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Abstract

This paper addresses the state estimation of two-time scale nonlinear systems with

an unknown input multi-observer (UIMO). In order to design such an observer,

the nonlinear system presented in a singular perturbed form is transformed into an

equivalent multiple model with unmeasurable premise variables (UPV) affected

by unknown inputs (UI). Then an observer is built and the stability analysis of

the state reconstruction error is performed by using the Lyapunov method that

leads to the resolution of linear matrix inequalities (LMIs). The performances

of the proposed estimation method are highlighted through the application to a

wastewater treatment plant model (WWTP).
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1. Introduction

Nonlinear models are often needed to represent real system behaviors. As a

consequence, there is a need to extend linear methods -such as the observer and

controller synthesis- to nonlinear systems. In order to achieve this difficult task,

the multiple model (MM) approach, proposed by [1], appears to be a powerful

tool to deal with nonlinear models. The MM structure allows to represent nonlin-

ear models by aggregating linear submodels with nonlinear weighting functions.

Since [1], the MM has received a lot of attention, because it is an efficient way to

address nonlinear problems by slightly adapting linear techniques. Moreover, as

mentioned in chap. 14 of [2], every nonlinear system can be written as a MM on

a compact set of the state space.

A MM can also be obtained by linearization of an existing nonlinear model

around one (or several) operating point(s), or around a state trajectory [3]. It can

also be derived from system identification, using experimental data [4]. Some

drawbacks of these techniques are: the loss of information, the delicate choices

of different operating points or trajectories. Finally, the sector nonlinearity ap-

proach proposed in [2] allows to exactly rewrite a nonlinear system into a MM

form. Nevertheless, the choice of the premise variables has not been systemati-

cally realized. A systematic multimodelling procedure with a motivated choice of

the premise variable is presented in [5, 6].

With regard to the observer/controller synthesis, the MM approach does not

need the Lipschitz hypothesis like [7] (and the references in) does. In [8] (and the

references in) some structural constraints for the nonlinear system are requested

since for MM approach it is not the case. For the sliding mode observers [9], the

chattering effect is an important inconvenience, since a high frequency oscillation
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is produced. Also, some Lipschitz structural constraints are needed in order to

overcome the mentioned inconvenience.

Most of the existing works on MM are dedicated to MM with measurable

premise variables (depending on the inputs and/or outputs). Although MM with

unmeasurable premise variables (UPV) appears when using the nonlinear sector

transformation to obtain a MM from a nonlinear system, only a few works are

devoted to the case of unmeasurable premise variables [10, 11, 12]. This lack of

result is a motivation for the present work.

Real systems can have multiple time scale dynamics. The theory of singular

perturbed systems is often used to highlight the systematic decomposition of the

system into various time scales by identifying fast and slow dynamics [13, 14].

In this paper we consider a two-time scale nonlinear system affected by un-

known input (UI). Two-time scale systems are represented by a singularly per-

turbed model, and in the limit case by a descriptor system. Nonlinearities are dealt

with by a MM with unmeasurable premise variables. Then an unknown input ob-

server (UIO) for descriptor MMwith unmeasurable premise variables is proposed.

In [15] a state estimation method for singular MM affected by UI has been pre-

sented, but the premise variables were supposed to be measured. The proposed

observer was not a singular MM in order to simplify the implementation. Here, the

idea of a nonsingular observer is retained, but an extension to MM descriptor with

UPV is proposed, which is the main theoretical contribution. In fact many works

deal with observer design for singular systems (see the reference books [16, 17]

and the references in), some of them are dedicated to singular MM [15], and a few

work are devoted to MM with UPV [10, 11, 12], but to the authors’ knowledge

no work address the observer design for singular MM with UPV. Obviously, state
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estimation of MM with UPV is not trivial, since the weighting functions used to

synthesize the observer cannot depend on the state variables and will involve their

estimates. The existence conditions of the observer are expressed through LMIs

by using the Lyapunov method and the L2 approach.

Since the environment protection and biological wastewater treatment are es-

sential, the modeling of wastewater treatment process recently became an active

research area. In order to fulfill the requirement of the European Union concern-

ing environmental protection, quality control of the water rejected by the wastew-

ater treatment plants in the nature became an obligation. A Benchmark [18] has

been proposed by the European program COST 624 for the evaluation of control

strategies in wastewater treatment plants.

The practical contribution of the present paper is to apply the proposed multi-

modeling method and observer design to a realistic model of a WWTP. The ac-

tivated sludge wastewater treatment is a complex chemical and biological pro-

cess. The variations in wastewater flow rate and its composition, combined with

time-varying reactions in a mixed culture of micro-organisms, makes this process

nonlinear. Due to the complexity of several proposed models (ASM1 - Activate

Sludge Model 1 [19], ASM2 [20], ASM3 [21]), different reduced models have

been proposed during the last decades: [22], [23], [24]. In this article, a nonlinear

reduced model, inspired by [25] with six states and two time scales, is chosen

and equivalently written as a descriptor MM using the method proposed in [5, 6]

allowing to avoid the linearization and its drawbacks.

Recently [26] proposed an observer design applied to a reduced nonlinear

model of an activated sludge wastewater treatment plant (WWTP). This result

is done for Lipschitz nonlinear systems using the LPV approach with one measur-
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able scheduling variable. In the present paper, no Lipschitz assumption is needed

and the premise variables are unmeasurable. Moreover, from the practical point

of view, some constancy approximations used in [26] -such as autotrophic and

heterotrophic biomass concentrations- are not supposed in this article.

The paper is organized as follows. Section 2 presents the essential tools for

modeling nonlinear systems with multiple-time scales by using MMs. Section 3

proposes a state estimation method for systems represented by a MM with UPV

and UI. Before ending with some conclusions, the real application to a reduced

form of the ASM1 model describing the WWTP is detailed in section 4.

Notations. For any square matrixM , S(M) is defined by S(M) = M + MT .

For any matrixW ∈ R
m×n, its Moore-Penrose pseudo inverse is denotedW+ (and

satisfiesWW+W = W ,W+WW+ = W+, (WW+)∗ = WW+ and (W+W )∗ =

W+W , where W ∗ represents the conjugate transpose of W ), for details on its

computation see [27]. The orthogonal of W (verifying W⊥W = 0) is denoted

W⊥ = I − WW+ and ⊗ is the Kronecker product.

2. Modelling two-time scale nonlinear systems using multiple models

Generally, a dynamic nonlinear system with two-time scales and affected by

unknown input can be expressed, using the standard form of the singular perturbed

systems, as follows:

εẋF (t) = fF (xS(t), xF (t), u(t), d(t), ε) (1a)

ẋS(t) = fS(xS(t), xF (t), u(t), d(t), ε) (1b)

y(t) = g(x(t), u(t), d(t)) (1c)

where x = [xF , xS]T ∈ R
n, xS ∈ R

ns and xF ∈ R
nf are respectively the slow

and fast state variables, u ∈ R
m is the input vector, y ∈ R

� the output vector,
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d ∈ R
q is the unknown input, fF ∈ R

nf , fS ∈ R
ns , g ∈ R

� and ε > 0 the singular

perturbed parameter.

In the limit case (ε → 0), the degree of the system (1) degenerates from nf +ns

to ns and the system is approximated by the following reduced system:

Ē ẋ(t) = f(x, u, d) (2)

with:

Ē =

⎡

⎣

0nf
0

0 Ins

⎤

⎦ , f(x, u, d) =

⎡

⎣

fF (xF , xS, u, d, 0)

fS(xF , xS, u, d, 0)

⎤

⎦ (3)

The MM allows to represent nonlinear dynamic systems into a convex combina-

tion of linear submodels. Let us consider the singularly perturbed system pre-

sented under a MM form with partially UPVs and affected by UI:

Ē ẋ(t) =
r

∑

i=1

μi(x(t), u(t)) [Aix(t) + Biu(t) + Eid(t)] (4a)

y(t) = C x(t) + Gd(t) (4b)

The matrices Ai, Bi, Ei, C and G are known real and constant matrices of ap-

propriate dimensions. The matrix Ē is a singular matrix (i.e. rank(Ē) ≤ n). In

most practical situations, the measurement equation is generally linear and time

invariant. The functions μi(x, u) represent the weights of the linear submodels

{Ai, Bi, Ei} and they have the following convexity properties:

r
∑

i=1

μi(x, u) = 1 μi(x, u) ≥ 0, ∀(x, u) ∈ R
n × R

m (5)

Remark that the weighting functions μi(x, u) of the MM (4) depend on unmea-

surable variables - states x ∈ R
n - and on input variables u ∈ R

m.
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In order to obtain the MM form (4), a method giving an equivalent rewriting

of the nonlinear system (2) is used as follows (see [5, 6] for further details).

First, (2) is written in a quasi-Linear Parameter Varying (QLPV) form:

Ēẋ(t) = A(x, u)x(t) + B(x, u)u(t) + E(x, u)d(t) (6)

Second, some nonlinear entries of the matrices A and / or B are considered as

”premise variables” and denoted zj(x, u)(j = 1, ..., p). Several choices of the

premise variables are possible due to the existence of different equivalent QLPV

forms (for details in the selection procedure see [6]).

Third, a convex polytopic transformation is performed for all p premise variables:

zj(x, u) = Fj,1(zj(x, u))zj,1 + Fj,2(zj(x, u))zj,2 (7)

where

zj,1 = max
x,u

{zj(x, u)}

zj,2 = min
x,u

{zj(x, u)} (8)

and

Fj,1(zj(x, u)) =
zj(x, u) − zj,2

zj,1 − zj,2

Fj,2(zj(x, u)) =
zj,1 − zj(x, u)

zj,1 − zj,2
(9)

Due to the structure (7), for p premise variables, r = 2p submodels will be

obtained. By multiplying between themselves the functions F
j,σ

j
i
the weighting

functions are obtained:

μi(x, u) =
r

∏

j=1

F
j,σ

j
i
(zj(x, u)) (10)
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The indexes σj
i (i = 1, ..., 2p and j = 1, ..., p) are equal to 1 or 2 and indicates

which partition (Fj,1(zj(x, u)) or Fj,2(zj(x, u))) of the jth premise variable zj is

involved in the ith submodel. The constant matrices Ai (i = 1, ..., r) are obtained

by replacing the premise variables zj in the matrices A with the scalars from (8):

Ai = A(z1,σ1

i
, ..., zp,σ

p
i
) (11)

The matrices Bi and Ei (for i = 1, ..., 2p) are defined similarly as Ai.

3. Unknown input observer design for singular MM with UPV and UI

The nonlinear system is under the singularly perturbed form (2) or (4a) and

the MM interpolation mechanism depends on the UPV. The observer is chosen to

be a nonsingular MM, in order to simplify its implementation.

The observer is taken under the following form:
⎧

⎪

⎨

⎪

⎩

ż(t) =
r

∑

i=1

μi(x̂, u) [Niz(t) + Giu(t) + Liy(t)]

x̂(t) = z(t) + T2 y(t)

(12)

where x̂(t) denotes the state estimate. The state estimation error is given by

e(t) = x(t) − x̂(t) (13)

The observer design reduces to finding the gains Ni, Gi, Li and T2 such that the

state estimation error obey to a stable generating system. In order to allow the

observer design, a structural condition is needed, which is the analog of the well

known UI decoupling condition in the linear case.

Hypothesis 3.1. The system (4) satisfies the following rank condition

rank(W ) = rank

⎛

⎝

⎡

⎣

W

Y

⎤

⎦

⎞

⎠ (14)
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whereW ∈ R
(n+l(r+1))×(n+q(r+1)) and Y ∈ R

n×(n+q(r+1)) are defined by

W =

⎡

⎢

⎢

⎢

⎣

Ē 0n×q E1 · · · Er

C G 0l×q · · · 0l×q

0rl×n 0rl×q Ir ⊗ G

⎤

⎥

⎥

⎥

⎦

(15a)

Y =
[

In 0n×q 0n×rq

]

(15b)

If the previous assumption is satisfied, the observer gains are obtained by LMI

optimization as detailed bellow.

Theorem 3.1. The observer (12) for the system (4) is obtained by finding a sym-

metric and positive definite matrix X ∈ R
n×n and a matrix Z̃ ∈ R

n×(n+l(r+1))

that minimize the positive scalar γ̄ under the following LMI constraints:
⎡

⎣

Φi (X Y W+ + Z̃ W⊥) Ω

ΩT (X Y W+ + Z̃ W⊥)T −γ̄I

⎤

⎦ < 0 i = 1, ..., r

(16)

where the matrices Ω and Φi are defined by

Ω = [ In 0 0 · · · 0 ]T

Φi = S(XY W+Yi + Z̃W⊥Yi) + I (17)

whereW and Y are given in (15) and the Yi ∈ R
(n+l(r+1))×n are defined by

Yi =

⎡

⎢

⎢

⎢

⎣

Ai

0l×n

vi ⊗ C

⎤

⎥

⎥

⎥

⎦

, i = 1, ..., r (18)

The vector vi ∈ R
r×1 is the column vector containing 1 on the ith entry and 0 on

all the others.
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Once X and Z̃ are obtained from LMI optimization (16), the matrices T1, T2 and

Ki (i = 1, ..., r) are given by

[

T1 T2 K1 . . . Kr

]

= Y W+ + X−1Z̃W⊥ (19)

Finally, the observer gains are determined by

Ni = T1Ai + KiC (20)

Gi = T1Bi (21)

Li = NiT2 − Ki (22)

For proof details see Appendix A.

Remark 3.1. In order to improve (or quantify) the convergence speed of the state

estimates to the state variables, a decay rate denoted α > 0, can easily be im-

posed during the observer design (or a posteriori checked) by adding a set of LMI

constraints to the previous optimization problem.

The optimization problem turns into finding X = XT > 0, G = GT > 0 and

Z̃ that minimize γ̄ > 0 under the LMI constraints (16) and
⎡

⎣

Φ̄i (XY W+ + Z̃W⊥)Ω

ΩT (XY W+ + Z̃W⊥)T −G

⎤

⎦ < 0 (23)

with

Φ̄i = S(XY W+Yi + Z̃W⊥Yi) + G + 2αX (24)

The decay rate of the state estimation error e(t) is secured by finding a Lya-

punov function V (e(t)) satisfying V̇ (e(t)) + 2αV (e(t)) < 0. With V (e(t)) =

eT (t)Xe(t), the constraints (23) are easily derived.
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4. Application to a wastewater treatment plant

In this section the proposed state estimation method is applied to a model of

a wastewater treatment plant -the ASM1 model- in order to reconstruct the slow

and fast states. In figure 1 presents a flow chart of the procedures to accomplish

for observer design. First the wastewater treatment process is presented.

Figure 1: Flow chart resuming the procedures to realize for observer design
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4.1. Process description and ASM1 model

The widely used activated sludge wastewater treatment plant consists in mix-

ing used waters with a rich mixture of bacteria in order to degrade the organic

matter [19], [28].

In this work, a part of the COST Benchmark is considered. The COST Bench-

mark has been proposed by the European program COST 624 for the evaluation of

control strategies in wastewater treatment plants [18]. The Benchmark is based on

the most common wastewater treatment plant: a continuous flow activated sludge

plant, performing nitrification and pre-nitrification. A configuration with a single

tank with a settler/clarifier was developed. The objective of this study is to use

the data generated by the COST 624 benchmark. Note that in order to be closed

to the operating condition of the Bleesbrück wastewater plant (in Luxembourg),

the measured concentrations of this station are the dissolved oxygen SO, concen-

tration that is routinely measured in activated sludge wastewater treatment plant,

both nitrate SNO and ammonia SNH concentrations can be also measured online.

The functioning principle of the process is briefly described after. The simplified

Figure 2: Wastewater treatment process diagram

diagram, given in figure 2, includes a basin of aeration (bioreactor) and a clarifier.

In this figure qin represents the fresh water input flow, qout the output flow, qa the
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air flow, qR, qW are respectively the recycled and the rejected flow. The reactor

volume V is assumed to be constant and thus:

qout(t) = qin(t) + qR(t) (25)

In general, qR(t) and qW (t) represent fractions of the input flow qin(t):

qR(t) = fR qin(t), 1 ≤ fR ≤ 2 (26)

qW (t) = fW qin(t), 0 < fW < 1 (27)

The polluted water resulting from an extern source circulates in the basin of

aeration in which the bacterial biomass degrades the organic pollutant. Micro-

organisms bring together in colonial structures called flocs and produce sludges.

The mixed liqueur is then sent to the clarifier where the bacterial separation of the

purified water and the flocs is made by gravity. A fraction of settled sludges is re-

cycled towards the bioreactor to maintain its capacity of purification. The purified

water is thrown back in the natural environment.

In the bioreactor, under the homogeneity hypothesis, the equations of mass conser-

vation for the various constituents, involving the reaction part and the input/output

balance, are given by:

ẋ(t) = r(x(t)) + D(x(t), u(t)) (28)

where

D(x(t), u(t)) =
qin(t)xin(t) + qR(t)xR(t) − qout(t)x(t)

V
(29)

and x = [Si, Xi]
T is the vector of soluble (S) and particular (X) constituents,

xR = [Si,R, Xi,R]T (resp. xin = [Si,in, Xi,in]T ) is the vector of constituents

corresponding to recycled (resp. input) sludges and i indicates in a general way a
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particular constituent of the state vector. The reactor homogeneity hypothesis are

often represented as [19]:

xout(t) = x(t) (30)

The clarifier/settler is assumed to be perfect, i.e. no sludge leaves by the overflow

the clarifier tank. In this case we can write:

Si,R(t) = Si(t) (31)

Xi,R(t) =
qin(t) + qR(t)

qR(t) + qW (t)
Xi(t) (32)

The reaction part of (28) can be put under the form:

r(x(t)) = Ccoef Φ(x(t)) (33)

where the matrix Ccoef ∈ R
11×8 of stoichiometric coefficients and the vector

Φ(x(t)) ∈ R
8 of process kinetics are explicitly defined in [19].

For observer/controller design, models of lower complexity are required since

the full ASM1 model is too complicated and may contain unnecessary informa-

tions for control and diagnosis task. Hereafter are given a few elements providing

model complexity: the model is defined by thirteen states, the number of bio-

logical parameters is large (approximately twenty), the model distinguishes eight

bio-chemical processes, the activated sludge process is realized in one/cascade of

aerated tanks - reactors - in series followed by one or several settling tanks, the

“simulation benchmark” plant design is comprised of five reactors in series with a

ten-layer secondary settling tank, etc. Accordingly, a reduced model is generally

desired in order to achieve different tasks as observer synthesis.

Several simplifying assumptions have been applied for ASM1 reduction, here a

simplification with respect to components is considered [25]. Thus, only the
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biological removal of carbon and nitrogen from wastewater are considered. It

involves the six following components: soluble carbon SS , particulate XS , dis-

solved oxygen SO, heterotrophic biomass XBH , ammonia SNH , nitrate SNO and

autotrophic biomassXBA. On the other hand, the two other nitrogenous fractions -

the suspended organic nitrogen (XND) and the ammonia production from organic

nitrogen (SND) -describing the internal transformation of SNH in the processes of

hydrolysis and of ammonification- can be simplified since they are only a small

part of nitrogen discharges. The used approximation is to decouple the dynamics

of SNH and SND by simplifying the ammonification kinetic (neglect the internal

ammonification process).

The following components are not considered: the inert components (SI ,XI ,XP ),

the alkalinity (Salk). Since in practical situation the measurement of the chemical

oxygen demand (COD) does not make possible to distinguish between the soluble

part SS and the particulate part XS [25, 23], a single organic compound (denoted

XDCO) will be considered by adding the two compound concentrations. The fol-

lowing state vector is thus considered:

x(t) = [XDCO(t), SO(t), SNH(t), SNO(t), XBH(t), XBA(t)]T (34)

The matrix Ccoef ∈ R
6×5 associated to the state vector (34) is:

Ccoef =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 1
YH

− 1
YH

0 1 − fP 1 − fP

YH−1
YH

0 YA−4.57
YA

0 0

−iXB −iXB −iXB − 1
YA

iXB − fP iXP iXB − fP iXP

0 YH−1
2.86 YH

1
YA

0 0

1 1 0 −1 0

0 0 1 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(35)
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where YA, YH , fP , iXB, iXP are constant coefficients and the vector

Φ(x(t)) = [ϕ1(t), · · · , ϕ5(t)]
T ∈ R

5 is given by:

ϕ1(t) = μH
XDCO(t)

KDCO + XDCO(t)

SO(t)

KOH + SO(t)
XBH(t)

ϕ2(t) = μHηNOg
XDCO(t)

KDCO + XDCO(t)

SNO(t)

KNO + SNO(t)

KOH

KOH + SO(t)
XBH(t)

ϕ3(t) = μA
SNH(t)

KNH,A + SNH(t)

SO(t)

KO,A + SO(t)
XBA(t)

ϕ4(t) = bHXBH(t)

ϕ5(t) = bAXBA(t)

(36)

where KDCO = KS

fSS
.

It is supposed that the dissolved oxygen concentration at the reactor input (SO,in)

is null. In the same time, it can also be supposed that SNO,in
∼= 0 andXBA,in

∼= 0,

which is in conformity with the European benchmark COST 624 [18].

In practice, and in particular in the Bleesbrück station in Luxembourg, the concen-

trations XDCO,in, SNH,in and XBH,in are not measured online. Thus, a frequently

used approximation is to replace these concentrations with their respective daily

mean values. A daily mean value will be considered for XDCO,in and the con-

centrations XBH,in and SNH,in will be considered as unknown inputs. The mea-

surements of the four concentrations in the reactor output (XDCO, SO, SNH and

SNO) are available online. Consequently, the output y, the known input u and the

unknown input d vectors are:

y(t) = [XDCO(t), SO(t), SNH(t), SNO(t)]T (37)

u(t) = [XDCO,in(t), qa(t)]
T (38)

d(t) = [SNH,in(t), XBH,in(t)]T (39)

Let us consider the explicit form of the ASM1 model (28) and (33) characterized
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by the reduced state vector (34) and the stoichiometric matrix (35) as follows:

ẊDCO(t) = −
1

YH

[ϕ1(t) + ϕ2(t)] + (1 − fP )(ϕ4(t) + ϕ5(t)) + D1(t)

ṠO(t) =
YH − 1

YH

ϕ1(t) +
YA − 4.57

YA

ϕ3(t) + D2(t)

ṠNH(t) = −iXB[ϕ1(t) + ϕ2(t)] −

(

iXB +
1

YA

)

ϕ3(t)

+(iXB − fP iXP )[ϕ4(t) + ϕ5(t)] + D3(t) (40)

ṠNO(t) =
YH − 1

2.86YH

ϕ2(t) +
1

YA

ϕ3(t) + D4(t)

ẊBH(t) = ϕ1(t) + ϕ2(t) − ϕ4(t) + D5(t)

ẊBA(t) = ϕ3(t) − ϕ5(t) + D6(t)

The matrixD(x(t), u(t)) (29) expressing the input/output balance is defined by:

D1(t) = qin(t)
V

[XDCO,in(t) − XDCO(t)]

D2(t) = qin(t)
V

(−SO(t)) + Kqa(t) [SO,sat − SO(t)]

D3(t) = qin(t)
V

[SNH,in(t) − SNH(t)]

D4(t) = qin(t)
V

[−SNO(t)]

D5(t) = qin(t)
V

[

XBH,in(t) − XBH(t) + fR
1−fW

fR+fW
XBH(t)

]

D6(t) = qin(t)
V

[

−XBA(t) + fR
1−fW

fR+fW
XBA(t)

]

(41)

For numerical applications, the following heterotrophic growth and decay kinetic

parameters are used [19]: μH = 3.733[1/24h], μA = 0.3[1/24h],KS = 20[g/m3],

fSS = 0.79,KOH = 0.2[g/m3],KOA = 0.4[g/m3],KNO = 0.5[g/m3],KNH,A =

1[g/m3], bH = 0.3[1/24h], bA = 0.05[1/24h], ηNOg = 0.8. The stoichio-

metric parameters are YH = 0.6[g cell formed], YA = 0.24[g cell formed],

iXB = 0.086[g N in biomass], iXP = 0.06[g N in endogenous mass], fP = 0.1

and the oxygen saturation concentration is SO,sat = 10[g/m3]. The following nu-

merical values are considered here for the fractions fR and fW : fR = 1.1 and

fW = 0.04. The volume of the tank is 1333[m3].
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4.2. Slow and fast variables

In order to obtain the standard singularly perturbed form (2) from (40), the

slow and fast dynamics identification and separation are the key points [29, 24,

30]. This is realized by using the mathematical homotopy method for the lin-

earized system, proposed by [14]. This method is essentially based on the eigen-

value analysis of the linearized system and will be briefly presented. Note that the

linearized system is only used to identify the slow and fast dynamics, but neither

for observer design nor for simulation (for these two points, the nonlinear system

will be used).

Let us consider the linearization of the nonlinear system (40) around various equi-

librium points (x0, u0):

ẋ(t) = A0x(t) + B0u(t) (42)

where A0 = ∂f(x,u)
∂x

∣

∣

(x0,u0) and B0 = ∂f(x,u)
∂u

∣

∣

(x0,u0) .

The homotopy method consist in analysing the following homotopy matrix:

H(r) = (1 − r)A0 D + rA0, 0 ≤ r ≤ 1

where r is the homotopy parameter, A0 D is the diagonal matrix of A0. For r = 0,

H(r) = A0 D represents the decoupled system and for r = 1, H(r) = A0 repre-

sents the coupled system. Considering λ1 ≤ λ2 ≤ ... ≤ λn the ordered eigen-

values ofH(r), the biggest (resp. smallest) eigenvalue corresponds to the slowest

(resp. fastest) dynamic. This separation will be made by setting a separation

threshold of the time scales, τ , such as: λ1 ≤ ... ≤ λnf
<< τ ≤ λnf+1 ≤ ... ≤

λn. The separation of two time scale dynamics of the considered ASM1 (40) is

confirmed, using the homotopy method, by the eigenvalues of the homotopy ma-

trix Hr depicted on figure 3 where forty operating points are considered. Five

eigenvalues are included between −65 and −1 and another one is around −250.
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Figure 3: The eigenvalues of the linearized decoupled system

Setting a threshold atτ = −90, it can be deduced that the system has one fast

dynamic and five slow dynamics:

xF (t) = XDCO(t) (43a)

xS(t) = [SO(t) SNH(t) SNO(t) XBH(t) XBA(t) ]T (43b)

This separation will be considered for the reduced form of the ASM1 model. The

MM design is proposed in the following for state estimation purpose.

4.3. Singular multiple model design

In this section, the nonlinear system is rewritten as a descriptor MM with

unmeasurable premise variables (4). Considering the process equations (36), (40)
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and (41), it is natural to define the following premise variables:

z1(x, u) =
qin(t)

V
(44a)

z2(x, u) =
XDCO(t)

KDCO + XDCO(t)

SO(t)

KOH + SO(t)
(44b)

z3(x, u) =
XDCO(t)

KDCO + XDCO(t)

SNO(t)

KNO + SNO(t)

KOH

KOH + SO(t)
(44c)

z4(x, u) =
1

KO,A + SO(t)

SNH(t)

KNH,A + SNH(t)
XBA(t) (44d)

The matrices involved in the QLPV form having a similar form as (6) (with

matricesA(x, u) - state part,B(x, u) - control part andE(x, u) - unknown inputs

part) are expressed by using the premise variables previously defined:

A(x, u) =





























a11 0 0 0 a15 a16

0 a21 0 0 a25 0

0 a32 −z1(u) 0 a35 a36

0 a42 0 −z1(u) a45 0

0 0 0 0 a55 0

0 a62 0 0 0 a66





























(45)

B(u) =





























z1(u) 0

0 K SO,sat

0 0

0 0

0 0

0 0





























, E(u) =





























0 0

0 0

z1(u) 0

0 0

0 z1(u)

0 0





























(46)
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where:

a11(x, u) = −z1(u)

a15(x, u) = −
µH

YH

z2(x, u) + (1 − fP ) bH −
µH ηNOg

YH

z3(x, u)

a16(x, u) = (1 − fP ) bA

a21(x, u) = −z1(u) − K qa −
4.57 − YA

YA

µA z4(x, u)

a25(x, u) =
(YH − 1)µH

YH

z2(x, u)

a32(x, u) = −(iXB +
1

YA

)µA z4(x, u)

a35(x, u) = (iXB − fP iXP )bH − iXB µH z2(x, u) − iXB µH ηNOg z3(x, u)

a36(x, u) = (iXB − fP iXP ) bA

a42(x, u) =
1

YA

µAz4(x, u)

a45(x, u) =
YH − 1

2.86 YH

µH ηNOg z3(x, u)

a55(x, u) = µH z2(x, u) − bH + z1(u)

[

fW (1 + fR)

fR + fW

− 1

]

+ µH ηNOg z3(x, u)

a62(x, u) = µA z4(x, u)

a66(x, u) = z1(u)

[

fW (1 + fR)

fR + fW

− 1

]

− bA (47)

The decomposition of the four premise variables (44) is realized by using the

convex polytopic transformation (7). The scalarszj,1 andzj,2 are defined as in

(8) and the functionsFj,1(zj(x, u)) andFj,2(zj(x, u)) are given by (9) forj =

1, ..., 4. By multiplying between themselves the functionsF
j,σ

j
i
(zj(x, u)), ther =

16 weighting functionsµi(z(x, u)) are obtained:

µi(z(x, u)) = F1,σ1

i
(z1(u))F2,σ2

i
(z2(x, u))F3,σ3

i
(z3(x, u))F4,σ4

i
(z4(x, u)) (48)
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The constant matricesAi, Bi andEi (4a) representing the16 submodels, are de-

fined by using the matricesA, B andE and the scalarsz
j,σ

j
i

(i = 1, ..., 16, j = 1, ..., 4):

Ai = A(z1,σ1

i
, z2,σ2

i
, z3,σ3

i
, z4,σ4

i
)

Bi = B(z1,σ1

i
) (49)

Ei = E(z1,σ1

i
)

In conformity with (43), the matrix̄E from (4a) is defined by:

Ē = diag(0 1 1 1 1 1) (50)

In the outputy(t) = C x(t) + G d(t), we have the following definitions:

C =

















1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

















, G = O4×2 (51)

whereO4×2 is the zero matrix. A zero mean random signalδ(t) is added on

the output (XDCO, SO, SNH andSNO) to model noise measurements; thusy(t) =

C x(t)+δ(t). In conclusion, the reduced ASM1 model having the initial form (40)

is rewritten under the singularly perturbed MM form with partially unmeasurable

premise variables, as described in (4). The state estimation method, proposed in

section 3, can now be applied.

4.4. Unknown input observer design and state estimation

As seen is section 3, a classic observer structure (12) basedon MM is proposed

for the singularly perturbed MM (4). Since the ASM1 model (40) is rewritten into

such a form, a similar observer structure is designed. The matricesĒ, Ai, Bi, Ei,
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C andG involved in (4) and corresponding to the ASM1 model are defined in

the previous section 4.3, with equations (49), (50) and (51). In the same time, the

weighting functions are defined in (48). After the observer synthesis, with respect

to the theorem 3.1, the observer matricesNi, Gi, Li andT2 are deduced.

It should be highlighted that the data used for simulation are generated with the

complete ASM1 model withn = 13 [28, 22], in order to represent a realistic

behavior of a WWTP, whereas the model used for observer design is the reduced

one (n = 6). Even if the observer design is based on a reduced ASM1 model

(n = 6) it will be seen that the estimation results are satisfactory. In figure In

figure 5 the state variables and their estimates are presented. TheL2 gain of

the transfer fromω(t) to e(t) is bounded byγ = 4.5. The reconstructed output

ŷ(t) = C x̂(t) of the system is presented in figure 6. One can see that although

a noise is added on the output measurements, the output and state estimation are

of good quality. A criteria for estimation error is chosen: the VAF (Variance

Accounted For) coefficient between two signals. The VAF betweeny and ŷ for

theith component is defined as:V AFyi
=

[

1 − var(yi−ŷi)
var(yi)

]

100%. The VAF of

two signals that are the same is 100%. If they differ, the VAF will be lower. For

the state and output estimations it is obtained:

V AFx = [96.23; 99.63; 87.95; 98.88; 83.94; 96.12]%

V AFy = [92.75; 96.25; 71.05; 95.46]%

5. Conclusion

In this paper a state estimation method is proposed for nonlinear systems with

two time scales. Rewriting the initial nonlinear system, a MMwith unmeasur-

able premise variables is obtained with no information loss. After slow and fast
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Figure 4: Unknown inputd(t) for wastewater treatment plant

dynamics identification, the classical MM form is slightly modified in order to

separate the slow and the fast dynamics. The fast dynamics are taken into account

as algebraic constraints, then a singular MM is obtained. Inorder to estimate

the state of this kind of system, even if all the inputs are notknown, an observer

for singular MM with unmeasurable premise variables and affected by unknown

inputs is proposed. The observer design is formulated as an LMI optimization

problem. An application to a realistic reduced model of a WWTP has been ex-

posed and gives good results even if the observer is designedfor a reduced system

(with n = 6 state variables) and applied to the complete ASM1 (withn = 13).
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Appendix A. Proof of Theorem 3.1

Proof Appendix A.1. The state equation of system(4) can be rewritten as a per-

turbed MM with unmeasurable premise variables as follows

Ē ẋ(t) =
r

∑

i=1

µi(x̂(t), u(t)) [Aix(t) + Biu(t) + Eid(t) + ω(t)] (A.1a)

where the perturbationω(t) has the following form

ω(t) =
r

∑

i=1

(µi(x(t), u(t)) − µi(x̂(t), u(t))) [Aix(t) + Biu(t) + Eid(t)]

The MMs(4) and (A.1) are equivalent forms although the estimated statex̂ ap-

pears in the weighting functions of(A.1), like in (12). Obviously, the second

MM is more convenient for the observer design. The state estimation errore(t) is

expressed as

e(t) = (In − T2 C) x(t) − z(t) − T2Gd(t) (A.2)
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If there existsT1 andT2 such that

In − T2C = T1 Ē (A.3)

T2G = 0 (A.4)

the state estimation error becomese(t) = T1Ēx(t) − z(t). Its time derivative is:

ė(t) =
r

∑

i=1

µi(x̂, u)
[

Ni e(t) +
(

T1Ai − NiT1Ē − LiC
)

x(t)

+ (T1Bi − Gi) u(t) + (T1Ei − LiG) d(t) + T1ω(t)] (A.5)

If the following conditions hold fori = 1, ..., r

In − T2 C = T1 Ē (A.6)

T2 G = 0 (A.7)

0 = T1Ai − NiT1Ē − LiC (A.8)

0 = T1Bi − Gi (A.9)

0 = T1Ei − LiG (A.10)

then, the dynamic of the state estimation error reduces to

ė(t) =
r

∑

i=1

µi(x̂, u) [Ni e(t) + T1 ω(t)] (A.11)

Taking(A.11) into account, the design objectives are, on the one hand, to guar-

antee the asymptotic convergence of the estimation error when ω = 0 and, on

the other hand, to minimize the influence ofω whenω(t) 6= 0. TheL2 approach

is used to obtain the observer gains. The bounded real lemma [31] states that

e(t) → 0 whenω(t) = 0 and that theL2 gain fromω(t) to e(t) is bounded byγ

if there exist a symmetric positive definite matrixX such that the following LMIs
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hold




NT
i X + XNi + I XT1

T T
1 X −γ2I



 < 0 i = 1, ..., r (A.12)

Therefore, the observer design reduces to satisfy the equalities (A.6) - (A.10) and

the inequalities(A.12). In order to solve(A.12), let us notice that using(A.6) and

(A.8) the matricesNi are defined by

Ni = T1Ai + (Ni T2 − Li)C (A.13)

DefiningKi = NiT2−Li and gathering the searched matrices inΨ ∈ R
n×(n+l(r+1))

Ψ =
[

T1 T2 K1 . . . Kr

]

(A.14)

the conditions(A.6) - (A.10) become

Ni = Ψ Yi (A.15)

Ψ W = Y (A.16)

where the matricesYi, W andY were defined in(15) and (18). If the assumption

(14)holds, then the solution of the equation(A.16) is given by

Ψ = Y W+ + Z W⊥ (A.17)

whereZ ∈ R
n×(n+l(r+1)) is an arbitrary matrix and where the other matrices

involved were defined in the theorem statement (equation(15)). From (A.15) and

(A.17), the matricesNi are determined byZ according to

Ni = Y W+ Yi + Z W⊥ Yi (A.18)

and the (1,1) block of(A.12), denotedΦi, becomes

Φi = S
(

X(Y W+Yi) + XZW⊥Yi

)

+ I (A.19)
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The nonlinear termXZ in (A.19) is linearized by defining a new LMI variablẽZ

given byZ̃ = X Z. The nonlinear termXT1, in (A.12) is also linearized since it

can be expressed by

XT1 = X Ψ Ω

= (X Y W+ + Z̃ W⊥) Ω (A.20)

whereΩ =
[

In 0 0 · · · 0
]T

andΨ is given by(A.17). Substituting(A.19)

and (A.20) in (A.12) and defininḡγ = γ2 to be minimized, the LMI(16) is ob-

tained, which completes the proof.�
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