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Abstract

We introduce the notion of a “Souriau bracket” on a prequantum

circle bundle Y over a phase space X and explain how a deformation

of Y in the direction of this bracket provides a genuine quantization of X .
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1 Introduction

Let (X,ω) be a symplectic manifold representing the phase space of a classical

system. Consider a prequantum U(1)-bundle (Y, α) over (X,ω); here α is a

connection 1-form on Y satisfying the curvature condition dα = ω/~.1 Let

π be the Poisson bivector associated to ω, and let π# be the horizontal lift

of π to Y with respect to α.2 Define the Souriau bracket of f, g ∈ C∞(Y,C)

to be3

Jf, gK := π#(df, dg).

Our aim is to use the Souriau bracket together with a polarization to quantize

(X,ω).

Suppose Ψ : Y → C is a U(1)-equivariant map, that is to say, a prequan-

tum wave function. Then—and this is a key point—for a classical observable

F ∈ C∞(X,C) the Souriau bracket JF,ΨK is readily verified to be U(1)-

equivariant as well, so that

PF [Ψ] := FΨ +
~

i
JF,ΨK (1.1)

is also a prequantum wave function. It turns out that PF [Ψ] is none other

than the prequantum operator corresponding to the classical observable F

acting on the prequantum wave function Ψ.

The relation (1.1) brings to mind the lowest order terms in the expression

(in the ‘deformation parameter’ ~) for a ‘star’ product F •Ψ on Y with driver

the Souriau bracket. However, while the latter is readily verified to satisfy

1 A number of identifications will be made throughout; in particular, pullbacks will be

ruthlessly suppressed.
2 That is, π# is the unique U(1)-invariant bivector on Y which vanishes on α and

projects to π on X .
3 This is related to the Lagrange (or Jacobi) bracket on Y . See [1], Example 5 (§2.3)

and Example 2.5.
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the Leibniz rule, it is not a Lie bracket as the Jacobi identity fails.4 So such

a • cannot be an associative deformation of C∞(Y,C) and hence not, strictly

speaking, a star product.5

Nonetheless, it is natural to wonder if one can develop a formula ‘ex-

tending’ (1.1) to an appropriate “quantum product” • on Y , with driver the

Souriau bracket, in such a way that

QF [Ψ] := F • Ψ

gives a genuine quantum operator QF corresponding to F ∈ C∞(X,C)? It

turns out that we can, at least under certain circumstances—thus in this

sense we obtain quantization via a deformation of prequantization. We show

here how this works.

Further motivation for our approach stems from the observation that

the two key classes of objects one must consider for quantization are ob-

servables (i.e., elements of C∞(X,C)) and prequantum wave functions (i.e.,

U(1)-equivariant functions on Y ). As these naturally form subspaces O and

H of C∞(Y,C), respectively, it seems appropriate to take Y as the arena for

quantization. In addition, the introduction of the quantum product • will

‘add functionality’ to the geometric quantization scheme. (As is well known,

the latter has difficulty quantizing sufficiently many observables. The intro-

duction of a quantum product will mollify this, cf. Example 5C.)

4 Indeed, the Schouten-Nijenhuis bracket [π#, π#] = −2π# ∧ η, where η is the Reeb

vector field of (Y, α).
5 A star product has died.
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2 Coordinate Expressions

If pi, q
j are canonical coordinates on (X,ω), and θ is the (angular) fiber

coordinate on Y , then locally

ω = dpi ∧ dqi

and

α =
1
~
pidq

i + dθ. (2.1)

The Reeb vector field is thus η = ∂θ. The associated Poisson bivector π =

−ω−1 is

π = ∂pi
∧ ∂qi

and so the Souriau bivector π# = ∂pi

# ∧ ∂qi
# is

π# = ∂pi
∧
(

∂qi −
pi

~
∂θ

)

,

whence

Jf, gK =
∂f

∂pj

(

∂g

∂qj
−
pj

~

∂g

∂θ

)

−
∂g

∂pj

(

∂f

∂qj
−
pj

~

∂f

∂θ

)

. (2.2)

Using the local expression Ψ = ψ(p, q)eiθ for the prequantum wave func-

tion and (1.1), we obtain

PF [Ψ] =

(

∂F

∂pj

(

~

i
∂ψ

∂qj
− pjψ

)

−
~

i
∂F

∂qj

∂ψ

∂pj
+ Fψ

)

eiθ,

from which is evident that PF is indeed the prequantization of the classical

observable F .

3 The Quantization Construction

Our approach seeks to find a ‘middle ground’ between geometric quantization

and deformation quantization, utilizing the most successful aspects of both.6

6 Useful references on geometric and deformation quantization are [2, 3], and [4], re-

spectively.
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It is not surprising, then, that the central elements of our quantization con-

struction are prequantization, a “quantum product” and a polarization. We

have briefly discussed prequantization in the first section.

We assume that we have a star-product ⋆λ on X, with deformation pa-

rameter λ.7 The driver of this star product is a contravariant 2-tensor Λ on

X. The most important case is when Λ is the Poisson bivector itself, but we

will also consider other possibilities.

In addition to the star product we will need a deformation quantization

of H with respect to ⋆λ in the sense of [5]. By this we mean a one-parameter

family of C[[λ]]-bilinear U(1)-equivariant mappings

•λ : O[[λ]] × H[[λ]] → H[[λ]]

satisfying

(F ⋆λ G) •λ Ψ = F •λ (G •λ Ψ). (3.1)

We require further that the prequantum product •λ be of the form

F •λ Ψ =
∞
∑

k=0

λkck(F,Ψ),

where each ck is bidifferential, c0(F,Ψ) = FΨ and the driver of •λ is c1(F,Ψ) =

Λ#(dF, dΨ). Theorem 1.6 of [5] implies that such a deformation quantization

of H exists and is unique up to equivalence.8

Finally, we suppose that (X,ω), with dimX = 2n, is equipped with a

polarization J . A prequantum wave function Ψ is polarized provided ζ#[Ψ] =

0 for all ζ ∈ J . The space of all polarized prequantum wave functions

(or simply “wave functions” for short) is denoted HJ . We say that the

7 Such always exist by virtue of [6]. We do not consider questions of convergence here.
8 This reference actually considered deformation quantizations of C∞(Y,C). Since the

subspace H thereof consists of U(1)-equivariant functions, a deformation quantization of

C∞(Y,C) automatically restricts to one of H.
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prequantum product is compatible with the polarization if whenever Ψ is

polarized, then so is F •λ Ψ for all F ∈ O. Then (3.1) implies that HJ is a

left
(

O, ⋆λ

)

-module, and we call •λ a quantum product.

Thus far Planck’s constant has not appeared in our formulæ (except in

the expression (2.2) for the Souriau bracket). To turn our constructions

into a quantization in a physical sense we now insist that we evaluate the

expansions above at iλ = ~, the numerical value of Planck’s constant. When

the driver of the star product is the Poisson bracket we then have

F •~ Ψ = F Ψ +
~

i
JF,ΨK + · · · (3.2)

for each wave function Ψ, which is the raison d’être for our construction of

the quantum product. We caution that (3.2) cannot a priori be interpreted

as a power series in ~, again because c1 depends upon ~ and also since we do

not in general have any control over the ~-dependence of the ck for k ≥ 2.

Henceforth we drop the ~-dependence in the notation and simply refer

to • as the quantum product. Now for Ψ ∈ HJ define

Q ∈ Hom
(

(O, ⋆),End(HJ , ◦)
)

by

QF [Ψ] := F • Ψ; (3.3)

then (3.1) takes the familiar form

Q(F ⋆ G)[Ψ] = (QF ◦ QG)[Ψ]. (3.4)

Note also that Q(1) = 1HJ
. These properties suggest, and the examples in

§5 will justify, identifying QF with the genuine quantum operator associated

to the observable F in the representation determined by J .

We do not know a general way of constructing quantum products, nor

do we know if every prequantum circle bundle (over a polarized symplectic
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manifold) carries a quantum product. Nonetheless, it is possible to construct

such products, at least in a certain class of examples, as we illustrate in the

next section.

4 Quantum Products over Flat Bi-Polarized

Manifolds

From now on we specialize to the case when (X,ω) is a flat bi-polarized

manifold. By ‘bi-polarized’ we mean that X carries two transverse real po-

larizations J,K.9 The first one, J , is used to polarize prequantum wave

functions as described previously. The second one, K, taken together with

J , allows us to ‘polarize’ the Poisson bivector, i.e., display π in a certain

normal form which we now describe.

Hess constructed a canonical symmetric symplectic connection ∇ on such

a space and proved the following key result.

Theorem 4.1 (Hess [9]). The following conditions are equivalent:

1. ∇ is flat.

2. About every point in X there exists a Darboux chart {p1, . . . , pn,

q1, . . . , qn} such that the polarizations J and K are locally generated

by the Hamiltonian vector fields ξq1 , . . . , ξqn and ξp1
, . . . , ξpn

, respec-

tively.

As a consequence we have the local normal form

π = ∂pj
∧ ∂qj , (4.1)

9 This concept is the same as that of a ‘bi-Lagrangian’ manifold’ that one finds in the

literature (cf. [7, 8], and references therein), except that we allow for complex Lagrangian

distributions. This has essentially no effect on what follows.
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where the ∂pj
( = −ξqj ) lie in J and the ∂qj ( = ξpj

) lie in K. Furthermore it

is straightforward to verify that any two such charts are affinely related: on

overlaps

p′
j = aj

ipi + bj and q′j = cj
iq

i + dj (4.2)

where a = c−1. Thus a flat bi-polarized manifold is affine. For more details,

including numerous examples, see [7, 8, 10].

Now suppose that we have a contravariant 2-tensor Λ which on an open

set U ⊂ X can be expanded

Λ|U =
∑

α

sα ⊗ tα (4.3)

into tensor products of mutually commuting vector fields sα, tβ (which again

may be complex-valued) and which transform contragrediently. This is the

case in particular when U is a Darboux chart and Λ is (i) the Poisson bivector

(4.1), (ii) the associated normal tensor

ν = ∂pk
⊗ ∂qk

and (iii) the anti-normal tensor

µ = −∂qk ⊗ ∂pk
.

We regard Λ|U as a bilinear map C∞(U,C) ⊗ C∞(U,C) → C∞(U,C) ⊗

C∞(U,C) according to

(Λ|U)(F ⊗G) =
∑

α

sα[F ] ⊗ tα[G] (4.4)

and we then put (Λ|U)k+1 = (Λ|U)◦(Λ|U)k. Note that once we have fixed a

decomposition (4.3) of Λ on U there are no factor-ordering ambiguities when

computing (Λ|U)k(F ⊗G) for k ≥ 2.
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Next, cover the bi-polarized manifold X with an atlas of affine Darboux

charts with overlaps as in (4.2). Then if U,U ′ are two such domains, equation

(4.4) and the assumption that the sα, tβ transform contragrediently imply

that (Λ|U)k(F ⊗ G) = (Λ|U ′)k(F ⊗ G) on U ∩ U ′. Thus Λk(F ⊗ G) is

globally well-defined.

These are the first crucial consequences of the normal form of Hess’ the-

orem.

A calculation shows that we may use such a Λ to drive a (formal) star

product ⋆ on C∞(X,C) of ‘exponential type,’ i.e., of the form

F ⋆ G =
∞
∑

k=0

(

~

i

)k 1
k!
m ◦ Λk(F ⊗G)

for F,G ∈ C∞(X,C) where m is the multiplication operatorm(F⊗G) = FG.

For short, we write

F ⋆ G = m ◦ exp

(

~

i
Λ

)

(F ⊗G).

We horizontally lift this star product to induce a product on C∞(Y,C):

for f, g ∈ C∞(Y,C) we set

f • g = m ◦ exp

(

~

i
Λ#

)

(f ⊗ g). (4.5)

Since

Λ# |U =
∑

α

(sα)# ⊗ (tα)#, (4.6)

the product • is also globally well-defined. As one would expect F • G =

= F ⋆ G for F,G ∈ O. Furthermore

Proposition 4.2.
(

C∞(Y,C), •
)

is a left (O, ⋆)-module, i.e.,

(F ⋆ G) • h = F • (G • h) (4.7)

for all F,G ∈ O and h ∈ C∞(Y,C).
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Proof. Expand both sides of (4.7) using (4.5) and the multinomial formula.

Since the sα, tβ mutually commute, we may then rearrange and reindex one

side to obtain the other. �

By virtue of its construction in terms of horizontal lifts, • is U(1)-equivar-

iant. Thus it is a prequantum product, and so provides a deformation quan-

tization of C∞(Y,C).

We next prove that lν is a genuine quantum product, lν being given by

(4.5) with Λ the normal tensor ν. This is the second crucial consequence of

Hess’ theorem.

Proposition 4.3. If H is an observable and Ψ is J-polarized, H lν Ψ is also

J-polarized.

Proof. It suffices to show that for any ℓ we have ∂pℓ

#[H lν Ψ] = 0. A

multinomial expansion of (4.5) gives

H lν Ψ =
∑

k∈N

(

~

i

)k 1
k!

∑

j1+···+jn=k





k

j1 · · · jn





×
(

(∂p1
)j1 · · · (∂pn

)jn[H ] × (∂q1
#)j1 · · · (∂qn

#)jn[Ψ]
)

,

where we have used the fact that the vector fields ∂qm
# commute (as K is a

polarization). Then

∂pℓ

#[H lν Ψ] =
∑

k∈N

(

~

i

)k 1
k!

∑

j1+···+jn=k





k

j1 · · · jn



 (4.8)

×
(

∂pℓ
(∂p1

)j1 · · · (∂pn
)jn[H ] × (∂q1

#)j1 · · · (∂qn
#)jn[Ψ]

+ (∂p1
)j1 · · · (∂pn

)jn[H ] × ∂pℓ

#(∂q1
#)j1 · · · (∂qn

#)jn[Ψ]
)

.
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Before proceeding, we note the following facts. By the definition of cur-

vature, the prequantization condition curv α = ω/~ and (2.1),

[∂pℓ

#, ∂qm
#] = [∂pℓ

, ∂qm ]# −
1
~
ω(∂pℓ

, ∂qm)η

= 0 −
1
~
δℓ

mη

which follows from (4.1). Similarly, we compute that [η, ∂qm
#] = 0.

Now, we manipulate the second factor of the last term in the sum (4.8).

Consider the quantity

∂pℓ

#(∂qm
#)j = (∂qm

#)j∂pℓ

# + [∂pℓ

#, (∂qm
#)j ]. (4.9)

In the second term here, expand

[∂pℓ

#, (∂qm
#)j] = ∂qm

#[∂pℓ

#, (∂qm
#)j−1] + [∂pℓ

#, ∂qm
#](∂qm

#)j−1.

Iterating this last computation (j − 1)-times and taking into account the

facts listed above, equation (4.9) yields

∂pℓ

#(∂qm
#)j = (∂qm

#)j∂pℓ

# − δℓ
m
j

~
(∂qm

#)j−1η. (4.10)

Substituting (4.10) into the second factor of the last term in (4.8) we even-

tually obtain

∂pℓ

#(∂q1
#)j1 · · ·(∂qn

#)jn[Ψ]

= (∂q1
#)j1 · · · (∂qn

#)jn∂pℓ

#[Ψ]

−
1
~

n
∑

m=1

δℓ
m jm(∂q1

#)j1 · · · (∂qm
#)jm−1 · · · (∂qn

#)jnη[Ψ].

Observe that the first term on the r.h.s. here vanishes as Ψ is J-polarized.

Recalling the U(1)-equivariance of Ψ, so that η[Ψ] = iΨ, the expression above

reduces to

∂pℓ

#(∂q1
#)j1 · · ·(∂qn

#)jn[Ψ] = −
i
~
jℓ(∂q1

#)j1 · · · (∂qℓ
#)jℓ−1 · · · (∂qn

#)jn[Ψ].
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Thus the formula for ∂pℓ

#[H lν Ψ] becomes

∑

k∈N

∑

j1+···+jn=k

(

~

i

)k 1
k!





k

j1 · · · jn





×
(

∂pℓ
(∂p1

)j1 · · · (∂pn
)jn[H ] × (∂q1

#)j1 · · · (∂qn
#)jn[Ψ]

−
i
~
jℓ (∂p1

)j1 · · · (∂pn
)jn [H ] × (∂q1

#)j1 · · · (∂qℓ
#)jℓ−1 · · · (∂qn

#)jn[Ψ]
)

.

Finally, rewriting

(∂p1
)j1 · · · (∂pn

)jn = (∂pℓ
)(∂p1

)j1 · · · (∂pℓ
)jℓ−1 · · · (∂pn

)jn

in the second term of the sum, reindexing jℓ  jℓ + 1 therein and observing

that
jℓ + 1
k





k

j1 · · · jℓ + 1 · · · jn



 =





k − 1

j1 · · · jℓ · · · jn



 ,

the two terms are seen to cancel and we are done. �

Thus we have proven the existence of a quantum product lν on a (pre-

quantization of a) flat bi-polarized manifold X. Interestingly Proposition 4.3

is no longer valid if we use the anti-normal tensor µ = −∂qk ⊗ ∂pk
as the

driver of ⋆, cf. §5B.

Proposition 4.3 also holds when the quantum product is that associated

to the Poisson bivector itself, as we now prove. Let us denote this ‘Moyal

quantum product’ by lπ .

Corollary 4.4. If H is an observable and Ψ is polarized, then H lπ Ψ is also

polarized.

Proof. First of all, expand π =
∑n

k=1 πk, where

πk = ∂pk
⊗ ∂qk − ∂qk ⊗ ∂pk

(4.11)
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(no sum). We routinely verify that the commutator [π#
j , π

#
k ] = 0,10 whence

exp
(

(~/i)π#
)

= exp
(

(~/i)π#
1

)

◦ · · · ◦ exp
(

(~/i)π#
n

)

.

Next, write (4.11) as πk = νk + µk. Then for H an observable and Ψ a

polarized wave function we compute

[ν#
k , µ

#
k ](H ⊗ Ψ) = −

i
~
∂qk∂pk

[H ] ⊗ Ψ

and furthermore

[ν#
k , [ν

#
k , µ

#
k ]](H ⊗ Ψ) = 0 = [µ#

k , [ν
#
k , µ

#
k ]](H ⊗ Ψ).

Invoke the Baker-Campbell-Hausdorff-Zassenhaus formula

exp(A+B) = exp(A) ◦ exp(B) ◦ exp
(

−(1/2)[A,B]
)

◦ exp
(

(1/6)[A, [A,B]] + (1/3)[B, [A,B]]
)

◦ · · ·

with A = (~/i)ν#
k and B = (~/i)µ#

k and apply it to H ⊗ Ψ. As the double

commutators vanish and as exp
(

(~/i)µ#
k

)

(H ⊗ Ψ) = H ⊗ Ψ we get

exp
(

(~/i)π#
k

)

(H ⊗ Ψ)

= exp
(

(~/i)ν#
k

)

◦ exp
(

−(i~/2)∂qk∂pk
⊗ 1

)

(H ⊗ Ψ).

Summing over k this yields

exp
(

(~/i)π#
)

(H ⊗ Ψ)

= exp
(

(~/i)ν#
)

◦ exp((i~/2)∆⊗ 1) (H ⊗ Ψ)

where ∆ = −
∑n

k=1 ∂qk∂pk
is the Yano Laplacian. From this we finally obtain

F lπ Ψ =
[

exp
(

(i~/2)∆
)

F
]

lν Ψ (4.12)

According to Proposition 4.3, the r.h.s. here is a polarized wave function,

so that H lπ Ψ is also a polarized wave function. �

10 By this we mean that π#
j (π#

k (f ⊗ g)) − π#

k (π#
j (f ⊗ g)) = 0 on C∞(Y,C) ⊗ C∞(Y,C).
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Once we have a quantum product at our disposal, we may define quantum

operators by means of (3.3). The final step is to construct the quantum

Hilbert space; see [2] for the details of this construction— it is not essential

for our present purposes.

5 Examples

Here we specialize to T ∗R = R2 for simplicity; the generalization to T ∗Rn

with n > 1 is immediate. We apply our method to generate various quanti-

zations of (R2, ω = dp ∧ dq).

5A Normal Ordering Quantization

We first consider the normal 2-tensor field ν = ∂p ⊗ ∂q. As the polarization

J on X we choose the vertical one, and for K the horizontal one. Then a J-

polarized wave function on Y has the form Ψ = ψ(q)eiθ where ψ ∈ C∞(R,C).

Observe that the expression above for ν is exactly of the form (4.3).

As star product on X we take the normal (or standard) one so that the

corresponding prequantum product is

f lν g = m ◦ exp

(

~

i
ν#

)

(f ⊗ g). (5A.1)

In this expression the normal Souriau tensor is

ν# = ∂p
# ⊗ ∂q

# (5A.2)

where the horizontal lifts are ∂p
# = ∂p and ∂q

# = ∂q −(p/~)∂θ. Although this

expression for ν# does not have constant coefficients there are no ambiguities

in powers of ν# and hence in lν as long as we utilize (5A.2), consistent with

(4.6).
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For an observable F ∈ O and a polarized wave function Ψ on Y , we thus

have

ν#(F ⊗ Ψ) = ∂pF ⊗
(

∂q −
ip
~

)

Ψ

(since ∂θΨ = iΨ) and so we end up with the simple formula

F lν Ψ =
∑

k∈N

(

~

i

)k 1
k!
∂p

kF
(

∂q −
ip
~

)k

Ψ. (5A.3)

We construct quantum operators QνF according to (3.3). The series

(5A.3) clearly terminates for observables which are polynomial in momenta.

In particular, we compute

Qν

(

∑

n

An(q)pn

)

[Ψ] =
∑

n

(

~

i

)n

An(q)ψ(n)(q)eiθ (5A.4)

from which it is apparent that our choice of quantum product in this instance

does in fact yield normal-ordering (or standard-ordering) quantization. No-

tice that (5A.4) applied to J-preserving observables, i.e., those of the form

F (p, q) = f(q)p+g(q), is consistent with geometric quantization theory. The

quantum representation space is L2(R, dq) as always.

In the context of this example, (3.3) resembles equation (13) of [11]. In

this reference it is however necessary to restrict to the zero section of T ∗R,

i.e., p = 0, in order to be in business. Here there is no such restriction.

We emphasize the crucial role played by the ‘normal form’ (4.3) with

s = ∂p spanning J : In (5A.1) the normal tensor ν must be written in the

form ν = ∂p ⊗ ∂q. If instead we use −∂q ⊗ ∂p then Proposition 4.3 fails, and

we do not obtain a quantization.
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5B Example: Anti-normal Ordering Quantization

We interchange the factors in the normal tensor ν, to obtain the ‘second half’

of the Poisson bivector

µ = −∂q ⊗ ∂p, (5B.1)

as well as the polarizations (J ↔ K). Again (5B.1) is in exactly the normal

form (4.3), where now s = −∂q. Then a K-polarized wave function has the

form Φ = φ(p)ei(pq/~+θ) with φ ∈ C∞(R,C).

The anti-normal quantum product on Y (i.e., (5A.1) with µ in place of ν)

is

F lµ Φ =
∑

k∈N

(

−
~

i

)k 1
k!
∂q

kF

[

(

∂p +
iq
~

)k

φ

]

ei(pq/~+θ).

The analysis now follows as in the case of normal-ordering quantization,

where now the quantum representation space is L2(R, dp). We find for poly-

nomials in q that

Qµ

(

∑

n

Bn(p)qn

)

[Φ] =
∑

n

(

−
~

i

)n

Bn(p)φ(n)(p)ei(pq/~+θ). (5B.2)

The Fourier transform intertwines theK and J representations; in the former,

(5B.2) translates into

Qµ

(

∑

n

An(q)pn

)

[Ψ] =
∑

n

(

~

i

)n
dn

dqn

(

An(q)ψ(q)
)

eiθ,

justifying our terminology.

5C Weyl Quantization

Our basic setup here is the same as in normal-ordering quantization, except

as star product on R2 we take the Moyal one with Λ = π. The quantum

product is then lπ considered previously and (4.12), expressed in the form

QπF = Qν

(

exp
(

(i~/2)∆
)

F
)

(5C.1)
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shows that our version of “Weyl quantization,” that is Qπ, is obtained (as

expected) from our version of normal quantization Qν via the Agarwal cor-

rection (see [11, 12]). Of course, Weyl quantization produces symmetric

operators in contrast to either normal or anti-normal quantization.

Thus far we have focussed essentially on polynomial observables F , in

which case the series F •Ψ terminates. But we may still apply our technique,

at least formally, when this is not so. As an illustration we directly quantize

the observable 1/p on Ṫ ∗R ≈ R×(R\{0}). As ∆(1/p) = 0, Weyl quantization

will coincide with normal quantization; a calculation using (5A.3) then yields

Qπ

(

1
p

)

[Ψ] =
1
p

∞
∑

k=0

p−k

(

i~
d

dq
+ p

)k

[Ψ].

This expression, if convergent, should be a J-polarized wave function,11 and

so must be independent of p. The only way this can be the case is if p =

−i~d/dq in the sense of the functional calculus, so that

Qπ

(

1
p

)

[Ψ] =

(

−i~
d

dq

)−1

Ψ =
i
~

(∫ q

0
ψ(t) dt

)

eiθ.

This formal calculation coincides with one based on the integral formula for

the Moyal star product; see equation (2.8) in [4].

5D The Bargmann-Fock Representation

Start now with X = C so that so that the symplectic form reads

ω =
1
2i
dz̄ ∧ dz

whence

π = 2i∂z̄ ∧ ∂z.

11 Note that Proposition 4.3 can be applied only if we know that (1/p) lν Ψ converges.
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The Bargmann normal tensor—we should rather say the Wick tensor—is

defined according to the usual procedure ∧ ⊗, viz.,

ν = 2i∂z̄ ⊗ ∂z.

A natural polarization to consider is the antiholomorphic one J = spanC{∂z̄},

and we take K = J̄ .

We have Y = C × S1, endowed with the prequantum 1-form

α=
1

4i~
(z̄dz − dz̄z) + dθ

Polarized wave functions Ψ : Y → C are thus of the form

Ψ = ψ(z)e−|z|2/(4~)eiθ

where ψ : C → C is holomorphic: ∂z̄ψ = 0. This is the Bargmann repre-

sentation, the Hermitian inner product of two such wave functions Φ and Ψ

being given by 〈Φ,Ψ〉 =
∫

C
ΦΨω. In the wake of §5.A we readily compute

Qν

(

∑

n

Cn(z)
(

z̄

2i

)n
)

[Ψ] =
∑

n

(

~

i

)n

Cn(z)ψ(n)(z)e−|z|2/(4~)eiθ.

We can, hence, confirm that our quantization procedure also applies in the

Kähler case.

Dealing with the Poisson bivector π, we get accordingly the “Bargmann”

quantization mapping Qπ which retains the relationship (5C.1) with Qν ,

where now ∆ = −2i∂z̄∂z is the Kählerian Laplacian on C. This formula

enables us to find, e.g.,

Qπ(|z|2)[Ψ] = 2~

(

zψ′(z) +
1

2
ψ(z)

)

e−|z|2/(4~)eiθ

as expected.
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6 Conclusions

Our approach is a hybrid of the geometric quantization (GQ) and deforma-

tion quantization (DQ) procedures.12 One the one hand, the GQ of (X,ω) is

unsatisfactory as it quantizes too few observables, viz., those whose Hamil-

tonian flows preserve the chosen polarization; this point has recently been

emphasized in [14]. Our technique does not impose this restriction, and con-

sequently we needn’t resort to pairing techniques to quantize ‘complicated’

observables. On the other, the DQ of (X,ω) has long been recognized to

require additional elements such as a prequantization (Y, α) and/or a polar-

ization. Indeed, the well-known fact that all symplectic (and even Poisson)

manifolds admit DQs indicates that DQ cannot be a ‘genuine’ quantization;

see also [15] and [16]. There are also related issues with the construction

of the quantum state space ([17], [18]). With our technique, however, this

proceeds as just as in GQ, since polarized wave functions are already present

in C∞(Y,C). So here we have combined the best of both; in the process

we obtain a quantization of, e.g., all polynomials on R2n. Of course, such a

quantization does not satisfy Dirac’s “Poisson bracket  commutator” rule,

but this cannot be helped [19]. In its place, however, (3.4) shows that the

“star-commutator  commutator” rule does hold.

Our goal in this paper was to show that a prequantization, a polarization

and a quantum product can lead to a viable quantization scheme. We have

accomplished this under certain circumstances. Our assumption that the

phase space is a flat bi-polarized manifold is quite restrictive, even though it

covers the physically most important case of Euclidean space. It also covers

symplectic tori, which we hope to study next. As well our construction

of a quantum product depended crucially on the exponential nature of the

12 As such it is reminiscent of that of [13].
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star-products considered and the normal form of Theorem 4.1. More varied

and interesting examples (e.g., cotangent bundles and Kähler manifolds) will

likely require entirely different techniques of constructing quantum products.

It might also be interesting to extend our construction of a quantum

product to the symplectization of the contact manifold (Y, α) in the spirit of

what [20] did for prequantization.
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