forward backward to e�ciently address an important class of con-
vex problems. We prove its convergence in in�nite dimension, and its robustness to errors on the
computation of the proximity operators and of the gradient of F . Examples on inverse problems
in imaging demonstrate the advantage of the proposed methods in comparison to other splitting
algorithms.

Key words. Forward-backward algorithm, proximal splitting, convex optimization, image pro-
cessing, total variation, wavelets.

AMS subject classi�cations.

1. Introduction. Throughout this paper, H denotes a real Hilbert space en-
dowed with scalar product ⟨⋅ ∣ ⋅⟩ and associated norm ∣∣ ⋅ ∣∣, and n is a positive integer.
We consider the following minimization problem

min
x∈H
{Ψ(x) def

= F (x) +
n

∑
i=1

Gi(x)}, (1.1)

where all considered functions belong to the class Γ0(H) of lower semicontinuous,
proper (its domain is non-empty) and convex functions from H to ]−∞,+∞].

1.1. State-of-the-Art in Splitting Methods. The decomposition (1.1) is
fairly general, and a wide range of iterative algorithms takes advantage of the speci�c
properties of the functions in the summand. One crucial property is the possibility
to compute the associated proximity operators [54], de�ned as

proxG(x) def

= argmin
y∈H

1
2
∣∣x − y∣∣2 +G(y). (1.2)

This is in itself a convex optimization problem, which can be solved e�ciently for
many functions, e.g. when the solution, unique by strong convexity, can be written in
closed form. Such functions are referred to as �simple�.

Another important feature is the di�erentiability of the functional to be mini-
mized. However, gradient-descent approaches do not apply as soon as one of the
functions Gi is non-smooth. For n ≡ 1 and G1 simple, the forward-backward algo-
rithm circumvents this di�culty if F is di�erentiable with a Lipschitz-continuous
gradient. This scheme consists in performing alternatively a gradient-descent (corre-
sponding to an explicit step on the function F ) followed by a proximal step (corre-
sponding to an implicit step on the function G1). Such a scheme can be understood
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as a generalization of the projected gradient method. This algorithm has been well
studied [50, 40, 67, 16, 69, 24, 7]. Accelerated multistep versions have been pro-
posed [55, 70, 1], that enjoy a faster convergence rate of O(1/t2) on the objectiveΨ.

Other splitting methods do not require any smoothness on some part of the com-
posite functional Ψ. The Douglas-Rachford [27] and Peaceman-Rachford [57] schemes
were developed to minimize G1(x) + G2(x), provided that G1 and G2 are simple
[47, 45, 33, 17] and rely only on the use of proximity operators. The backward-
backward algorithm [46, 56, 2, 6, 17] can be used to minimize Ψ(x) = G1(x) +G2(x)
when the functions involved are the indicator functions of non-empty closed convex
sets, or involve Moreau envelopes. Interestingly, if one of the functions G1 or G2 is
a Moreau envelope and the other is simple, the forward-backward algorithm amounts
to a backward-backward scheme.

If L is a bounded injective linear operator, it is possible to minimize Ψ(x) =
G1 ○ L(x) + G2(x) by applying these splitting schemes on the Fenchel-Rockafellar
dual problem. It was shown that applying the Douglas-Rachford scheme leads to the
alternating direction method of multipliers (ADMM) [39, 40, 41, 42, 33]. For non-
necessarily injective L and G2 strongly convex with a Lipschitz-continuous gradient,
the forward-backward algorithm can be applied to the Fenchel-Rockafellar dual [35,
19]. Dealing with an arbitrary bounded linear operator L can be achieved using
primal-dual methods motivated by the classical Kuhn-Tucker theory. Starting from
methods to solve saddle function problems such as the Arrow-Hurwicz method [3] and
its modi�cation [60], the extragradient method [44], this problem has received a lot
of attention more recently [15, 68, 64, 53, 12, 9].

It is also possible to extend the Douglas-Rachford algorithm to an arbitrary num-
ber n > 2 of simple functions. Inspired by the method of partial inverses [65, Section
5], most methods rely either explicitly or implicitly on introducing auxiliary variables
and bringing back the original problem to the case n = 2 in the product space Hn.
Doing so yields iterative schemes in which one performs independent parallel proximal
steps on each of the simple functions and then computes the next iterate by essentially
averaging the results. Variants have been proposed in [21] and [34], who describe a
general projective framework that does not reduce the problem to the case n = 2. Note
however that these extensions do not apply to the forward-backward scheme that can
only handle n ≡ 1. It is at the heart of this paper to present such an extension.

Recently proposed methods extend existing splitting schemes to handle the sum
of any number of n ≥ 2 composite functions of the form Gi = Hi ○ Li, where the
Hi's are simple and the Li's are bounded linear operators. Let us denote Li

∗ the
adjoint operator of Li. If Li satis�es LiLi

∗
= ν Id for any ν > 0 (it is a so-called

tight frame), Hi ○ Li is simple as soon as Hi is simple and Li
∗ is easy to compute

[20]. This case thus reduces to the previously reviewed ones. If Li is not a tight
frame but (Id+Li

∗Li) or (Id+LiLi
∗) is easily invertible, it is again possible to reduce

the problem to the previous cases by introducing as many auxiliary variables as the
number of Li's each belonging to the range of Li. Note however that, if solved with
the Douglas-Rachford algorithm on the product space, the auxiliary variables are
also duplicated, which would increase signi�cantly the dimensionality of the problem.
Some dedicated parallel implementations were speci�cally designed for the case where
(∑i Li

∗Li) or (∑i LiLi
∗) is (easily) invertible, see for instance [32, 58]. If the Li's

satisfy none of the above properties, it is still possible to call on primal-dual methods,
either by writing Ψ(x) = ∑n

i=1 Hi(Lix) = G(Lx) with L(x) = (Li(x))i and G( (xi)i ) =
∑i Hi(xi), see for instance [29]; or Ψ((xi)i) = ιS((xi)i) +∑i Hi(Lixi) [9], where S is
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the closed convex set de�ned in Section 3.2.

In spite of the wide range of already existing proximal splitting methods, none
seems satisfying to address explicitly the case where n > 1 and F is smooth but not
necessarily simple. A workaround that has been proposed previously used nested
algorithms to compute the proximity operator of ∑i Gi within sub-iterations, see for
instance [30, 14]; this leads to practical as well as theoretical di�culties to select the
number of sub-iterations. More recently, [53] proposed an algorithm for minimizing
Ψ(x) = F (x) + G(x) under linear constraints. We show in Section 5 how this can
be adapted to adress the general problem (1.1) while achieving full splitting of the
proximity operators of the Gi's and using the gradient of F . It su�ers however from
limitations, in particular the introduction of many auxiliary variables and the fact
that the gradient descent can't be directly applied to the minimizer; see Section 5 and
6 for details. The generalized forward-backward algorithm introduced in this paper
is intended to avoid all those shortcomings.

As this paper was being �nalized, the authors in [23] independently developed a
primal-dual algorithm to solve a class of problems that cover those we consider here.
Their approach and algorithm are however very di�erent from ours in many important
ways. We will provide a detailed comparison with this work in Section 5 and will also
show on numerical experiments in Section 6 that our algorithm seems more adapted
for problems of the form (1.1).

1.2. Applications in Image Processing. Many imaging applications require
solving ill-posed inverse problems to recover high quality images from low-dimensional
and noisy observations. These challenging problems necessitate the use of regulariza-
tion through prior models to capture the geometry of natural signals, images or videos.
The resolution of the inverse problem can be achieved by minimizing objective func-
tionals, with respect to a high-dimensional variable, that takes into account both a
�delity term to the observations and regularization terms re�ecting the priors. Clearly,
such functionals are composite by construction. Section 6 details several examples of
such inverse problems.

In many situations, this leads to the optimization of a convex functional that
can be split into the sum of convex smooth and non-smooth terms. The smooth
part of the objective is in some cases a data �delity term and re�ects some speci�c
knowledge about the forward model, i.e. the noise and the measurement/degradation
operator. This is for instance the case if the operator is linear and the noise is additive
Gaussian, in which case the data �delity is a quadratic function. The most successful
regularizations that have been advocated are non-smooth, which typically allow to
preserve sharp and intricate structures in the recovered data. Among such priors,
sparsity-promoting ones have become popular, e.g. the `1-norm of coe�cients in a
wisely chosen dictionary [49], or total variation (TV) prior [63]. To better model the
data, composite priors can be constructed by summing several suitable regularizations,
see for instance the morphological diversity framework [66]. The proximity operator of
the `1-norm penalization is a simple soft-thresholding [26], whereas the use of complex
or mixed regularization priors justi�es the splitting of non-smooth terms in several
simpler functions (see Section 6 for concrete examples).

The composite structure of convex optimization problems raising when solving
inverse problems in the form of a sum of simple and/or smooth functions involving lin-
ear operators explains the popularity of proximal splitting schemes in imaging science.
Depending on the structure of the objective functional as detailed in the previous sec-
tion, one can resort to the appropriate splitting algorithm. For instance, the forward-
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backward algorithm and its modi�cations has become popular for sparse regularization
with a smooth data �delity, see for instance [38, 25, 24, 36, 13, 1, 8]. The Douglas-
Rachford and its parallelized extensions were also used in a variety of inverse problems
implying only non-smooth functions, see for instance [20, 21, 30, 14, 10, 28, 31, 61].
The ADMM (which is nothing but Douglas-Rachford on the dual) was also applied
to some linear inverse problems in [48, 37]. Primal-dual schemes [12, 29] are among
the most �exible schemes to handle more complicated priors. The interested reader
may refer to [66, Chapter 7] and [22] for extensive reviews.

1.3. Contributions and Paper Organization. This paper introduces a novel
generalized forward-backward algorithm to solve (1.1) when F is convex with a Lips-
chitz continuous gradient, and the Gi's are convex and simple. The algorithm achieves
full splitting where all operators are used separately: an explicit step for ∇F (single-
valued) and a parallelized implicit step through the proximity operators of the Gi's.
We prove convergence of the algorithm as well as its robustness to errors that may
contaminate the iterations. To the best of our knowledge, it is among the �rst al-
gorithms to tackle the case where n > 1 and F is smooth (see Section 5 for relation
to a recent work developed in parallel to ours). Although our numerical results are
reported only on imaging applications, the algorithm may prove useful for many other
applications such as machine learning or statistical estimation.

Section 2 presents the algorithm and state our main theoretical result. Sec-
tion 3, that can be skipped by experienced readers, sets some necessary material from
the framework of monotone operator theory. Section 4 reformulates the generalized
forward-backward algorithm for �nding the zeros of the sum of maximal monotone
operators, and proves its convergence and its robustness. Special instances of the
algorithm, its potential extensions and discussion of its relation to two alternatives in
the literature are given in Section 5. Numerical examples are reported in Section 6 to
show the usefulness of this approach for applications to imaging problems.

2. Generalized Forward-Backward Algorithm for Minimization Prob-

lems. We consider problem (1.1) where all functions are in Γ0(H), F is di�erentiable
on H with 1/β-Lipschitz gradient where β ∈]0,+∞[, and for all i, Gi is simple. We
also assume the following:

(H1) The set of minimizers of (1.1) argmin(Ψ) is non-empty;
(H2) The domain quali�cation condition holds, i.e.

(0, . . . ,0) ∈ sri{(x − y1, . . . , x − yn) ∣x ∈H and ∀ i, yi ∈ dom(Gi)} ,

where dom(Gi) def

= {x ∈ H∣Gi(x) < +∞} and sri(C) is the strong relative interior of a
non-empty convex subset C ofH [5]. Under (H1)-(H2), it follows from [62, 5, Theorem
16.2 and Theorem 16.37(i)] that

∅ ≠ argmin(Ψ) = zer(∂Ψ) = zer(∇F +∑
i

∂Gi) ,

where ∂Gi denotes the subdi�erential of Gi and zer(A) is the set of zeros of a set-
valued map A (see De�nition 3.1 in Section 3.1). Therefore, solving (1.1) is equivalent
to

Find x ∈H such that 0 ∈ ∇F (x) +∑
i

∂Gi(x) . (2.1)

The generalized forward-backward we propose to minimize (1.1) (or equivalently
to solve (2.1)) is detailed in Algorithm 1.
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Algorithm 1 Generalized Forward-Backward Algorithm for solving (1.1).
β-1 ∈]0,+∞[ is the Lipschitz constant of ∇F ; It is de�ned in Theorem 2.1.

Require
(zi)i∈J1,nK ∈ Hn, (ωi)i∈ J1,nK ∈ ]0,1[n s.t. ∑n

i=1 ωi = 1,

γt ∈ ]0,2β[ ∀t ∈ N, λt ∈ It ∀t ∈ N .
Initialization

x← ∑i ωizi;
t← 0.
Main iteration

repeat

for i ∈ J1, nK do
zi ← zi + λt(prox γt

ωi
Gi
(2x − zi − γt∇F (x)) − x);

x← ∑i ωizi;
t← t + 1.

until convergence ;
Return x.

To state our main theorem that ensures the convergence of the algorithm and its
robustness, for each i let ε1,t,i be the error at iteration t when computing prox γt

ωi
Gi

at its argument, and let ε2,t be the error at iteration t when applying ∇F to its
argument. Algorithm 1 generates sequences (zi,t)t∈N, i ∈ J1, nK and (xt)t∈N, such that
for all i and t,

zi,t+1 = zi,t + λt(prox γt
ωi

Gi
(2xt − zi,t − γt (∇F (xt) + ε2,t) ) + ε1,t,i − xt) . (2.2)

The following theorem introduces two di�erent sets of assumptions to guarantee
convergence. Assumption (A1) allows one to use a greater range for the relaxation
parameters λt, while assumptions (A2) enables varying gradient-descent step-size γt

and ensures strong convergence in the uniformly convex case. Recall that a function
F ∈ Γ0(H) is uniformly convex if there exists a non-decreasing function ϕ ∶ [0,+∞[→
[0,+∞] that vanishes only at 0, such that for all x and y in dom(F ), the following
holds

∀ρ ∈]0,1[, F (ρx + (1 − ρ)y) + ρ(1 − ρ)ϕ(∣∣x − y∣∣) ≤ ρF (x) + (1 − ρ)F (y). (2.3)

Theorem 2.1. Set limγt = γ̄ and de�ne the following assumptions:

(A0) (i) 0 < limλt ≤ limλt <min ( 3
2
, 1+2β/γ̄

2
);

(ii) ∑+∞t=0 ∣∣ε2,t∣∣ < +∞, and for all i, ∑+∞t=0 ∣∣ε1,t,i∣∣ < +∞.
(A1) (i) ∀ t, γt = γ̄ ∈]0,2β[;

(ii) ∀ t, λt ∈ It = ]0,min ( 3
2
, 1+2β/γ̄

2
)[.

(A2) (i) 0 < limγt ≤ γ̄ < 2β;
(ii) ∀ t, λt ∈ It =]0,1].

Suppose that (H1), (H2) and (A0) are satis�ed. Then, if either (A1) or (A2) is satis-
�ed, (xt)t∈N de�ned in (2.2) converges weakly towards a minimizer of (1.1). Moreover,
if (A2) is satis�ed and F is uniformly convex, the convergence is strong to the unique
global minimizer of (1.1).

This theorem will be proved after casting it in the more general framework of
monotone operator splitting in Section 4.

Remark 2.2. The su�cient condition of strong convergence in Theorem 2.1 can
be weakened, and other ones can be stated as well. Indeed, the generalized forward-
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backward algorithm has a structure that bears similarities with the classical forward-
backward, since it consists of an explicit forward step, followed by an implicit step
where the proximity operators are computed in parallel. In fact, it turns out that
the backward step involves a �rmly non-expansive operator (see next section), and
therefore statements of [24, Theorem 3.4(iv) and Proposition 3.6] can be transposed
with some care to our algorithm.

The formulation of Algorithm 1 is general, but it can be simpli�ed for practical
purposes. In particular, the auxiliary variables zi can all be initialized to 0, the
weights ωi set equally to 1/n, and for simplicity the relaxation parameters λt and the
gradient-descent step-size γt can be set constant along iterations. This is typically
what has been done in the numerical experiments.

3. Monotone Operators and Inclusions. The subdi�erential of a function
in Γ0(H) is the best-known example of maximal monotone operator. Therefore, it is
natural to extend the generalized forward-backward, Algorithm 1, to �nd the zeros
of the sum of maximal monotone operators, i.e. solve the monotone inclusion (2.1)
when the subdi�erential is replaced by any maximal monotone operator. This is the
goal pursued in Section 4 where we provide the proof of a general convergence and
robustness theorem whose byproduct is a convergence proof of Theorem 2.1.

We �rst begin by recalling some essential de�nitions and properties of monotone
operators that are necessary to our exposition. The interested reader may refer to
[59, 5] for a comprehensive treatment.

3.1. De�nitions and Properties. In the following, A ∶H → 2H is a set-valued
operator, and IdH is the identity operator on H. A is single-valued if the cardinality
of Ax is at most 1.

Definition 3.1 (Graph, inverse, domain, range and zeros). The graph of A

is the set gra(A) def

= {(x, y) ∈H2 ∣ y ∈ Ax}. The inverse of A is the operator whose

graph is gra(A-1) def

= {(x, y) ∈H2 ∣ (y, x) ∈ gra(A)}. The domain of A is dom(A) def

=

{x ∈H ∣ Ax ≠ ∅}. The range of A is ran(A) def

= {y ∈H ∣ ∃x ∈H ∶ y ∈ Ax}, and its zeros

set is zer(A) def

= {x ∈H ∣ 0 ∈ Ax} = A-1 (0).
Definition 3.2 (Resolvant and re�ection operators). The resolvant of A is the

operator JA
def

= ( IdH +A)-1. The re�ection operator associated to JA is the operator

RA
def

= 2JA − IdH.
Definition 3.3 (Maximal monotone operator). A is monotone if

∀x, y ∈H, u ∈ Ax and v ∈ Ay⇒ ⟨u − v ∣x − y⟩ ≥ 0 .

It is moreover maximal if its graph is not strictly contained in the graph of any other
monotone operator.

Definition 3.4 (Non-expansive and α-averaged operators). A is
non-expansive if

∀x, y ∈H, u ∈ Ax and v ∈ Ay⇒ ∣∣u − v∣∣ ≤ ∣∣x − y∣∣ .
For α ∈]0,1[, A is α-averaged if there exists R non-expansive such that A = (1 −
α) IdH +αR. We denote A(α) the class of α-averaged operators on H. In particular,
A( 1

2
) is the class of �rmly non-expansive operators.
Note that non-expansive operators are necessarily single-valued and 1-Lipschitz

continuous, and so are α-averaged operators since they are also non-expansive. The
following lemma gives some useful characterizations of �rmly non-expansive operators.
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Lemma 3.5. Let A ∶ dom (A) =H →H. The following statements are equivalent:

(i) A is �rmly non-expansive;
(ii) 2A − IdH is non-expansive;
(iii) ∀x, y ∈H, ∣∣Ax −Ay∣∣2 ≤ ⟨Ax −Ay ∣x − y⟩ ;
(iv) A is the resolvent of a maximal monotone operator A′, i.e. A = JA′ .

Proof. (i) ⇔ (ii), A ∈ A( 1
2
)⇔ A = IdH +R

2
for some R non-expansive. (i) ⇔ (iii),

see [72]. (i) ⇔ (iv), see [51].

We now summarize some properties of the subdi�erential that will be useful in
the sequel.

Lemma 3.6. Let F ∶H → R be a convex di�erentiable function, with 1/β-Lipschitz
continuous gradient, β ∈]0,+∞[, and let G ∶ H →]−∞,+∞] be a function in Γ0(H).
Then,

(i) β∇F ∈ A( 1
2
), i.e. is �rmly non-expansive;

(ii) ∂G is maximal monotone;
(iii) The resolvent of ∂G is the proximity operator of G, i.e. proxG = J∂G.

Proof. (i) This is Baillon-Haddad theorem [4]. (ii) See [62]. (iii) See [54].

We thus consider in the following n maximal monotone operators Ai ∶ H → 2H

indexed by i ∈ J1, nK, and a (single-valued) operator B ∶ H → H and β ∈]0,+∞[
such that βB ∈ A( 1

2
). Therefore, solving (2.1) can be translated in the more general

language of maximal monotone operators as solving the monotone inclusion

Find x ∈H such that 0 ∈ Bx +∑
i

Aix, (3.1)

where it is assumed that zer(B +∑i Ai) ≠ ∅.
3.2. Product Space. The previous de�nitions being valid for any real Hilbert

space, they also apply to the product space Hn endowed with scalar product and
norm derived from the ones associated to H.

Let (ωi)i∈J1,nK ∈ ]0,1[n such that ∑n
i=1 ωi = 1. We considerH def

= Hn endowed with

the scalar product ⟨⋅ ∣ ⋅⟩, de�ned as

∀x = (xi)i ,y = (yi)i ∈H, ⟨x ∣y⟩ =
n

∑
i=1

ωi⟨xi ∣ yi⟩

and with the corresponding norm ∣∣ ⋅ ∣∣. S ⊂H denotes the closed convex set de�ned

by S def

= {x = (xi)i ∈H ∣ x1 = x2 = ⋯ = xn}, whose orthogonal complement is the closed
linear subspace S⊥ = {x = (xi)i ∈H ∣ ∑i ωixi = 0}. De�ne the canonical isometry

C ∶H → S, x↦ (x,⋯, x) .

ιS ∶H→]−∞,+∞] and NS ∶H → 2H are respectively the indicator function and the
normal cone of S, that is

ιS(x) def

=

⎧⎪⎪⎨⎪⎪⎩
0 if x ∈ S ,

+∞ otherwise ,
and NS(x) def

=

⎧⎪⎪⎨⎪⎪⎩
S⊥ if x ∈ S ,

∅ otherwise .

Since S is non-empty closed and convex, it is straightforward to see that NS is
maximal monotone. To lighten the notation in the sequel, we introduce the following
concatenated operators. For every i ∈ J1, nK, let Ai and B as de�ned in (3.1), and
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γi ∈]0,+∞[. For γ = (γi)i∈J1,nK ∈ (]0,+∞[)n, we de�ne γA ∶H→ 2H,x = (xi)i ↦
⨉n

i=1 γiAi(xi), i.e. its graph is

gra (A) def

=

n

⨉
i=1

gra (γiAi)

= {(x,y) ∈H2 ∣ x = (xi)i,y = (yi)i, and ∀ i, yi ∈ γiAixi} ,

and B ∶H→H,x = (xi)i ↦ (Bxi)i.
Using the maximal monotonicity of A1, . . . ,An and B it is an easy exercise to

establish that γA and B are maximal monotone on H.

4. Generalized Forward-Backward Algorithm for Monotone Inclusions.

Now that we have set all necessary material, we are ready to solve the monotone
inclusion (3.1). First, we derive an equivalent �xed point equation satis�ed by any
solution of (3.1). From this, we draw an algorithmic scheme and prove its convergence
towards a solution, as well as its robustness to errors. From these results, we derive
the proof of Theorem 2.1.

4.1. Fixed Point Equation.

Proposition 4.1. Let (ωi)i∈J1,nK ∈ ]0,1[n. For any γ > 0, x ∈ H is a solution of

(3.1) if and only if there exists (zi)i∈J1,nK ∈Hn such that

⎧⎪⎪⎨⎪⎪⎩

∀ i, zi = R γ
ωi

Ai
(2x − zi − γBx) − γBx ,

x =∑
i

ωizi . (4.1)

Proof. set γ > 0, we have the equivalence

0 ∈ Bx +∑
i

Aix⇔ ∃ (zi)i ∈Hn
∶ { ∀ i, ωi (x − zi − γBx) ∈ γAix ,

x = ∑i ωizi .

Now,

ωi (x − zi − γBx) ∈ γAix⇔ (2x − zi − γBx) − x ∈
γ

ωi
Aix

(by Lemma 3.5 (iv))⇔ x = J γ
ωi

Ai
(2x − zi − γBx)

⇔ 2x − (2x − zi) = 2J γ
ωi

Ai
(2x − zi − γBx)

− (2x − zi − γBx) − γBx

⇔ zi = R γ
ωi

Ai
(2x − zi − γBx) − γBx .

Before formulating a �xed point equation, consider the following preparatory
lemma.

Lemma 4.2. For any z = (zi)i ∈H, b = (b)i ∈ S, and γ = (γi)i ∈ ]0,+∞[n,
(i) JNS is the orthogonal projector on S, and JNSz = C (∑i ωizi);
(ii) RNS (z − b) = RNSz − b;
(iii) RγAz = (RγiAi(zi))i.
Proof.

(i). From Lemma 3.6 (iii), we have for z ∈H,

JNS(z) = projS(z) = argminy∈S ∣∣z − y∣∣.
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Therefore argminy∈S ∣∣z − y∣∣2 = C (argminy∈H∑i ωi∣∣zi − y∣∣2), where the unique mini-

mizer of ∑i ωi∣∣zi − y∣∣2 is the barycenter of (zi)i, i.e. ∑i ωizi.
(ii). JNS is obviously linear, and so is RNS . Since b ∈ S, RNSb = b and the result
follows.
(iii). This is a consequence of the separability of γA in terms of the components of z
implying that JγAz = (JγiAizi)i. The result follows from the de�nition of RγA.

Proposition 4.3. (zi)i∈J1,nK ∈Hn satis�es (4.1) if and only if z = (zi)i is a �xed
point of the operator ∶H→H

z ↦
1
2
[RγARNS + IdH ][ IdH −γBJNS ](z) , (4.2)

with γ = ( γ
ωi
)

i
.

Proof. Using Lemma 4.2 in (4.1), we have C(x) = JNSz, C(Bx) =BJNS(z) and
RNS − γBJNS = RNS [IdH −γBJNS ]. Altogether, this yields,

z satis�es (4.1)⇔ z = RγARNS [ IdH −γBJNS ]z − γBJNSz

⇔ 2z = RγARNS [ IdH −γBJNS ]z + [ IdH −γBJNS ]z
⇔ z =

1
2
[RγARNS + IdH ][ IdH −γBJNS ]z

4.2. Algorithmic Scheme and Convergence. The expression (4.2) gives us
the operator on which is based the generalized forward-backward. We �rst study the
properties of this operator before establishing convergence and robustness results our
algorithm derived from the Krasnoselskij-Mann scheme associated to it.

Proposition 4.4. For any γ ∈ ]0,+∞[n, the operator

T1,γ ∶
H Ð→ H
z z→ 1

2
[RγARNS + IdH ](z) (4.3)

is �rmly non-expansive, i.e. T1,γ ∈ A( 12).
Proof. From Lemma 3.5, RγiAi and RNS are non-expansive. In view of Lemma 4.2

(iii), RγA is non-expansive as well. Finally, as a composition of non-expansive oper-
ators, RγARNS is also non-expansive, and the proof is complete by the de�nition of
A( 1

2
).
Proposition 4.5. For any γ ∈]0,2β[, de�ne

T2,γ ∶
H Ð→ H
z z→ [IdH −γBJNS ]z .

(4.4)

Then, T2,γ ∈ A( γ
2β
).

Proof. By hypothesis, βB ∈ A( 1
2
) and so is βB. We must then check that

Lemma 3.5 (iii). We have for any x and y ∈H

∣∣βBJNSx − βBJNSy∣∣2 ≤ ⟨βBJNSx − βBJNSy ∣JNSx − JNSy⟩
= ⟨βJNSBJNSx − βJNSBJNSy ∣x − y⟩
= ⟨βBJNSx − βBJNSy ∣x − y⟩ , (4.5)

where we derive the �rst equality from the fact that JNS is self-adjoint (Lemma 4.2
(i)), and the second equality using that for all x ∈ S, Bx ⊂ S and JNSx = x. From
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Lemma 3.5 (iii)⇔(i), we establish that βBJNS ∈ A( 12). We conclude using [17,
Lemma 2.3].

Proposition 4.6. For any γ ∈ ]0,+∞[n and γ ∈ ]0,2β[, the operator T1,γT2,γ

belongs to A(α), with α =max ( 2
3
, 2

1+2β/γ ).
Proof. As T1,γ and T2,γ are α-averaged operators by Proposition 4.4 and Proposi-

tion 4.5, it follows from [17, Lemma 2.2 (iii)] that their composition is also α-averaged
with the given value of α.

We are now ready to state our main result, establishing convergence and robust-
ness of the generalized forward-backward algorithm to solve (3.1).

Theorem 4.7. Let
(γt)t∈N be a sequence in ]0,2β[,
(γt)t∈N be a sequence in ]0,+∞[n such that ∀ t, γt = ( γt

ωi
)

i
,

(λt)t∈N be a sequence such that ∀ t, λt ∈ It (made explicit below),
set z0 ∈H, and for every t ∈ N, set

zt+1 = zt + λt(T1,γt
(T2,γtzt + ε2,t) + ε1,t − zt) (4.6)

where T1,γt (resp. T2,γt) is de�ned in (4.3) (resp. in (4.4)), and ε1,t,ε2,t ∈ H. Set

limγt = γ̄ and de�ne the following conditions:
(A0) (i) zer (B +∑i Ai) ≠ ∅;

(ii) 0 < limλt ≤ limλt <min ( 3
2
, 1+2β/γ̄

2
);

(iii) ∑+∞t=0 ∣∣ε1,t∣∣ < +∞ and ∑+∞t=0 ∣∣ε2,t∣∣ < +∞.
(A1) (i) ∀ t, γt = γ̄ ∈]0,2β[;

(ii) ∀ t, It = ]0,min ( 3
2
, 1+2β/γ̄

2
)[.

(A2) (i) 0 < limγt ≤ γ̄ < 2β;
(ii) ∀ t, It =]0,1].

Suppose that (A0) is satis�ed. Then, If either (A1) or (A2) is satis�ed,
(i) (T1,γtT2,γtzt − zt)t∈N converges strongly to 0.
(ii) (zt)t∈N converges weakly to a point z ∈ FixT1,γ̄T2,γ̄ .

(iii) (xt
def

= ∑i ωizi,t)t∈N converges weakly to x
def

= ∑i ωizi ∈ zer (B +∑i Ai).

Moreover, if (A2) is satis�ed and B is uniformly monotone, then
(iv) (xt)t∈N converges strongly.
Proof. Suppose �rst that (A0) and (A1) are satis�ed.

(i) Under (A1)-(i), T
def

= T1,γ̄T2,γ̄ does not depends on t anymore (stationary oper-
ator). For all t ∈ N, we have

zt+1 = zt + λt(Tzt + εt − zt) , (4.7)

with εt
def

= T1,γ̄(T2,γ̄zt + ε2,t) − T1,γ̄(T2,γ̄zt) + ε1,t. Proposition 4.4 shows that T1,γ̄ ∈

A( 1
2
) is in particular non-expansive, so that ∣∣εt∣∣ ≤ ∣∣ε2,t∣∣+ ∣∣ε1,t∣∣, and we deduce from

(A0)-(iii) that ∑+∞t=0 ∣∣εt∣∣ < +∞. Moreover, by Proposition 4.6 and (A1)-(i), T ∈ A(α)
with α = max ( 2

3
, 2

1+2β/γ̄ ). Now, for t ∈ N, set Tt
def

= IdH +λt (T − IdH), the iterations

(4.7) can be rewritten

zt+1 = Ttzt + λtεt . (4.8)

Since for all t, αt
def

= λtα < 1 by (A1)-(ii), [17, Lemma 2.2 (i)] shows that Tt ∈ A(αt),
and (4.8) is thus a particular instance of [17, Algorithm 4.1]. Also, it is clear that for all
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t, FixTt = FixT . By Proposition 4.1 and Proposition 4.3, FixT = zer (B +∑i Ai), so
that (A0)-(i) provides ⋂t∈N FixTt ≠ ∅. According to (A0)-(ii), limλt > 0 and limαt < 1,

and we deduce from [17, Remark 3.4] that ∑t∈N ∣∣Ttzt − zt∣∣
2

< +∞. By de�nition of

Tt, this gives ∑t∈N λt
2∣∣Tzt − zt∣∣

2

< +∞, which in turn implies Tzt − zt Ð→
t→+∞

0 since

limλt > 0.

(ii) T is non-expansive. It then follows from the demiclosed principle [11][5, Corol-
lary 4.18] that any weak sequential cluster point of (zt)t∈N belongs to FixT . Using
[5, Theorem 5.5] provides weak convergence towards z ∈ FixT1,γ̄T2,γ̄ .

Suppose now that (A0) and (A2) are satis�ed.
(i)-(ii) Again, owing to Proposition 4.1-4.3 and (A0)-(i),

⋂t∈N FixT1,γtT2,γt ≠ ∅. From Proposition 4.4-4.5 and (A2)-(i), T1,γt ∈ A( 12) and
T2,γt ∈ A( γt

2β
) for all t. The rest of the proof then follows the same lines as that of

[17, Corollary 6.5], after appropriate identi�cation, by exploiting assumptions (A0)-(i)
and (iii), (A2)-(i)-(ii) with limλt > 0.

(iii) In both cases, for any y ∈H, ⟨y ∣xt − x⟩ = ⟨y ∣∑i ωi(zi,t − zi)⟩ = ∑i ωi⟨y ∣zi,t − zi⟩ =
⟨C(y) ∣zt −z⟩→ 0 as zt converges weakly, hence weak convergence of (xt)t∈N towards
x, which is a zero of B +∑i Ai by Proposition 4.1.

(iv) Recall that under (A0) and (A2), T1,γt ∈ A( 12) and T2,γt ∈ A( γt

2β
). Thus, [17,

Remark 3.4] yields BJNSzt −BJNSz → 0. If B is uniformly monotone, then there
exists a non-decreasing function ϕ ∶ [0,+∞[→ [0,+∞] that vanishes only at 0, such
that for all x, y ∈H

⟨Bx −By ∣x − y⟩ ≥ ϕ(∣∣x − y∣∣) .

Thus,

⟨BJNSzt −BJNSz ∣zt − z⟩ = ⟨B(∑
i

ωizi,t) −B(∑
i

ωizi) ∣∑
i

ωi(zi,t − zi)⟩

≥ ϕ(∣∣∑
i

ωi(zi,t − zi)∣∣) = ϕ(∣∣xt − x∣∣) .

As (zt)t∈N converges weakly to z and BJNSzt converges strongly to BJNSz, we have
⟨BJNSzt − BJNSz ∣zt − z⟩ → 0. In view of the properties of ϕ, we obtain strong
convergence of (xt)t∈N to x.

Remark 4.8. In statements (i)-(iii) of Theorem 4.7 under (A0)-(A1) (station-
ary case), assumptions (A0) can be weakened. More precisely, (A0)-(ii) can be re-
placed by ∑t∈N λt(1 − αλt) = +∞ where α = max(2/3,2/(1 + 2β/γ̄)), and (A0)-(iii) by

∑t∈N λt(∣∣ε1,t∣∣ + ∣∣ε2,t∣∣) < +∞. The proof would follow the same lines as [17, Lemma

5.1]. Let's note also that a part of assumption (A0)-(ii) on limλt is not needed under
(A2).

Remark 4.9 (Strong Convergence). Assumptions (A0)-(ii) in the proof of state-
ment (iv) can be relaxed. It is in fact su�cient to assume that λt ∈]0,1] with limλt > 0
to deduce from [17, Theorem 3.1] that the sequence (zt)t∈N is quasi-Fejér monotone
with respect to zer (B +∑i Ai). Thus, if Int (zer (B +∑i Ai)) ≠ ∅, strong convergence
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occurs by [17, Theorem 3.3]. Other re�nements of strong convergence conditions can
be found in [17, Remark 6.6].

Corollary 4.10. Theorem 2.1 holds.
Proof. Let (zi,t)t∈N and (xt)t∈N be the sequences de�ned in (2.2). Identifying

B with ∇F and Ai with ∂Gi and skipping some calculations, ((zi,t)i)t∈N follows
iterations (4.6) with ε1,t = (ε1,t,i)i and ε2,t = C (−γtε2,t), providing (A0)-(ii)-(iii)
in Theorem 4.7. Now, under (H1)-(H2), argmin(F + ∑i Gi) = zer(∇F + ∑i ∂Gi) ≠
∅, providing (A0)-(i) in Theorem 4.7. The proof of weak convergence of (xt)t∈N
follows from Theorem 4.7-(iii). The proof of strong convergence is a consequence of
Theorem 4.7-(iv) together with the fact that uniform convexity of a function in Γ0(H)
implies uniform monotonicity of its subdi�erential [5].

5. Discussion.

5.1. Special instances. The generalized forward-backward algorithm can be
viewed as a hybrid splitting algorithm whose special instances turn out to be classical
splitting methods; namely the forward-backward and Douglas-Rachford algorithms.

Relaxed Forward-Backward. For n ≡ 1, we have JNS = IdH, A
def

= A = A1, B = B
and the operator (4.2) specializes to

1
2
[RγA + IdH ][ IdH −γB] = JA( IdH −γB) , (5.1)

so that xt = zt = z1,t given by (4.6) (resp. (2.2) in the optimization case) follows
exactly the iterations of the relaxed forward-backward algorithm [17, Section 6], and
its convergence properties under assumptions (A0) and (A2).

This comparison is of particular interest in the convex optimization case since it
may be inspiring to study the convergence rate of the generalized forward-backward
on the objective. Indeed, it is now known that the exact forward-backward algorithm
enjoys a convergence rate in O(1/t) on the objective [55, 7]. Furthermore, there has
been several accelerated multistep versions of the exact forward-backward in the lit-
erature [55, 1, 70] with a convergence rate of O(1/t2) on the objective (although no
convergence guarantee on the iterate itself is given). Therefore, two possible per-
spectives of this work would be to investigate the convergence rate (on the objective
of course) of the generalized forward-backward and to design a potential multistep
acceleration.

Relaxed Douglas-Rachford. If we set B ≡ 0, the operator (4.2) becomes

1
2
[RγARNS + IdH ] . (5.2)

Taking γt = γ̄ ∈]0,+∞[,∀t, zt provided by (4.6) (resp. (2.2) in the optimization
case) would be equivalent to applying the relaxed Douglas-Rachford algorithm on
the product space H for solving 0 ∈ ∑i Aix [65, 21]. The convergence statements of
Theorem 4.7-(i)-(iii) holds in this case under (A0)-(i), λt ∈]0,2[ with ∑t∈N λt(2−λt) =
+∞ and ∑t∈N λt(∣∣ε1,t∣∣+ ∣∣ε2,t∣∣) < +∞; see Remark 4.8 where α = 1

2
by Proposition 4.4.

Resolvents of the sum of monotone operators. The generalized
forward-backward algorithm provides yet another way for computing the resolvent of
the sum of maximal monotone operators at a point
y ∈ ran(IdH +∑i Ai). It is su�cient to take in (3.1) Bx = x− y and β = 1. It would be
interesting to compare this algorithm with the Douglas-Rachford and Dykstra-based
variants [18]. This will be left to a future work.
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5.2. Relation to other work.

Relation to [53]. In a �nite-dimensional setting, these authors propose an al-
gorithm for the monotone inclusion problem consisting of the sum of a continuous
monotone map and a set-valued maximal monotone operator, introducing a �block-
decomposition� hybrid proximal extragradient (HPE).They also derive the corre-
sponding convergence rates.

More precisely, our optimization problem can be rewritten in the form considered
in [53, Section 5.3, (51)]. Indeed, (1.1) is equivalent to the linearly constrained convex
problem

min
z=(zi)i∈H

F (∑iωizi) +∑
i

Gi(zi) such that projS⊥(z) = 0 , (5.3)

As projS⊥ is self-adjoint, z is an optimal solution if and only if there exists v = (vi)i ∈
H such that

0 ∈ (∇F (zi))i + (∂Gi(zi)/wi)i + projS⊥(v) and projS⊥(z) = 0 ,

and the minimizer is given by x = ∑i ωizi.
Let ς ∈]0,1] and γ = ς 2ςβ

1+
√

1+4ς2β2
. Transposed to our setting, their iterations read:

Algorithm 2 Iterations Block-Decomposition HPE [53].

for i ∈ J1, nK do
zi ← prox γ

ωi
Gi
(γ2x + (1 − γ2) zi − γ∇F (zi) + γ (vi − u) );

for i ∈ J1, nK do
vi ← vi − γzi + γx;

x← ∑i ωizi;
u← ∑i ωivi.

The update of the zi's in this iteration shares similarities with the one in Algorithm 1,
where γ is identi�ed with γt. Nonetheless, the two algorithms are di�erent in some
important ways. Our algorithm is robust to errors while there is no proof of such
robustness for HPE. Furthermore, HPE carries additional (dual) variables hence in-
creasing the computational load of the algorithm. Finally, unlike our algorithm, the
step-size in HPE γ cannot be iteration-varying, and γ < ς whatever the Lipschitz con-
stant of ∇F , which is a stronger condition than ours. The latter can have important
practical impact.

Relation to [23]. While this paper was being released, these authors independently
developed another algorithm to solve a class of problems that covers (3.1). They rely
on the classical Kuhn-Tucker theory and propose a primal-dual splitting algorithm
for solving monotone inclusions involving a mixture of sums, linear compositions, and
parallel sums (inf-convolution in convex optimization) of set-valued and Lipschitz
operators. More precisely, the authors exploit the fact that the primal and dual
problems have a similar structure, cast the problem as �nding a zero of the sum
of a Lipschitz continuous monotone map with a maximal monotone operator whose
resolvent is easily computable. They solve the corresponding monotone inclusion using
an inexact version of Tseng's forward-backward-forward splitting algorithm [69].

Removing the parallel sum and taking the linear operators as the identity in [23,
(1.1)], one recovers problem (3.1). For the sake of simplicity and space saving we
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do not reproduce here in full their algorithm. However, adapted to the optimization
problem minx F (x) +∑i Gi(Lix), where each Li is a bounded linear operator, their
algorithm reads (Gi

∗ is the Legendre-Fenchel conjugate of Gi):

Algorithm 3 Iterations Primal-Dual Combettes-Pesquet [23].

y ← x − γt (∇F (x) +∑n
i=1 Li

∗vi)
for i ∈ J1, nK do

zi ← vi + γtLix;
vi ← vi − zi + proxγtGi

∗(zi) + γtLiy;

x← x − γt (∇F (y) +∑n
i=1 Li

∗(proxγtGi
∗(zi)));

Recall that the proximity operator of Gi
∗ can be easily deduced from that of Gi using

Moreau's identity. Taking Li = IdH in Algorithm 3 solves (1.1). Similarly to the
the generalized forward-backward, this algorithm allows for inexact computations of
the involved operators and for varying step-size γt. However, if `

def

= 1/β denotes the
Lipschitz constant of F , the bound on our step-size sequence is 2/` while theirs is
1/(` +√n), at least twice lower and degrading as n increases. While we solve the
primal problem, their algorithm solves both the primal and dual ones, which at least
doubles the number of auxiliary variables required. Moreover, it also requires two
calls to the gradient of F per iteration. Nonetheless, their algorithm is able to solve
a more general class of problems.

Finally, let us notice that if one want to use the composition with linear operators,
each iteration requires two calls to each one of them and two calls to their adjoints,
what can be computationally more expensive than computing directly the proximity
operators of the Gi ○Li's (see Section 6).

It is also noteworthy to point out that Tseng's forward-backward-forward algo-
rithm they used is a special case of the HPE method whose iteration complexity
results were derived in [52].

6. Numerical experiments. This section applies the generalized forward-back-
ward to image processing problems. The problems are selected so that other splitting
algorithms can be applied as well and compared fairly. In the following, Id denotes
the identity operator on the appropriate space to be understood from the context, N
is a positive integer and I ≡ RN×N is the set of images of size N ×N pixels.

6.1. Variational Image Restoration. We consider a class of inverse problem
regularizations, where one wants to recover an (unknown) high resolution image y0 ∈ I
from noisy low resolution observations y = Φy0+w ∈ I. We report results using several
ill-posed linear operators Φ ∶ I → I, and focus our attention to convolution and mask-
ing operator, and a combination of these operators. In the numerical experiments, the
noise vector w ∈ I is a realization of an additive white Gaussian noise of varianceσ2

w.
The restored image ŷ0 = Wx̂ is obtained by optimizing the coe�cients x̂ ∈ H in

a redundant wavelet frame [49], where W ∶ H → I is the wavelet synthesis operator.
The wavelet atoms are normalized so that W is a Parseval tight frame, i.e. it sat-
is�es WW ∗

= Id. In this setting, the coe�cients are vectors x ∈ H ≡ IJ where the
redundancy J = 3J0 + 1 depends on the number of scales J0 of the wavelet transform.

The general variational problem for the recovery reads

min
x∈H
{Ψ(x) def

=
1
2
∣∣y −ΦWx∣∣2 + µ∣∣x∣∣B1,2 + ν∣∣Wx∣∣TV} . (6.1)
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The �rst term in the summand is the data-�delity term, which is taken to be a squared
`2-norm to re�ect the additive white Gaussianity of the noise. The second and third
terms are regularizations, enforcing priors assumed to be satis�ed by the original
image. The �rst regularization is a `1/`2-norm by blocks, inducing structured sparsity
on the solution. The second regularization is a discrete total variation semi-norm,
inducing sparsity on the gradient of the restored image. The scalars µ and ν are
weights � so-called regularization parameters � to balance between each terms of the
energy Ψ. We now detail the properties of each of these three terms.

6.1.1. Data-Fidelity 1
2
∣∣y − ΦWx∣∣2. For the inpainting inverse problem, one

considers a masking operator

(M y)p def

= { 0 if p ∈ Ω,
yp otherwise.

Where Ω is a set of pixels, taking into account missing or defective sensors that
deteriorate the observations; we will denote ρ = ∣Ω∣/N2 the ratio of missing pixels. For
the deblurring inverse problem, we consider a convolution with a discrete Gaussian
�lter of width σ, K ∶ y ↦ gσ ∗ y, normalized to a unit mass. This simulates a defocus
e�ect or low-resolution sensors.

In the following, we thus consider Φ being equal either to M , K or the compositionMK.

Denoting L
def

= ΦW , the �delity term thus reads F (x) = 1
2
∣∣y −Lx∣∣2. The function

F corresponds to the smooth term in (1.1). Its gradient ∇F ∶ x↦ L∗ (Lx − y) is
Lipschitz-continuous with constant β−1 ≤ ∣∣ΦW ∣∣2 = 1.

For any γ > 0, the proximity operator of F reads

proxγF (x) = (Id+γL∗L)-1 (x + γL∗y) . (6.2)

The vector L∗y can be precomputed, but inverting Id+γL∗L may be problematic.
For L ≡ Id, this is trivial. For inpainting or deblurring alone, as Φ is associated to a
Parseval tight frame, L ≡MW or L ≡KW , the Sherman-Morrison-Woodbury formula
gives

(Id+γL∗L)-1 = Id−L∗(Id+γLL∗)-1L
= Id−W ∗Φ∗(Id+γΦΦ∗)-1ΦW . (6.3)

Since M (resp. K) is a diagonal operator in the pixel domain (resp. Fourier domain),
(6.3) can be computed in O(N2) (resp. O(N2 logN)) operations. However, the com-
posite case L ≡MKW is more involved. An auxiliary variable is required, replacing
F ∶H → R by F̃ ∶H × I →]−∞,+∞] de�ned by

F̃ (x,u) = 1
2
∣∣y −Mu∣∣2 + ιCKW

(x,u) = G1(x,u) +G2(x,u) , (6.4)

where CKW
def

= {(x,u) ∈H × I ∣ u =KWx}. Only then, proxγG1
can be computed from

(6.2), and proxγG2
is the orthogonal projection on

ker([Id,−KW ]) [29, 10], which involves a similar inversion as in (6.3).

6.1.2. Regularization µ∣∣x∣∣B1,2. Sparsity-promoting regularizations over wavelet
(and beyond) coe�cients are popular to solve a wide range of inverse problems [49].
Figure 6.1(a), left, shows an example of orthogonal wavelet coe�cients of a natural
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image, where most of the coe�cients have small amplitude, they are thus quite sparse.
A way to enforce this sparsity is to use the `1-norm of the coe�cients ∣∣x∣∣1 = ∑p ∣xp∣.

The presence of edges or textures creates structured local dependencies in the
wavelet coe�cients of natural images. A way to take into account those dependencies
is to replace the absolute value of the coe�cients in the `1-norm by the `2-norm of
groups (or blocks) of coe�cients [71]. This is known as the mixed `1/`2-norm by

∣∣x∣∣B1,2 = ∑
b∈B

µb∣∣xb∣∣ = ∑
b∈B

µb

√
∑
p∈b

x2
p , (6.5)

where p indexes the coe�cients, the blocks b are sets of indexes, the block-structure B
is a collection of blocks and xb

def

= (xp)p∈b is a subvector of x. The positive scalars µb

are weights tuning the in�uence of each block. It is a norm on H as soon as B covers
the whole space, i.e. ∀p ∈ J1,NK2 × J1, JK, ∃b ∈ B s.t. p ∈ B. Note that for B ≡ ⋃p{p}
and µ{p} ≡ 1 for all p, it reduces to the `1-norm.

We mentionned in the introduction that the proximal operator of a `1-norm is
a soft-thresholding on the coe�cients. Similarly, it is easy to show that whenever
B is non-overlapping, i.e. ∀b,b′ ∈ B, b ∩ b′ = ∅, the proximity operator of ∣∣ ⋅ ∣∣B1,2 is a
soft-thresholding by block

proxµ∣∣⋅∣∣B1,2
( (xb)b ) = (Θµb⋅µ(xb))b ,

with

Θµ(xb) =
⎧⎪⎪⎨⎪⎪⎩
0 if ∣∣xb∣∣ < µ ,

(1 − µ
∣∣xb∣∣)xb otherwise ,

and the coe�cients xp not covered by B remaining unaltered.
Non-overlapping block structures break the translation invariance that is under-

lying most traditional image models. To restore this invariance, one can consider
overlapping blocks, as illustrated in Figure 6.1(c). Computing prox∣∣⋅∣∣B1,2

in this case is

not as simple as for the non-overlapping case, because the blocks cannot be treated
separately. For tree-structured blocks (i.e. b ∩ b′ ≠ ∅ ⇒ b ⊂ b′ or b′ ⊂ b), [43]
proposes a method involving the computation of a min-cost �ow. This could be
computationally expensive and do not address the general case anyway. Instead,
it is always possible to decompose the block structure as a �nite union of non-
overlapping sub-structures B = ⋃i Bi. The resulting term can �nally be split into
∣∣x∣∣B1,2 = ∑b∈B ∣∣xb∣∣ = ∑i∑b∈Bi

∣∣xb∣∣ = ∑i ∣∣x∣∣Bi

1,2, where each ∣∣ ⋅ ∣∣Bi

1,2 is simple.

In our numerical experiments where H ≡ IJ , coe�cients within each resolution
level (from 1 to J) and each subband are grouped according to all possible square
spatial blocks of size S × S; which can be decomposed into S2 non-overlapping block
structures.

6.1.3. Regularization ν∣∣Wx∣∣TV. The second regularization favors piecewise-
smooth images, by inducing sparsity on its gradient [63]. The total variation semi-
norm can be viewed as a speci�c instance of `1/`2-norm, ∣∣y∣∣TV = ∣∣∇Iy∣∣BTV

1,2 , with

∇I ∶ { I Ð→ I2

y z→ (V ∗ y,H ∗ y) and ∣∣ (v, h) ∣∣BTV
1,2 = ∑

p∈J1,NK2

√
vp

2
+ hp

2 ,

where the image gradient is computed by �nite di�erences through convolution with
a vertical �lter V and a horizontal �lter H, and BTV is clearly non-overlapping. For
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(a) ∣∣x∣∣1 = ∑p∣xp∣ (b) ∣∣x∣∣B1,2 = ∑b∈B ∣∣xb∣∣ (c) ∣∣x∣∣B1,2 = ∣∣x∣∣B1
1,2 + ∣∣x∣∣B2

1,2

Fig. 6.1: Illustration of the block `1/`2-norm. (a) sparsity of the image in an or-
thogonal wavelet decomposition (gray pixels corresponds to low coe�cients); (b) a
non-overlapping block structure; (c) splitting of a more complex structure into two
non-overlapping layers.

some special gradient �lters, the modi�ed TV semi-norm can be splitted into simple
functions, see for instance [21, 61]. However, we consider more conventional �lters

V = ( −1 0
1 0 ) and H = ( −1 1

0 0 )

centered in the upper-left corner. Introducing an auxiliary variable as advocated in
(6.4), the main di�culty remains to invert the operator
(Id+γ∇I∇I∗). Under appropriate boundary conditions, this can be done in the
Fourier domain in O(N2 log(N)) operations.

6.2. Resolution with Splitting Methods.

6.2.1. Tested Algorithms. We now give the details of the di�erent splitting
strategies required to apply the three tested algorithms to (6.1).

Generalized Forward-Backward (GFB). The problem is rewritten under the form
(1.1) as

min
x∈H
u∈I2

1
2
∣∣y −MKWx∣∣2 + µ

S2

∑
i=1

∣∣x∣∣Bi

1,2 + ν∣∣u∣∣BTV
1,2 + ιC∇IW

(x,u) , (6.6)

with F (x) ≡ 1
2
∣∣y −MKWx∣∣2 and n ≡ S2

+ 2. The indicator function ιC∇IW
is de�ned

similarly as in (6.4). In Algorithm 1, we set equal weights ωi ≡ 1/n, a constant gradient
step-size γ ≡ 1.8β and a constant relaxation parameter to λ ≡ 1.

Relaxed Douglas-Rachford (DR). Here the problem is split as

min
x∈H
u1∈I

u2∈I2

1
2
∣∣y −M u1∣∣2 + ιCKW

(x,u1) + µ
S2

∑
i=1

∣∣x∣∣Bi

1,2 + ν∣∣u2∣∣BTV
1,2 + ιC∇IW

(x,u2) ,

and solved with Algorithm 1, where F ≡ 0 and n ≡ S2
+ 4. As mentioned in Section 5,

this corresponds to a relaxed version of the Douglas-Rachford algorithm, with best
results when γ ≡ 1/n.
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Primal-Dual Chambolle-Pock (ChPo). A way to avoid operator inversions is to
rewrite the original problem as

min
x∈H

G(Λx)

where

Λ ∶ { H Ð→ I × (H)S2

× I2

x z→ (MKWx,x, . . . , x,∇IWx) ,

and

G ∶

⎧⎪⎪⎨⎪⎪⎩
I × (H)S2

× I2 Ð→ R
(u1, x1, . . . , xS2 , g) z→ 1

2
∣∣y − u1∣∣2 + µ∑S2

i=1 ∣∣xi∣∣Bi

1,2 + ν∣∣g∣∣BTV
1,2

.

The operator Λ is a concatenation of linear operators and its adjoint is easy to com-
pute, and G is simple, being a separable mixture of simple functions. Note that this is
not the only splitting possible. For instance, one can write the problem on a product
space as min

(xi)i∈H
ιS((xi)i)+∑i Gi(Λixi), where Gi is each of the functions in G above,

and Λi is each of the linear operators in Λ.
To solve this, we here use the primal-dual relaxed Arrow-Hurwicz algorithm de-

scribed in [12]. According to the notations in that paper, we set the parameters σ ≡ 1,
τ ≡ 0.9

σ(1+S2
+8) and θ ≡ 1.

Block-Decomposition Hybrid Proximal Extragradient (HPE). We split the problem
written in (6.6) according to (5.3), and set equals weights wi ≡ 1/n. According to
Section 5.2, we set the parameter ς ≡ 0.9.

Primal-Dual Combettes-Pesquet (CoPe). Finally, the problem takes its simplest
form

min
x∈H

1
2
∣∣y −MKWx∣∣2 + µ

S2

∑
i=1

∣∣x∣∣Bi

1,2 + ν∣∣∇IWx∣∣BTV
1,2 . (6.7)

As long as ν ≡ 0 (no TV-regularization), this is exactly (6.6); we apply Algorithm 3
where Li ≡ Id for all i and γ ≡ 0.9/(1 + S). However with TV-regularization, we
avoid the introduction of the auxiliary variable u with LS2

+1 ≡ ∇IW and γ ≡ 0.9/(1+√
S2
+ 8).
6.2.2. Results. All experiments were performed on a discrete image of width

N ≡ 256, with values in the range [0,1]. The additive white Gaussian noise has
standard-deviation σw ≡ 2.5⋅10−2. The reconstruction operator W uses non-separable,
bi-dimensional Daubechies wavelets with 2 vanishing moments. It is implemented such
that each atom has norm 2−j , with j ∈ J1, J0K and where J0 is the coarsest resolution
level. Accordingly, we set the weights µb in the `1/`2-norm to 2−j at the resolution
level j of the coe�cients in block b. We use J0 ≡ 4, resulting in a dictionary with
redundancy J = 3J0 + 1 = 13. All algorithms are implemented in Matlab1.

Results are presented in Figures 7.1, 7.2, 7.3 and 7.4. For each problem, the
�ve algorithms were run 1000 iterations (initialized at zero), while monitoring their
objective functional values Ψ along iterations. Ψmin is �xed as the minimum value

1An implementation of the generalized forward-backward is available at
http://www.ceremade.dauphine.fr/~raguet/
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reached over the �ve algorithms (in our experiments, this was always the generalized
forward-backward), and evolution of the objectives compared to Ψmin is displayed for
the �rst 100 iterations. Because the computational complexity of an iteration may
vary between algorithms, computation times for 100 iterations are given beside the
curves. Below the energy decay graph, one can �nd from left to right the original
image, the degraded image and the restored image after 100 iterations of generalized
forward-backward. Degraded and restored images quality are given in term of the
signal-to-noise ratio (SNR).

Comparison to algorithms that do not use the (gradient) explicit step (ChPo, DR).
For the �rst three experiments, there is no total variation regularization. In the
deblurring task (Figure 7.1), blocks of size 2 × 2 are used. GFB and DR perform
similarly, while ChPo does not seem to be adapted to this problem. When increasing
the number of block structures (inpainting, Figure 7.2, size 4×4), GFB gets signi�cantly
faster than DR. However, one advantage of using the gradient becomes obvious in the
composite case (i.e. Φ ≡MK): in Figure 7.3, DR performs hardly better than ChPo.
Indeed, in contrast to previous cases (see Section 6.1.1), F is not simple anymore and
the introduction of the auxiliary variable decreases the e�ciency of each iteration of
DR. This phenomenon is further illustrated in the last case, where the total variation
is added, introducing another auxiliary variable. In Figure 7.4, ChPo becomes more
e�cient than DR.

Comparison to algorithms that use the (gradient) explicit step (HPE, CoPe). In
the �rst experiment where n is small, the iterations of HPE and CoPe are almost as
e�cient as the iterations of GFB but take more time to compute, especially for CoPe
that needs twice more calls to ∇F . In the second setting, HPE and CoPe are hardly
better than DR, maybe su�ering from small gradient step-sizes. They perform better
in the composite setting, but require more computional time than GFB. In the last
setting, iterations of CoPe are still not as e�cient as iterations of GFB in spite of their
higher computational load due to the composition by the linear operator ∇IW (see
(6.7)).

Finally, let us note that in the composite case (i.e. Φ ≡ MK), the SNR of the
restored image is greater when using both regularizations rather than one or the
other separately. Moreover, we observed that it yields restorations more robust to
variations of the parameters µ and ν. Those arguments seem to be in favor of mixed
regularizations.

7. Conclusion. We have introduced in this paper a novel proximal splitting
method able to handle convex functionals that are the sum of a smooth term and
several simple functions. It generalizes existing schemes by enlarging the class of
problems that can be solved e�ciently with proximal methods to the case where one
of the function is smooth but not simple. We provided theoretical guarantees on the
convergence and robustness of the algorithm even for the more general problem of
�nding the zeros of the sum of maximal monotone operators, one of which is also
co-coercive. Numerical experiments on convex optimization problems encountered
in inverse problems show evidence of the advantages of our approach for large-scale
imaging problems.

In analogy with �rst-order methods such as the forward-backward algorithm,
establishing convergence rates (on the objective) and designing multistep accelerations
are possible perspectives that we leave to a future work.
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(a) log(Ψ −Ψmin) vs. iteration #

20 40 60 80 100

0

1

2

3

ChPo
DR
HPE
CoPe
GFB

(b) computing time

tChPo = 119 s
tDR = 137 s
tHPE = 121 s
tCoPe = 201 s
tGFB = 100 s

(c) LaBoute y0 (d) y =Ky0 +w, 19.64 dB (e) ŷ0 =Wx̂, 22.48 dB

Fig. 7.1: Deblurring: σ = 2; µ = 1.3 ⋅ 10−3; S = 2; ν = 0.

(a) log(Ψ −Ψmin) vs. iteration #

20 40 60 80 100
0

1

2

3 ChPo
DR
HPE
CoPe
GFB

(b) computing time

tChPo = 296 s
tDR = 260 s
tHPE = 289 s
tCoPe = 356 s
tGFB = 274 s

(c) LaBoute y0 (d) y =My0 +w, 1.53 dB (e) ŷ0 =Wx̂, 21.70 dB

Fig. 7.2: Inpainting: ρ = 0.7; µ = 2.6 ⋅ 10−3; S = 4; ν = 0.
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(a) log(Ψ −Ψmin) vs. iteration #
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DR
HPE
CoPe
GFB

(b) computing time

tChPo = 287 s
tDR = 246 s
tHPE = 300 s
tCoPe = 342 s
tGFB = 297 s

(c) LaBoute y0 (d) y =MKy0 +w, 3.93 dB (e) ŷ0 =Wx̂, 21.87 dB

Fig. 7.3: Composite: σ = 2; ρ = 0.4; µ = 1.0 ⋅ 10−3; S = 4; ν = 0.

(a) log(Ψ −Ψmin) vs. iteration #
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ChPo
DR
HPE
CoPe
GFB

(b) computing time

tChPo = 426 s
tDR = 347 s
tHPE = 420 s
tCoPe = 539 s
tGFB = 342 s

(c) LaBoute y0 (d) y =MKy0 +w, 3.93 dB (e) ŷ0 =Wx̂, 23.83 dB

Fig. 7.4: Composite: σ = 2; ρ = 0.4; µ = 5.0 ⋅ 10−4; S = 4; ν = 5.0 ⋅ 10−3.
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