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Abstract. A more precise knowledge of the pressure field induced by a high-power
spark is essential to estimate the mechanical damages that a lightning strike can induce
near the impact point. In this work we propose a multiscale approach to validate a
numerical magneto-hydro-dynamic (MHD) model that can predict the pressure field
when a very high-power discharge is considered. Two simplified models for the arc
resistance are considered and their respective results are compared. A brief analysis
regarding the numerical issues involved in the solution of a very high temperature gas
is included. The numerical code has been validated against the experimental data of a
short-arc discharge using a current waveform prescribed by the aeronautical standards.
Our study shows that a strong shock wave is generated in the first power peak and this
travels away from the arc column maintaining a relatively high strength a few tens of
centimeters away. The pressure in the arc region remains high for the whole discharge
period.
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1. Introduction

The numerical and experimental study of the evolution of electric arcs is a very active

field of the applied physics. This research topic has found many applications such as

the combustion ignition devices [1, 2], the plasma torch design [3] and the lightning

protection [4, 5]. Regarding this latter field a lot of efforts have been devoted to

develop some lightweight lightning-resistant materials for the aerospace industry. In the

past years carbon-fiber was massively introduced in many structural components. The

composite materials have many advantages over aluminum alloys from the structural

viewpoint. However they are more fragile and therefore they are more vulnerable

to transient loads such as the pressure shock waves induced by lightning strikes [6].

In particular we are interested in the highest-power phase of the discharge, which

is also called phase-A, [7]. The lightning discharge can be roughly divided in a

sequence of different phases characterized by different peak currents and time evolutions.

Aeronautical standards, see for instance [8, 9], prescribe a sequence of standardized

waveforms that represent, for each phase, a real lightning discharge. These current

waveforms represent some of the lightning characteristics: for instance they are designed

to reproduce the lightning-induced damages.

In phase-A a maximum current of two hundred thousand Ampere is reached in a few tens

of microseconds. The Joule effect triggers a rapid temperature rise and the development

of a pressure shock wave that can damage the external structure of the airplane. In other

terms the arc inception and the subsequent shock wave generation trigger a pressure

difference between the internal and external part of the aircraft structural panels. This

results in a localized compression force that can puncture them.

For these reasons in this work we are interested in mapping the pressure field induced

by a typical phase-A laboratory test [7]. The simulation of a real lightning strike is

beyond the scope of this work, we concentrate on the simulation of a typical laboratory

test. This kind of experiment can reproduce the pressure wave generated by the arc

inception. In particular the aeronautical standards fix the current peak and the time to

peak values. In the literature there are many numerical and experimental approaches

to predict the arc-induced pressure field. An example are the studies of [10] and [11]

regarding the thunder generation and propagation. However, it is very difficult to carry

out precise measures on real lightning strikes since the impact point is often unknown.

In some cases, provided that some favorable conditions exist, it is possibile to trigger the

strike using sounding rockets [12] or lasers [13]. Even in this case, virtually, no lightning

is equal to another. As a consequence, the thunder measures are very scattered.

Therefore, in many cases, the study of smaller-scale laboratory-made electric arcs is

preferred. For instance in [14] a four meter arc was produced and many electrical

and spectral data were collected. A few years later a comprehensive theory of long

sparks was introduced in [15, 16]. The pressure field associated with a 20kA discharge

was computed and a good matching with experimental data was shown. In [17, 18]

the lightning model of [15] was corrected and enhanced, and a small variation in the
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pressure profile was outlined. Unfortunately the experimental device used in this kind

of researches can produce arcs with a length of a few meters and peak currents of a few

tens of thousands of Amperes which is not enough to reproduce the phase-A. In a more

recent work [19] a 100kA current is simulated. A fast rise, with a time derivative of

approximately 107A/s, is imposed and the effects of the turbulence in the arc channel

are studied in relation to the channel extinction time. However, in this work there is no

direct comparison against experimental data.

Similar studies have also been performed in other fields such as the design of plasma

torches. In [3] the overpressure generated by a plasma igniter has been measured. The

plasma torches use relatively low currents.

Also the fast-spark regime, see [20], has been deeply investigated. These kinds of

discharges are used, for instance, in spark plugs and are characterized by a very short

time to peak. In [1, 2] the complete fluidodynamic field has been characterized using

numerical and optical techniques. Although fast-sparks can generate quite intense shock

waves, their peak current is not even comparable with a lightning strike.

The lack of pressure measures near the impact point of a high-power arc is due to the

fact that a direct measure, using pressure transducers, is challenging since the pressure

gauges can be easily damaged even by a small percentage of the current involved in

the phase-A discharge. Moreover the induced currents are so high that the transducer

signal could be heavily distorted. A possible work-around is to move it to a safe position

far enough from the discharge and to connect it to the point where the pressure has to

be measured with a tube. This technique is widespreadly used in the aeronautic field,

see [21], and it is particulary suited for static measures. However, when a transient

phenomenon is involved, the pressure at one end of the tube is different from the one at

the other end. In other terms the fluid dynamics inside the tube makes the instantaneous

measure of the pressure on the impulsed panel impossibile. Nevertheless these data can

still be used to validate a numerical tool.

The computer fluid dynamics (CFD) can be a valuable tool to predict the lightning-

related overpressure. For instance in [16] a long-gap spark in air is simulated using

a finite difference fluid dynamic solver. A flux-corrected transport method, see [22], is

used in [18] to simulate fast discharges in an axis-symmetric geometry. A comprehensive

review on the numerical methods used for this kind of problem is also included. A

coupled fluid-electric MHD model is described in [2] and [23] where also the Lorentz

force is taken into account. The magnetic effects are quite important when high currents

are involved. The CFD finite-element analysis has also been applied in [24] to study the

flow instabilities in a plasma torch.

Although there is a very large number of works covering the numerical simulation of

discharges, to the best of our knowledge, a few papers make an exhaustive comparison

with experimental data when a very high current is considered.

In this work we model the fluid field with a three dimensional fluid dynamic solver

coupled with a one-dimensional solver for the tubes. This multi-scale numerical scheme

can generate an estimation of the pressure recorded by the gauges. With this new
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approach we can directly compare the experimental results with the numerical ones and

we can validate our numerical scheme in a typical phase-A scenario. With our calibrated

numerical model we can reliably compute the pressure field near the impact point even

when a very high-power strike is considered.

We stress that our numerical and experimental results are obtained in a laboratory

setting using the damped oscillation current waveform prescribed by the aeronautical

standards [8, 9]. The validation of a numerical tool in this kind of environment is quite

important since this can cut the number of experimental tests that are needed to qualify

new aircraft components. Let us now give a brief outline of this work. In section 2 we

describe the experimental device, in 3 we review a suitable MHD model and we introduce

a simplified one-dimensional model for the tubes. In section 4 we introduce a simple

time-splitting technique for the solution of our physical model. Finally, in section 5 we

compare the numerical estimates with the measures and we show the pressure loads on

the panel surface.

2. The experimental device

The test discharge circuit is depicted in Figure 1(a). This testing device produces

a damped oscillation which is one of the waveforms prescribed by the aeronautical

standards [9] to represent the first phase of the real lightning discharge. A capacitor

(C) is charged to 73kV then a high power spinterometer (S) closes the circuit and the

current starts to flow. From the electrode (E) and the plate (P) a 5cm arc is formed.

The inductance (I) represents the equivalent inductance of the electric circuit. This can

Figure 1. (a) Electric circuit, (b) plate-tube junction and the position of the three
holes.

be modeled with the RLC scheme, where the capacitance is 26µF , the inductance is
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2.9µH and the resistance is 24mΩ. The impulse waveform is a damped oscillation

I = I0 exp(−αt) sin(βt)

where I is the current, I0 = 2.18 · 105A is the maximum current, α = R/(2L) is

the damping factor, β =
√

ω2 − α2 is the frequency, ω =
√

1/(LC) is the undamped

frequency and t is time. The resistance is the sum of the capacitor internal resistance,

the spinterometer arc resistance, the wire resistance and the electrode-to-panel arc

resistance. This quantity is estimated along with the circuit inductance by fitting a

current measure plot as is done in Figure 2. As we can see, the fitted waveform is a

good approximation of the measured one. The discharge lasts about 0.8ms, although

most of the power is released in the first oscillations.

The plate is 1cm thick and its surface is 50cm x 50cm. Three holes are drilled into

Figure 2. The measured current and a fitted version.

it 5cm (A), 10cm (B) and 15cm (C) from the center of the panel where the current

is injected by a 5mm-thick electrode. On the other plate side a plastic tube, with a

length of 25cm and a diameter of 1cm, is installed, see Figure 1(b). At the end of the

tube a Kistler 4043A5, 4043A10 pressure transducer is installed. The gauge has been

protected by a metallic box that houses also the amplifying equipment and the optical

fiber transmission device. This solution minimizes the measurement errors triggered by

the induced currents.

The tube diameter we have chosen is a compromise between the aerodynamic

interference between the tube and the panel and the necessity to have a low viscous

pressure decay inside the tubes. In fact a thinner tube means a thinner hole on the

panel and a weak disturb for the fluid flow on the panel. Nevertheless in thin tubes the

viscous effects are very important and this curtails the frequency content of the pressure

signal. We have found that a tube of 1cm in diameter is a good balance.

3. The physical model

3.1. Geometry

We model our discharge device with a two-domain scheme, namely the plate domain Ωp

and the air domain Ωa. This latter is a 50cm x 50cm x 20cm box, see Figure 3, that
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has a 5mm hole in its center representing the electrode. This latter tip is l0 = 5cm

distant from the plate. The boundary of the air domain is divided in several regions:

the plate-air common boundary Γap, the electrode part Γa,E, the top of the box Γa,T

and its lateral contour Γa,L. The plate boundary consists of the following parts: the

plate-air common boundary Γap, the plate lateral contour Γp,L and the plate bottom

Γp,B. On the various boundary parts we will apply different boundary conditions.

Figure 3. The coupled plate-air geometry and the boundary subdivisions.

3.2. Three dimensional MHD model

Let us now introduce the MHD model:



∂ρ
∂t

+ ~∇ · ~m = 0 in Ωa × (0, ϑf ]
∂ ~m
∂t

+ ~∇ ·
(

~m~m
ρ

+ P ¯̄I
)

= ~Ja ∧ ~Ba in Ωa × (0, ϑf ]
∂Et

∂t
+ ~∇ · (~m (Et + P )) = ~m

ρ
·
(
~Ja ∧ ~Ba

)
+ Πa − ΠI in Ωa × (0, ϑf ]

−∇2 ~Ai = µ0
~Ji in Ωi × (0, ϑf ], i = a, p

~m · ~na = 0, ~Aa = ~Ap,
(
~∇ ~Aa

)
· ~na +

(
~∇ ~Ap

)
· ~np = 0 on Γap × (0, ϑf ]

~m · ~na = 0, ~Ba = ~B0 on Γa,E × (0, ϑf ]

P = P0, ~Aa = ~A0 on Γa,L
⋃

Γa,T × (0, ϑf ](
~∇ ~A

)
· ~np = 0 on Γp,L × (0, ϑf ](

~∇ ~A
)
· ~np = 0 on Γp,B × (0, ϑf ],

(1)

where ρ is the density, ~m = ρ~u is the momentum density, ~u is the speed, Et is the total

energy per unit volume, P is the pressure, ¯̄I is the identity tensor, ~Ji, with i = a, p, is

the current density vector of the air and plate respectively, ~Bi = ~∇∧ ~Ai is the magnetic

field, ~Ai is the magnetic potential, Πa = η| ~Ja|2 is the power due to the Joule’s effect, η

is the channel resistivity and ΠI is the power radiation term. Finally, ~ni, with i = a, p,
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is the outward pointing normal of the air and the plate domain respectively, ~A0 and ~B0

are suitable boundary conditions we will discuss below and ϑf is the final time.

The power radiation term ΠI has been computed using the net radiation model. In

other terms only the power loss is modeled and no radiative heating is considered. The

power radiation has been considered function of pressure and temperature and has been

derived from [2, 25, 26].

Regarding the boundary conditions for the magnetic problem we have imposed the

continuity of the magnetic potential and of the magnetic potential gradient across the

plate-air interface. For the remaining surfaces we have imposed either the magnetic

field or its normal gradient. ~A0 has been computed using the Biot-Savart solution

considering the electrode a one-dimensional current carrying wire. We have imposed

some non-penetration conditions on the solid walls Γap and Γa,E and we have imposed

the atmospheric pressure P0 on Γa,L and Γa,T .

Model (1) is a magneto fluid dynamic problem for a gas in chemical equilibrium with

an imposed, gaussian-shaped, current density:

~Ja(t, r) = − I(t)
πr2

0
e−(r/r0)2 ẑ

~Jp(t, r) =





I(t)r
2πr2

0τ
r̂ if r ≤ r0

I(t)
2πrτ

r̂ if r > r0

(2)

where r = |~x − ~xc|, ~x is the position vector, ~xc = (0.25, 0.25, 0)cm is the center of the

panel, r0 is the arc radius, ẑ = (0, 0, 1) is a vertical unit vector, τ = 1cm is the plate

thickness and r̂ = (~x − ~xc)/|~x − ~xc|.
The gaussian current profile (2) decays quickly with respect to r so that the greatest

part of the current passes through the channel, i.e r ≤ r0. Moreover it can be easily

shown that
∫∞
0

~Ja(t, r) = I(t) .

In (1) we have also disregarded the viscous effects. In fact since the Reynolds number
ρUL

µ
(where ρ ≈ 10−2 is the characteristic density, U ≈ 102 is a representative speed

modulus, L ≈ 10−2 is a reference scale and µ ≈ 10−3 − 10−4 is the air viscosity) is

quite high 105 − 106 and the time-scales of the phenomenon are small, the viscosity

has effects only near the boundaries where a boundary layer is formed. In our case the

boundary layer is completely neglected, however it is well known that the pressure is

almost constant inside it. In other terms we expect, in this case, that the Euler and full

Navier Stokes equations produce similar pressure results.

In the same manner we have also neglected the thermal boundary layer. In fact the panel

and the air have a very complicated thermal coupling dominated by many processes such

as the surface melting and the thermal radiation. Fortunately, on these time scales, the

heat conduction is quite limited, therefore the thermal boundary layer is very thin.

Also the convective heat transfer is very limited since in the boundary layer the speed

is small.
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3.3. Resistivity field

Since we are interested only in reproducing the pressure effects, we use a couple of

approximated models for the resistivity η. The resistivity coefficient η can be either

estimated from the experimental data or computed as a function of the temperature

and of the pressure, see [25]. In the first case short-circuiting the electrode-gap, we can

derive the resistivity of the circuit alone. Comparing this datum with the resistivity

estimated in the case when the electric arc is present, we can, by difference, compute

the arc resistivity which nearly equals Ra = 8mΩ. From this we can easily estimate the

volume-averaged resistivity as

η = (πr2
0/l0)Ra. (3)

We do not expect any major contribution to the resistance from the electrode sheaths

since the ratio between the arc voltage drop and the sheath voltage drop is quite high. In

fact, since Ra = 8mΩ, we get that the sum of the two contributions is over one hundred

volts for most of the discharge, in particular in the first peak of current a maximum of

1600V is reached. On the contrary, the sheath voltage drop is a few tens of volts as

described in [27, 28].

From Figure 2 we see that the current interpolation based on a RLC-behavior produces

good results. This means that, from a circuital viewpoint and in the discharge time-

frame, the arc behaves as a constant resistance. We expect that the estimate (3), which

prescribes a constant resistivity in time, is good enough to get a consistent prediction

of the pressure field. In fact the resistivity field may exhibit some variations during the

discharge and a transitory phase on the first current rising front. However this transitory

is particulary quick, in fact, in our variable resistivity simulations, described below, we

have reached a high conductivity > 2500Sm−1 in less than one microsecond. The

maximum conductivity, > 10000Sm−1, is reached several microseconds later. However

this relatively strong variability has not a major impact on pressure measurements as

we will see in the result section 5. We have also checked the length of the transitory

phase using the Toepler law:

Ra =
ktl0∫ t

0 I(τ)dτ
(4)

where kt = 5 · 10−5 is a constant. The Toepler law can be used, see [29], to estimate the

resistance of a few-centimeter electric arc in the first phases of the discharge. Also in

this case we get that the resistance transitory phase lasts a few microseconds.

On the other hand the resistivity-temperature curves found in the literature can provide

a model more physically sound. In this case we expect to get some more refined

temperature profiles, in particular in the arc region. However, this model is very sensitive

to the temperature variation that in turn depends on the net radiation coefficient and

on the thermodynamic model.

In the rest of the paper we refer to the fixed resistive model as the model that uses the

approximation (3) where the calculated resistivity depends on the assumed value of r0

but it does not depend on the thermodynamic variables. On the contrary, when we use
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the η = η(T, P ) relation, we refer to the variable resistivity model.

Here we have chosen the fixed resistivity model, however some extensive comparisons

with the variable resistivity model are included in section 5.

The current shape (2) implies that the arc geometry is imposed a priori. This is a

major simplification since the modeling of the geometrical evolution of the arc could

be problematic. In particular, it would require the solution of a Laplace equation for

the electric potential where the diffusion coefficient is represented by the conductivity

coefficient 1/η. In our case the coefficient 1/η can vary by about eighteen orders of

magnitude, see [26, 30]. The air resistivity is mainly dependent on temperature and

its variation from the hot arc zone to the cold boundary is the cause of the resistivity

changes inside the domain.

We have tried to solve the Laplace problem with the finite element method, see [31, 32].

This technique reduces the differential problem to a linear system like Ax = b where

A is the stiffness matrix, x is the vector of the unknowns and b is a known vector.

The linear system has been solved using the iterative and direct solvers developed in

the Trilinos package, see [33]. In our numerical experiments we have experienced the

numerical breakdown of the linear solvers when roughly more than 100000 degrees of

freedom are used. This is somehow expected, in fact the conditioning number of the

stiffness matrix A (i.e. a number that measures the stiffness of the problem) is bounded

by

C(sup(η)/ inf(η)H−2) (5)

where C is a constant [32]. This means that the matrix conditioning gets worse quickly as

the mesh is refined and as the matrix size increases. This effect is greatly amplified by the

variations of the conductivity coefficients and can make the solution of the linear system

very difficult both using direct [34] and iterative solvers [35]. Actually the conditioning

number affects the iterations needed to reach convergence when an iterative scheme is

used, and also affects the precision of the direct solvers. In fact the solution of the

linear system is affected by the discretized arithmetics used by the computers and it can

be shown, see [36], that ‖δx‖/‖x‖ ≤ (2γκ(A))/(1 − γκ(A)) where δx is the variation

between the solution of the linear system solved with exact and inexact arithmetics.

Moreover γ is the roundoff and, using the double precision standard, is approximately

10−16, and κ(A) is the conditioning number of the matrix A. In other terms, if the

conditioning number is big, i.e. above 1016, the solution of the linear system can be

unreliable or even unstable.

In spite of this, many solutions have been obtained in axis-symmetric geometries,

see for instance [37, 30, 38, 39, 2, 40], or in three dimensional geometries, see

[41, 42, 43, 44, 45, 46]. Most of the algorithms are based on the SIMPLEC approach

described in [47] and then used in [37, 30]. In other cases the arc is simulated using

the PHOENICS code, such as in [38, 48], or FLUENT [25], while in other cases some

dedicated codes are developed [24]. In almost all the cases a finite volume scheme on

a structured grid is used however these schemes experience a similar behavior of the
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conditioning number with respect to the finite element method. In one dimension the

finite element and finite volume methods are even the same [31, 36]. Moreover in almost

all the three-dimensional cases the maximum number of degrees of freedom (dof) used

is under 100000: in [42] 60025 dof are used, in [45] 56000 dof are used and finally in

[41] 48216 dof are used. In [44] 162729 dof are used, which is higher than the 100000

threshold. We stress that the conditioning number depends on many factors: in (5) the

constant depends on the discretization methods. Therefore different methods and even

different grids may have different constants. For instance it is well known that, using

un-structured grids (in our case tetrahedral elements are used), the mesh quality affects

the conditioning number, see [31]. In other terms the constant in (5) depends on many

factors that may contribute to keep lower values of the conditioning number. However

we expect that any mesh refinement affects quadratically the conditioning of A

Some dedicated techniques, mainly based on the domain decomposition theory, have

been developed to tackle the conditioning problem, see [49], however they can be applied

only where the coefficient (in this case the electric conductivity coefficient) has isolated

jumps aligned with the elements faces. Unfortunately this is not applicable to our case

since the variations of η cannot be determined a priori and are, in general, not aligned

with the grid.

The Laplace problem with a strong coefficient variability provides a tough mathematical

problem. We have found that, if the grid is not very refined, some results can be

obtained and there are many cases in the literature, see for instance [43], where the

results have been validated against experimental data. However we have found that

the algorithm can become unstable, particulary the arc inception phase, where the arc

expands, requires a very small time interval. The inception phase is quite important in

this case because the first and most important pressure shock wave is generated in the

first tens of microseconds. Correlated difficulties have been experienced in [45] where a

small relaxation factor is used to reach the convergence of the SIMPLE algorithm or in

[43] where an implicit solver is needed to get a relatively large time step of 2µs.

When the coefficient variability is so strong, the precision obtained when solving the

linear system is better when H is large, on the contrary, the precision associated with the

discretization of the partial differential equation (using finite elements of finite volume

methods) gets better when H gets smaller. Due to this and since the simulation of

the arc inception phase is sensitive to the time stepping, we preferred to use a more

conservative approach and to impose a fixed arc radius. A dedicated study to this kind

of mathematical problem involving a high coefficient variability has been postponed

to allow further study. Moreover we think that our simplified model provides a quick

and computationally sound manner to determine the effects of pressure. The resistivity

physics is somehow different and more complicated however, as we will see in the result

section 5, our model can represent the main factors that are needed to get a reliable

pressure estimation.
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3.4. Thermodynamic model

For the thermodynamic model we have chosen a reacting mixture in chemical

equilibrium. We have used the 11-species model described in [50] were O2, N2, O, N ,

NO, NO+, O2+, N2+, O+, N+, e− are considered. The thermodynamical equations

to be added to system (1) are:

e =
ns∑

i=1

yicvi(T )T +
ns∑

i=1

yi∆f 0
i , P =

ns∑

i=1

ρi

(Ru

wi

)
T, (6)

where e = Et/ρ − (1/2)|~u|2 is the internal energy for unit mass, yi, with i = 1, . . . , ns,

is the mass fraction of the i-th species, cvi(T ) is the heat specific coefficient at constant

volume, ns = 11 is the number of the species, ∆f 0
i is the formation heat, Ru is the uni-

versal gas constant, wi is the molar weight and T is the temperature. In our case ρ and e

have been considered the independent variables subsequently, using the minimization of

the Gibbs free energy, we have computed all the other thermodynamic variables. To be

more precise, this problem is solved for several values of the couple ρ, e and the results

are stored in a database. The fluid dynamic code only interpolates, from the database,

the desired values reducing significantly the computational burden.

We have also adopted the local thermal equilibrium (LTE) assumption since at the arc

temperature, above 20000K, the deviation from the thermodynamical equilibrium is

quite small, see [30], and a one-temperature field can be considered. In Figures 4, 5,

Figure 4. The contour plots of the temperature plotted against the internal energy
and the density.

6 we have displayed some data provided by our database. As expected, see Figure 4,

the temperature depends mainly on the internal energy nevertheless at very low den-

sities the temperature becomes also density-dependent and, moreover, this dependence

grows with the temperature. A similar behavior is outlined in Figures 5 and 6 where

the specific heat and the formation one are displayed. These latter variables are highly

dependent on the dissociation reactions and show strong variations when a specific re-

action takes place.
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Figure 5. The contour plots of the specific heat plotted against the internal energy
and the density.

Figure 6. The contour plots of the formation heat plotted against the internal energy
and the density.

3.5. One dimensional model of the tubes

For the tubes we have used a simplified one-dimensional Euler equations employing a

polytropic ideal gas:




∂ρ
∂t

+ ∂m
∂x

= 0 in [0, L] × (0, ϑf ]
∂m
∂t

+ ∂
∂x

(
m2

ρ
+ P

)
= −sign(m)1

2
λ
D

m2

ρ
in [0, L] × (0, ϑf ]

∂Et

∂t
+ ∂

∂x
(m (Et + P )) = 1

2
λ
D

|m|3
ρ2 in [0, L] × (0, ϑf ]

m = 0 on x = 0 × (0, ϑf ]

P = Pb, if u > 0 on x = 0 × (0, ϑf ]

P = Pb, ρ = ρb, if u ≤ 0 on x = 0 × (0, ϑf ],

(7)

where λ is the friction coefficient of the tube, D = 1cm is the tube diameter, L = 25cm

is the tube length and Pb, ρg are the inflow boundary conditions:

Pb =

{
Pg − 1

2
κm2

ρ
if m ≤ 0

Pg if m ≥ 0
, ρb = ρg, (8)

where Pg and ρg are the pressure and density solutions of (1) on the panel at the

conjunctions of the tubes and κ is the inlet pressure loss coefficient.

System (7) is a one dimensional Euler problem with a source term that models the

pressure loss by viscous friction in a simplified manner. The coefficient λ can be

estimated using the Moody’s table [51]. The Reynolds number in the tube ranges,
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during the first phases of the discharge, in the 1.2 · 107 − 6 · 106 interval. Since the

relative roughness is approximately 7 · 10−4 we are in the complete turbulence region

with an associated friction coefficient λ of approximately 0.018. This means that the

viscous dissipation, due to the large diameter of the tube, is only a minor effect.

Finally, the boundary conditions (8) model the pressure loss at the tube inlet and the

coefficient κ can be estimated using some experimental data [52].

4. The numerical scheme

Problem (1) can be divided in some more simple problems using the time splitting

technique, see for instance [53]. We use a first order splitting method and we solve

sequentially:

(i) a Laplace problem for the magnetic potential

−∇2 ~Ai = µ0
~Ji, i = a, p. (9)

The magnetic field ~Bi = ~∇ ∧ ~Ai is then obtained through a post processing

procedure;

(ii) a homogeneous Euler problem




∂ρ
∂t

+ ~∇ · ~m = 0
∂ ~m
∂t

+ ~∇ ·
(

~m~m
ρ

+ P ¯̄I
)

= 0
∂Et

∂t
+ ~∇ · (~m (Et + P )) = 0;

(10)

(iii) an ordinary differential equation

∂Et

∂t
= Πa − ΠI ; (11)

(iv) and a system of ordinary differential equations



∂ ~m
∂t

= ~Ja ∧ ~Ba

∂Et

∂t
= ~m

ρ
·
(
~J ∧ ~Ba

)
.

(12)

This splitting technique separates the fluid dynamic part from the electric one and from

the thermal forcing terms. This, as we will see below, has many advantages.

The first step is a simple Laplace-type differential equation that can be solved with

standard finite element techniques, see, for instance, [32]. The second step can be

treated with finite volume techniques, in particular we have used the one described in

[54, 55] and we have used a Roe-type Riemann solver adapted to reacting gas mixtures,

for details see [50].

Problem (10) can be formulated as a standard ordinary differential equation in fact,

since in the second step ρ and ~m are constant, we get

ρ
de(T )

dt
= Πa(T ) − ΠI(T )

and, using a few mathematical manipulations, we obtain an ordinary differential

equation in the canonical form:

dT

dt
=

(
ρ

∂e

∂T

)−1

(Πa(T ) − ΠI(T )) .
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This equation can be treated by standard ODE solvers such as the implicit Euler one.

The choice of an implicit solver is mandatory since the variability of the net radiation

coefficient and of the arc power term with temperature is very high.

For the fourth step we have used the following first order scheme:




~mn+1 = ~mn + ∆tn
(
~Jn
a ∧ ~Bn

a

)

~mn+1/2 = ~mn + ∆tn

2

(
~Jn
a ∧ ~Bn

a

)

Et,n+1 = Et,n + ∆tn ~mn+1/2

ρ

(
~Jn
a ∧ ~Bn

a

)
.

(13)

This splitting scheme has many advantages, first of all it guarantees the positivity of

the internal energy e. In fact, from the internal energy definition and from the third

equation of (13), we have

en+1 =
Et,n+1

ρ
− 1

2
|~un+1|2 = Et,n + ∆tn

~mn+1/2

ρ

(
~Jn
a ∧ ~Bn

a

)
− 1

2
|~un+1|2.(14)

Then, using the first and the third of (13), we get

1
2
|~un+1|2 = 1

2
|~un|2 + ∆tn

ρ

(
~Jn
a ∧ ~Bn

a

)
·
(
~mn + ∆tn

2

(
~Jn
a ∧ ~Bn

a

))
=

1
2
|~un|2 + ∆tn ~mn+1/2

ρ

(
~Jn
a ∧ ~Bn

a

)

and, combining it with (14), we obtain

en+1 = Et,n − 1

2
|~un|2 = en.

In other terms, the scheme (12) conserves the internal energy.

The positiveness of the entire splitting scheme, i.e. the positiveness of the internal

energy, depends on the positive treatment of all the splitting steps. In particular we

have found that the most sensitive step is the solution of the Euler equation. It is known,

see [56], that not all the approximated Riemann solvers guarantee the internal energy

positivity, in particular the Roe approximation, described in [50], may fail. A possible

work around is to employ a positive approximated Riemann solver such as the HLLC

described in [57] although this solver is very diffusive if compared to the Roe’s scheme.

We have chosen the Roe’s approximation since, for our particular geometry, it works

well producing no un-physical solutions. We have also to stress that in more general

cases, with more complicated geometries, the usage of positive solvers is mandatory.

Another advantage of our splitting scheme is that the time-steps are constrained only

by the cfl condition [58]. In fact, the third step is treated with an implicit scheme and

does not introduce a further time constraint. Finally, the fourth splitting part has a

slow-varying time dependent forcing term and is stable also with long time steps.

For the solution of the one dimensional model (8) we have used a similar first order

technique that allows to separate the Euler equation from the viscous forcing terms.

The solution of the one dimensional Euler equations is obtained through a discontinuous

Galerkin method, see [59], and the boundary conditions are enforced using the weak

boundary imposition technique described in [60].
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5. Results

5.1. Arc diameter estimation

Our model is dependent on the arc diameter. Some experimental and numerical results,

see [15, 17], suggest that the arc is a few centimeter wide. To verify this, we have

acquired some images at optical wavelengths using a streak camera, see Figure 7(a).

There we have aligned the streak direction with the electrode direction: in this way we

obtain the diameter of the arc versus time. Our data confirm the estimations found in

(a) (b)

Figure 7. A streak picture of the arc (a), the first three current peaks are visible.
The pressure evolution (b) at R = 5cm and R = 0cm from the center of the panel
with different arc channel radii: r15 is the r0 = 1.5cm case while r20 and r25 are the
r0 = 2.0cm and r0 = 2.5cm cases respectively.

the literature and so we have assumed an arc diameter of 4.0cm.

We have also performed a sensitivity analysis to study the effects of the radius diameter

on the pressure profile. In Figure 7(b) we have depicted the pressure evolution at 5cm

and 0cm from the center of the panel. The differences between the pressure evolutions

are quickly reduced, in fact just at 5cm from the arc, the three curves corresponding to

1.5cm, 2cm and 2.5cm radii are almost undistinguishable. At the impact point the three

curves show a more heightened difference. The spread in the results is quickly reduced

after the first current peaks. The plot representing the evolution for the 1.5cm-radius

case shows the greatest difference with respect to the 2cm and 2.5cm cases. However

our streak images, see Figure 7(a), seem to confirm that in the first phases the arc radius

equals or exceeds the 2cm threshold. In this case we can consider only the 2cm and

2.5cm cases and get a peak pressure variation from 7e6Pa to 5e6Pa which spans most

of the previous estimates provided in the literature, see, for instance, [61, 15, 16].
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5.2. Pressure comparison at gauges

We have simulated the discharge sequence using our three dimensional fixed resistance

models and then we have used the computed data for imposing the boundary conditions

of the one dimensional model of the tubes. We have obtained the expected pressure at

the gauges and we have compared it with the experimental data shown in Figure 8 for

three different positions. In figure 8(a) the data of the first hole, set at a distance of

(a) (b)

(c)

Figure 8. Pressure at gauges measured at holes A (a), B (b) and C (c) (5cm, 10cm

and 15cm distant from the center of the plate). The meas1, meas2, meas3, meas4
labels stands for the pressure plots obtained in four experimental tests while mun stand
for the numerically-predicted pressure plot. In Figures (b) and (c) we have considered
only two measurements.

5cm from the center of the panel, are displayed. Four pressure measures are depicted

(meas1 through meas4) as in the nearest position some measure dispersion is present.

Even in a laboratory environment, using the same charging potential for the capacitor,

the electric arc effects are slightly different. However we can show that our numerical

results can predict accurately the pressure peak.

In Figures 8(b) and 8(c) the same data are shown for the second and third hole and

again we can show a good agreement between the computed and the measured data.

The small oscillation of the measures just before the arrival of the shock wave is due to

the discharge induced currents. However we stress that at 4ms, when the shock wave

hits the pressure gauge placed in the hole A, the arc current is low.

As regards the tubes we have checked that the Mach number on the inlet remains

subsonic. Otherwise a normal shock wave is formed and we have to use some relations

more complicated than (8).
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5.3. Variable resistivity model

The implementation of a variable resistivity model, even if the arc diameter is fixed, is

more difficult than a mere substitution of the fixed resistive coefficient with a variable

one that depends on the temperature and on the pressure. In fact, if we impose at

atmospheric conditions even a relatively weak current, we get that an enormous amount

of power is injected in air. As a matter of fact the air resistivity at ambient temperature

is very high therefore if we impose the atmospheric conditions as the initial condition the

Joule power would be very high. But this is un-physical, in fact the arc is anticipated

by the streamer-leader phase in which a thin hot and conductive channel is created. A

complete study of this very fast phase is beyond the scope of this work, more details can

be found in [62]. From our viewpoint it is only necessary to consider an initial condition

in which the hot conductive channel has already been created. In our case we consider a

pre-heating of 1000K in the arc region. As it is pointed out in [44] the initial condition

has only a minor impact on the rest of the simulation.

Some results for the pressure field are depicted in Figure 9. In Figure 9(a) we have

(a) (b)

Figure 9. In Figure (a): the pressure evolution at the gauge A, comparison of the
experimental data (four measurements: meas1 though meas4) with the data computed
with the variable resistive model: the data obtained imposing r0 = 20mm (num20) and
r0 = 25mm (num25) are displayed. In Figure (b): the pressure evolution in the center,
comparison of the variable resistive model, with three arc diameters (r0 = 20mm

(var20), r0 = 25mm (var25) and r0 = 30mm (var30)), with the fixed resistive model
ref .

depicted the pressure evolution at the gauge-A computed considering three arc radii.

The data are plotted together with the experimental data. As we can see, the variable

resistivity model is much more dependent on the arc radius. For a comparison with the

fixed resistivity model we recall that in that case the total power injected in the arc is

independent from the arc radius. In fact the total power is (πr2
0/l0)Ra| ~J |2(πr2

0l0) where

(πr2
0l0) is the discharge volume. Moreover | ~J |πr2

0 = I then the total power equals RaI
2.

On the contrary as we have already seen, in the variable resistivity case, the total power

depends on the arc radius. In fact in that case the total power is
∫ 2π

0

∫ r0

0

∫ l0

0
η(T, P )| ~J|2rdθdrdl =

I2

(πr2
0)

2

∫ 2π

0

∫ r0

0

∫ l0

0
η(T, P )rdθdrdl (15)
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(a) (b)

(c) (d)

Figure 10. Temperature comparison for the fixed resistivity model (a-b) and the
variable resistivity model (c-d). The first (a-c), 1.05e−5s, and second, 4.84e−5s, power
peaks are depicted (b-d).

and this depends on the arc radius.

A good agreement with the experimental data is found for an arc diameter ranging from

4cm to 5cm, however this value depends on many factors such as the radiated power,

the thermodynamic model and the resistivity curve itself. In spite of all the uncertain

parameters we got an arc radius which is at least comparable with the one used in the

fixed arc case.

In Figure 9(b) we show the pressure evolution at the center of the arc channel. As the

channel is pre-heated the initial pressure is far from the atmospheric one, in particular for



Pressure field of sparks 19

r = 2.0cm and r = 2.5cm (that are the values that produce some pressure predictions

close to the experimental values) we have an initial pressure close to 30e5Pa. The

variable resistivity model produces lower estimates for the pressure in the center of the

arc channel yet also the fixed resistivity model produces a similar spread if different

radii are considered. The lower pressure registered in our case is due to the fact that the

pre-heated air begins to escape from the channel just from t = 0. In the fixed resistivity

case the air is heated in a few tens of microseconds.

In Figure 10 we compare the temperature results for the fixed and variable resistive

cases. The temperature field is the most sensible with respect to the model uncertain

parameters. In fact in Figure 10 we outline a clear difference between the variable and

the fixed resistance models. We have depicted the temperature evolution corresponding

to the first two power peaks, i.e the first positive current peak and the subsequent first

negative current peak. In both cases the temperature rises till the first negative current

peak is reached, then the temperature remains at quite high values. This is due to

the fact that the second power peak releases a power that is not much lower than the

first one, however the density is much lower. After the second peak the temperature

rises at values that are so high that almost all the power injected is radiated. This is a

saturation mechanism that limits a further increase in temperature. Moreover a decrease

in the temperature leads to a decrease in the radiation output and the temperature loss

diminishes. In other words radiation effect tends to stabilize the temperature field

between the power peaks. This is emphasized in the variable resistivity model where

the power due to the Joule effect is also a function of the temperature: the higher the

temperature the lower the Joule power. Since in our model there is no thermal coupling

with the panel, in Figure 10 no thermal boundary layer is displayed.

5.4. Three dimensional field

We now give a few comments on the results obtained with our three dimensional MHD

code. In particular we are interested in the mechanism of the shock wave formation

and in the mechanical effects that the pressure field can induce on the panel. In Figure

(a) (b)

Figure 11. The pressure evolution versus time for different positions near the impact
point (a), and far from the impact point (b).

11 we have depicted the pressure evolution at different distances from the center of the
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panel where the current is injected. In Figure 11(a) some positions very close to the

arc are considered and the effects of the pulsed current are clearly visible. The pressure

peak, at the center of the channel, is above 7 · 106Pa and this is in good agreement

with the data reported in the literature, see for instance [15, 16, 17]. In Figure 11(b)

the far pressure field is depicted: the oscillating behavior is quickly smoothed out.

(a) (b)

Figure 12. Three dimensional pressure fields at t = 1.4 ·10−5s (a) and t = 1.82 ·10−4s

(b). A cut of the iso-surfaces on the x−z plane at y = 25cm is displayed. The pressure
is measured in Pa.

(a) (b)

Figure 13. Contour plots of the pressure fields of a slice on the x−z plane at y = 25cm

and at t = 1.4 · 10−5s (a) and t = 1.82 · 10−4s (b). The pressure is measured in Pa.
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Also the pressure field quickly decays as the distance from the impact point increases

as we can see in Figure 12, where we have produced a three dimensional pressure plot.

Several iso-surfaces are shown for two different time steps: t = 1.4 · 10−5s in Figures

12(a) and 13(a) and t = 1.82 · 10−4s in Figures 12(b) and 13(b). As we have already

stressed, the pressure shock wave forms almost immediately and propagates through

the air but, just a few hundreds of milliseconds later, it is strongly weakened. In fact

on the plate boundary a little overpressure is measured, as can also be seen in Figure

11. On the contrary, the pressure remains very high, exceeding 1 · 106Pa, in the center;

this behavior is quite important for the lightning protection aspects as most of the

mechanical damages are concentrated in a very small area corresponding to the impact

point. Most of the pressure wave is created in correspondence of the first peak and

(a) (b)

Figure 14. Three dimensional density fields at t = 4.2 · 10−5s (a) and t = 1.54 · 10−4s

(b). A cut of the iso-surfaces on the x− z plane at y = 25cm is displayed. The density
is measured in kg/m3

no major contribution is given by the following peaks; this can be easily noted from

the computed density fields. In Figure 14(a) and 14(b) we have depicted the three

dimensional density field at t = 4.2 · 10−5s (corresponding to the second current peak)

and at t = 1.54 · 10−4s (corresponding to the sixth current peak) respectively. In Figure

15 their two-dimensional counterparts are shown. We can clearly see the high density

region corresponding to the expanding shock wave and a very low density area near

the arc column. The density acts as an amplification factor between the temperature

variations and the pressure ones. As the density decreases very quickly, most late current

peaks do not reinforce the shock wave. This has also an impact for the lightning testing

device, since the current rising time is a very important parameter especially for the

strength of the far traveling shock wave.

The speed field is depicted in Figures 16. In the first part the fluid escapes from the
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(a) (b)

Figure 15. Contour plots of a slice on the x − z plane at y = 25cm of the density
fields at t = 4.2 · 10−5s (a) and t = 1.54 · 10−4s (b). The density is measured in kg/m3

Figure Time 10−4s I (A) Note

a 1.806 155489 positive peak

b 1.881 119550

c 1.972 -22708 low current

d 2.097 -150827 negative peak

Table 1. Time and current data for the four snapshots in Figure 16.

channel at very high speed. After a few hundreds of milliseconds it reaches a cyclic

equilibrium moving away and getting closer to the channel with a phase delay with

respect to the current pulses due to the air inertia. This cycle is clearly depicted in

Figure 16 (see also Table 1), in particular in Figure 16(a), even if the current reaches its

local maximum, the air is still entering the arc channel. The current then decreases in

Figure 16(b) and reaches a low value in 16(c). However the maximum speed is reached

when the current is near its minimum value. Then the speed field reverses again in

Figure 16(d).

6. Conclusions

In this work we have validated a MHD code in some extreme conditions. The multi-scale

validation technique is innovative and has produced good results. The code has been

used to investigate the pressure field near the impact point in order to give an estimate

of the dynamic loads that a high power arc discharge can produce. Our results show

that the pressure in the arc region remains high during the discharge phase while the

shock wave strength quickly vanishes. This could produce some very localized damages
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(a) (b)

(c) (d)

Figure 16. Four snapshots depicting the flow field cycle during a current half period.
A cross section in the x − z plane at y = 25cm is depicted. The velocity is measured
in m/s

in aluminium alloys but even more severe damages in more rigid materials such as the

composite panels. However we stress that the interaction between the arc channel and

a composite panel is much more complicated and a dedicated modeling is required in

order to get some reliable data.

In our work the discharge mechanism is studied highlighting the importance of the time

to peak. This aspect is important for the design of lightning test devices. Most of the

strength of the shock wave is generated by the first peak of current, while the pressure

field close to the arc is more influenced by the current waveform. In fact in [19], where a

non-oscillating waveform is used, the pressure evolution in the center of the arc channel

is quite different whereas a similar behavior is observed elsewhere.

In spite of the uncertain parameters our work gives a very clear picture of the pressure

field at a distance of a few centimeters from the discharge point. The maximum spread

of the computed results is in the center of the arc, however, even there we give some

reliable upper and lower bounds that are generated by and extensive sensitive analysis.

Unfortunately, it is almost impossible to get some reliable measures just inside the arc

channel, therefore the validation procedure has to rely on indirect measures. For the

arc radius we have also used some streak images to back our hypotheses.
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In future developments some more sophisticated numerical techniques will be developed

whose final goal will be to implement a simulation tool that can predict also the density

current function.

The code we have developed is based on the open-source spark2 platform

http://gitorious.org/spark2/spark2.
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