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Equilibrium model with default and insider’s dynamic information*

Luciano Campi’  Umut Cetin? Albina Danilova’
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Abstract

We consider an equilibrium model a la Kyle-Back for a defaultable claim issued by a given
firm. In such a market the insider observes continuously in time the value of firm, which is
unobservable by the market maker. Using the construction of a dynamic Bessel bridge of di-
mension 3 in [5], we provide the equilibrium price and the optimal insider’s strategy. As in
[3], the information released by the insider while trading optimally makes the default time
predictable in market’s view at the equilibrium. We conclude the paper by comparing the in-
sider’s expected profits in the static and dynamic private information case. We also compute
explicitly the value of insider’s information in the special cases of a defaultable stock and a bond.

Key-words: Default time, defaultable claim, equilibrium, dynamic information, insider
trading, dynamic Bessel bridge.

AMS classification (2000): 60G44, 60H05, 60H10, 93E11.

JEL classification: D82, G14.

1 Introduction

Consider a defaultable claim issued by a company with no recovery and the payoff f(1+ 1) in case
of no-default. 8 denotes the fundamental value process and is assumed to be a standard Brownian
motion with Sy = 0. The default time, Tp, is given by

Tg::inf{t>021+ﬁt:0}.

Campi and Cetin [3] study an equilibrium model a la Kyle-Back in the case when T} is known to
the insider at time 0. The main result therein is that a risk-neutral insider who is thus maximizing
her expected profit reveals part of her private information making the default time predictable
in market’s view, while that very default time was, by assumption, totally inaccessible before
the trading started. Moreover, it is shown in [3] that the equilibrium demand is a 3-dimensional
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Bessel bridge for the insider and a Brownian motion for the market (so-called “Inconspicuous trade
theorem” ), meaning that the insider hides herself (behind the noise traders) while optimally trading.

The model assumption of an insider knowing the default time from the beginning of the trading
period is very strong. The goal of this paper is to generalize the results in [3] to the more realistic
case of dynamic insider’s information, where the insider observes the fundamental value of the
company 3 continuously on time.

However, in this case an equilibrium would not exist (for a discussion of this in a related
context, see the discussion after Remark 2.2, and Remark 5.1 in [4] as well as the discussion
following Theorem 2.1 in [5]). Thus, to relax the assumption of static information while ensuring
the existence of a solution, we allow the insider to look into the future, i.e. we assume that she
observes Z = (1 + By (¢))tejo,] Where V' is any continuous and increasing function with V/(0) = 0,
V(t) >tfort e (0,1) and V(1) = 1. Note that the assumption that the insider observes (Z;);g(o1]
rather than [ itself is a standard assumption in dynamic information models, see, e.g., Back and
Pedersen [2] and Wu [13]. Note that one can find another Brownian motion, B, such that

t
Zi=1 +/ VV(s)dBZ t >0,
0

where V is the left derivative of V. Also observe that Z; = 1+ 3; and Ty = V (inf{t > 0: Z, = 0}).
A precise description of the market model, based on the latter observation, will be the content of
the next section.

The main results of the present paper can be summarized as follows. We obtain even in this
case the existence of an equilibrium where the insider maximizes her profit while the market maker
sets a rational pricing rule based on the observation of the total demand. This is the content of the
main Theorem 3.2. In particular, we compute explicitly both the equilibrium pricing rule and the
optimal insider’s strategy. The corresponding equilibrium total demand X* is a semimartingale
behaving like a bridge hitting the default barrier 0 for the first time at V(7) on the default event
[7 < 1] while reaching the fundamental value Z; at maturity in case of no-default, i.e. on [7 > 1].
Moreover we obtain, as in the static information case in [3], that the equilibrium total demand
X* is a Brownian motion for the market maker, that is the insider hides her actions behind noise
trading so that the “Inconspicuous trade theorem” holds true.

Using the characterization of the equilibrium we have just described, we can compare the static
and dynamic information case. It turns out that an agent willing to pay a price (the value of
information) for getting some private information is indifferent between knowing 7 and Z; from
the beginning or only at the end through a continuous-in-time monitoring of the fundamental value
Z. This is due to the fact that from her viewpoint the expected profits in both cases are the same
(Theorem 4.1 and the discussion below it). Finally, we computed explicitly the value of private
information in the two important cases of a defaultable stock and a corporate bond, finding that
the longer the defaultable claim is traded, the higher such a value is.

Since this paper deals with a Kyle-Back equilibrium model with default and gradually revealing
information, it could also be viewed as a generalization of Back and Pedersen [2] and Campi, Cetin
and Danilova [4] to a financial market with default.

The structure of the paper is the following: Section 2 sets the model, while Section 3 gives the
existence and the characterization of the equilibrium (Theorem 3.2) via an explicit computation of
the optimal insider’s expected profit (Proposition 3.1). In the proofs of that section a crucial role



is played by the construction of a 3-dimensional dynamic Bessel bridge in [5]. Finally, Section 4
provides a comparison between the static and the dynamic information case.

2 Description of the market model

To formulate the model of the market precisely, let (Q,F, (F¢)e>0,P) be a filtered probability
space satisfying the usual conditions of right continuity and P-saturatedness. Assume that on this
probability space there exist two independent standard Brownian motions, B and BZ.

Consider now a defaultable claim issued by a firm with no recovery and payoff f(Z;) in case of
no-default, where Z denotes the fundamental value and follows

t
Z =1 +/ o(s)dBZ t >0, (2.1)
0

where o : [0,1] — R4 is a measurable deterministic function and V'(¢) := f(f o?(s) ds.

Assumption 2.1 V and f satisfy the following:
1. V(t) >t forallt € [0,1) and V(1) = 1;

2. there exists some € > 0 such that fOE ( 1 dt < 0.

V(t)—1)2

3. f:]0,00) — Ry is a nondecreasing function which is not identically 0 and such that
[f(2)| < krexp(kaz),  Vz€0,00),
for some constants ki1 and ks.

The firm’s default time is given by the random time V' (7) where
T:=inf{t > 0: Z; = 0}. (2.2)

and the price of the defaultable claim is determined in equilibrium. We generalize, by incorporating
dynamic information, the equilibrium framework of Campi and Cetin [3], which in turn is an
extension of that of Back [1] to a market with a defaultable bond. We refer the reader to Back [1]
for motivation and details that are not explained in what follows.

Remark 1 The modeling of the default can also be interpreted in terms of economic, 7, and
recorded, V (1), default. It is documented that these two notions of default do not necessarily
coincide and the latter is typically later than the former (see Guo et al. [8]).

The microstructure of the market, and the interaction of market participants, is modeled as follows.
There are three types of agents: noisy/liquidity traders, an informed trader (insider), and a market
maker, all of whom are risk neutral. The agents differ in their information sets, and objectives, as
follows.

e Noisy/liquidity traders trade for liquidity reasons, and their total demand at time ¢ is given
by a standard (F;)-Brownian motion B independent of BZ.



o The market maker sets the price of the defaultable claim using his information set, which
consists of two parts. The first component is the total order of the noise traders and the
insider, which is denoted with X and has the decomposition

X=X'=BY" 4 9V"), (2.3)

where 0 is the position of the insider in the defaultable claim so that the total demand right
before the insider starts trading at time 0 equals 0. Note that we stop the market at time
V() so that there is no trading in the defaultable claim once the default has occurred.
Let X =1+ X and observe that X and X generate the same filtration. We will denote the
minimal right continuous and complete filtration generated by X with FX, where we suppress
the dependency on 6 in the notation.

The second part of the market maker’s information comes from the observation of the recorded
default event, i.e. the market maker also observes whether the recorded default has happened
or not. In mathematical terminology, this makes V(7) a stopping time in his filtration.
Therefore, the market maker’s information is modeled by the filtration FM = (FM)g<i<1
where ]:M FXVao(V(T)At).

Similar to Back [1] and Campi and Cetin [3], we assume that the market maker sets the price
as a function of the total order process at time ¢, i.e. we assume that

Si=DH(t, X)), Vte[o,1) (2.4)

where D is the non-default process, i.e. Dy = 1(y()»q. Moreover, a pricing rule H has to
be admissible in the sense of Definition 2.1. In particular, H € C'? and, therefore, S is a
semimartingale on [0, 1).

e The informed investor observes the price process Sy = D, H (t, X;) where X is given by (2.3),
and the fundamental value Zy, i.e. her filtration, (F/)eo1], is given by (.FtZ’S). She is
risk-neutral, thus, her objective is to maximize the expected final wealth, i.e.

sup E[Wf] = sup E (2.5)

0 A(H) 0 A(H)

V(T)A1—
(f(Z) v (r)>1) — Siavin—)01av () +/0 05dSs

where A(H) is the set of admissible trading strategies for the given pricing rule H, which will
be defined in Definition 2.2. In particular, 8 is an absolutely continuous process. That is, the
insider maximizes the expected value of her final wealth Wf , where the first term on the right
hand side of equation (2.5) is the contribution to the final wealth due to a potential differential
between price and fundamental value at time V(7) A 1, when the market terminates, and the
second term is the contribution to final wealth coming from the trading activity.

Note also that the above market structure implies that the insider’s optimal trading strategy
takes into account the feedback effect i.e. that prices react to her trading strategy according to
(2.4). Our goal is to find the rational expectations equilibrium of this market, i.e. a pair consisting
of a pricing rule and an admissible trading strategy such that: a) given the pricing rule the trading
strategy is optimal, b) given the trading strategy, the pricing rule is rational in the following sense:

DtH(taXt) =5=E [f(Zl)]-[V )>t] "Ft ] , te [07 1]7 (26)

4



with Siav ) = f(Z1)1y(r)>1). To formalize this definition of equilibrium, we first need to define
the sets of admissible pricing rules and trading strategies.

Definition 2.1 A measurable function H : [0,1] x R — R is a pricing rule if
1. H € C%2(]0,1) x R);
2. E[D1H(1, By)] < oo and E[ [ DyH(t, By)?dt] < oo;
3. x v+ H(t,x) is strictly increasing for every t € [0,1).

Moreover, let 0 be a trading strategy of the insider. Given 0, a pricing rule H is said to be
rational if it satisfies equation (2.6).

Remark 2 The strict monotonicity of H in the space variable implies z — H(¢,z) is invertible
for t € [0,1), thus, the filtration of the insider is generated by X and Z. This in turn implies that
]-'tS’Z = ]-"tB’Z, for all ¢ € [0,1). Using the continuity of the processes involved we get (.FtS’Z)tE[OJ] =

(FP ’Z)te[0,1]7 i.e. the insider has full information about the market.

It is standard (see, e.g., [2], [6] or [13]) in the insider trading literature to limit the set of
admissible strategies to absolutely continuous ones motivated by the result in Back [1], and we do
so. The formal definition of the set of admissible trading strategies is summarized in the following
definition.

Definition 2.2 An FBZ_adapted 0 is said to be an admissible trading strategy for a given pricing
rule H if

1. it is absolutely continuous with respect to the Lebesgue measure, i.e. 0 = f(f asds;
2. (X,Z) is a Markov process adapted to (Fy);

3. and no doubling strategies are allowed i.e.
1
1) U DyH? (t,Xt)dt] < . (2.7)
0

The set of admissible trading strategies for a given H is denoted with A(H).

Given these definitions of admissible pricing rules and trading strategies, it is now possible to
formally define the market equilibrium as follows.

Definition 2.3 A couple (H*,0%) is said to form an equilibrium if H* is an admissible pricing
rule, 0* € A(H*), and the following conditions are satisfied:

1. Market efficiency condition: given 0%, H* is a rational pricing rule.

2. Insider optimality condition: given H*, 8% solves the insider optimization problem:

EW{] = sup E[W!).
0cA(H*)



3 Equilibrium with dynamic insider’s information

In order to determine the conditions for equilibrium we start with the optimality conditions for the
insider. The next proposition describes the optimal insider’s strategy in terms of the behavior of
the resulting optimal demand at maturity.

Proposition 3.1 Assume that a pricing rule H is a classical solution to
1
Hy(t,z) + §Hm(t,x) =0, H(1,z) = h(z), (3.8)

where h is nondecreasing right continuous function on R with at most exponential growth, the range
of h contains that of f and 0 € (inf; h(x),sup, h(zx)).

If 0* € A(H) satisfies limy H(V (1) A t,X‘*/(T)M) = f(Z1)1jz>1) a.s., where X* = B + 0%, then
0* is an optimal strategy, i.e., for all 0 € A(H),

. 1 1AV (7)
E[W?] < B[W?] = & /5 (H(0,u) — a*)du + * /O Ho(s,(s,a"))ds| . (3.9)

(0,a%) 2

where a* = 1~ f(Z1) and £(t,a) is the unique solution of H(t,&(t,a)) = a for all a in the range
of h or in the interval (inf, h(x),sup, h(z)) and t < 1.

Proor. We will adapt Wu’s proof of his Lemma 4.2 in [13]. This proof can be splitted into
two main steps.

Step 1. Fix an a in the range of h or in the interval (inf; h(x), sup, h(x)). Suppose that a is the
maximum of h, then £(¢,a) = oo for all ¢ € [0, 1) since H is strictly increasing with supremum being
equal to a. Similarly if a is the minimum of h, then £(¢,a) = —oo for all ¢ € [0,1). If a is neither
the minimum nor the maximum, £(¢, a) is uniformly bounded for all ¢ € [0,1) due to Lemma A.1
and the continuity of H.

Next, consider the function

B9(t, 1) = / Z / y:x(h(u) —a)\/%(lli_t)exp (-2(1y:)> dudy, (3.10)

min

where
o = inf{z : h(z) > a} and X2 uw i=sup{z : h(z) < a}.
Direct calculations show that .
oF + 5@‘;90 =0,

with the boundary condition
X

41, z) = (h(u) — a)du.
anin

Therefore, ®% is jointly continuous and nonnegative on [0,1] x R and C*2([0,1) x R). Moreover,

for t < 1,

o0 (t,z) = H(t,x) — a,

so that the minimum of ®“ is achieved at {(t,a).



Suppose that |£(t,a)| = oo so that a is either the minimum or the maximum of h and that
®?(1, z) is positive and decreasing as x — £(t,a). Then,

. o° 1 y2
(¢, £(t = lim ®(t,z)= 1 (1 _— —— 2 _)d
(t,&(t,a)) ,m (t, ) L (1L, z+y) = exp< 2(1_t)> Y
/OO lim  ®%(1,z + y)—— ( v ) dy =0 (3.11)
= 1m , L ————€X i e— = V. .
— oo T—E(t,a) Y 27m(1 —t) P 2(1—1t) Y

Moreover, when (¢, a) is finite,

0 < hm@a(t E(t,a)) < thID“(t X,

— m'm)

y-&-Xﬁ,m 1 y2
= lim — Q) ——eXx —— | dudy = 0. 3.12
m/ /mm : 2 (1 — 1) p< 2(1—t>> Y (3.12)

Next observe that

(1, 7) — (1, (1, a)) = /Z Wexp (_2(1@/;)) /y:;a)(h(u)—a)dudy
_ /Z 277(11 exp <_2(1yi t)>/£:§7a)(h(u+y)—a)dudy
_ /€ ia)(H(t,u) a)du. (3.13)

Step 2. Consider for all v < 1
x 1 v
UeY(t, x) = / (H(t,u) —a)du + 2/ H,(s,&(s,a))ds, t<uw.
&(t,a) t

Notice that the both integrals in the RHS are well-defined: the first one is well-defined for all values
of £(t,a) thanks to Step 1, and the second one is well-defined due to the fact that t — H,(¢,£(t,a))
is uniformly bounded on [0, v]. Direct differentiation with respect to = gives that

Uer(t,x) = H(t,z) — a. (3.14)
Differentiating above with respect to x gives
ey (t,x) = Hy(t, x). (3.15)

Direct differentiation of W (¢, x) with respect to t gives

z 1 1
\I]?’V(t’ ZL‘) = Ht(ta u)du - §Hw(t7 g(ta a’)) = _§Hw(t7 $>
£(t,a)

where in order to obtain the last equality we used (3.8). Combining this and (3.15) gives

1
TP+ U =0,



Therefore from (3.14) and It6’s formula it follows that
14
v (v, X,) — U4 (0,1) = / (H(u, Xy) — a)dX,,
0

and in particular, when a := 1;;51f(Z1), v(t) =t AV (1),
1AV (T)
lim (0O AV (7). Xipy () = T0(0.1)) = /0 (H(t, Xt) — 1oy f(Z1))dXe.  (3.16)

By the admissibility properties of 6, in particular df; = a;dt, the insider’s optimization problem
becomes

V(r)Al—
sup E[W/] = sup E (f(Zl)l[T>1]_Sll\V(7))01/\V(7)+/ QSdSs]
B A(H) 0 A(H) 0
V(r)Al
= sw B[ (21 - H Xp)aude
oca() |Jo

Due to above and (3.16), we have
BV!] =~ [iim (YO AV(r), Xoavie) - 9001 (3.17)

Notice that all the Brownian integrals vanish due to (2.7) in Definition 2.2, and

< 01/\7 f(Zl)dBt> 2

since Z and B are independent.
The conclusion follows from the fact that limg U@V (t A V (1), Xiav(r)) 1s nonnegative and
equals 0 if limyy H(V (1) A t, Xx*/(r)/\t) = f(Z1)17>1)- Indeed, observe that

E <E[f(Z1)*] E[Bf] < o0,

Xeav(r)
Hm WOt AV (1), Xy (r) = lim (H(tAV(7),u) — a)du.
11 1L JetAV (r),a)

On the set [V (1) > 1] we have

Xt
Hm YO EAV(T), Xjny () = lim H(t,u) —a)du
im0V (), Xivi) = i [ (000 ~0)

= lm{9(, X)) = 974 E(t )} = 9°(1,X0),

which is nonnegative and is 0 if limy H (¢, X;) = f(Z1) in view of Lemma A.1. Observe that we
used (3.13) for the second equality above while (3.11) and (3.12) for the third one.
On the set [V (1) < 1],
Xeav(r) Xy ()

lim (HEAV(T),u) —a)du = / (H(V(7),u) — a)du,

1 Jenv(n),a) £V (r),a)
which is nonnegative and equals 0 if Xy(;) = {(V(7),a) due to the invertibility of H. Therefore,
an insider trading strategy which gives limyq H(V (1) At, X{'}(T)At) = f(Z1)1};>q is optimal. W
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Remark 3 The same results as in Proposition 3.1 above apply when the initial insider’s informa-
tion .7-"({ is not trivial provided one replaces expectations with conditional expectations given .7-"({ in
the statement as well as in its proof.

Combining Proposition 3.1 and the dynamic Bessel bridge construction performed in [5], we
can finally state and prove the main result of this paper. Before that, we need some preliminary
notation.

Recall that 7 = inf{t > 0 : Z; = 0}. Since Z is a time-changed Brownian motion, one can
characterize the distribution of 7 using the well-known distributions of first hitting times of a
standard Brownian motion. To this end let

P[T, >t] = / l(u,a) du, (3.18)
t
for a > 0 where

T, :=inf{t >0: B; =a}, and £(t,a) :=

a 2
e (-5

Another formulation for the distribution of T, can be stated in terms of the transition density of a
Brownian motion killed at 0. Recall that this transition density is given by

for > 0 and y > 0 (see Exercise (1.15), Chapter III in [12]). Then one has the identity

P[T, >t] = /000 q(t,a,y) dy. (3.19)

Moreover, if f is a function satisfying the conditions in Assumption 2.1, then one can define

P(t,2) = / " fw)a(t — V1), 2 w)dy (3.20)

so that 1,5, P(t, Z;) is the value of the defaultable claim for the insider at time ¢ and the process
(L P(t, Zt))iejo,1) is a martingale for the insider’s filtration.

For reader’s convenience, we recall here the main result of the paper [5]. This is the key
ingredient to solve our equilibrium model.

Theorem 3.1 ([5]) Suppose that V(t) > t for all t > 0 and satisfies Assumption 2.1.2. Then,
there exists a unique strong solution to

Qz(V(S) — S,XS, Zs) ds + /V(T)/\t Ea(V(T) — s, Xs) i

TAE
X;=1+1B
ren [ R v V() s X)
Moreover,

i) Let FiX = N'\/o(Xs;s < t), where N is the set of P-null sets. Then, X is a standard
Brownian motion with respect to FX = (F{X);



it) V(1) =inf{t > 0: X; = 0}.

Notice that we cannot apply directly the previous result to get the solution to our equilibrium
problem, since we impose V(1) = 1 for the time-change V'(¢). Nonetheless, Theorem 3.1 will be
very useful to prove our main result, which is stated in the following theorem.

Theorem 3.2 Under Assumption 2.1 there exists an equilibrium (H*,0%), where
(i) H*(t,x) = P(V~1(t),z) where P(t,x) is given by (3.20) for (t,x) € [0,1] x R.
(ii) 0F = fg akds where

V) =5 X020 V() =5 XD
$ T q(V(s) — 8. X5, Z5) =T V() — s, Xp) sV N

(3.21)

where the process X* is the unique strong solution under insider’s filtration F*Z of the
following SDE:

qz(V(s) — s, X5, Zs) s+ /V(T)/\t (a(V(7) = 5, X)

TNt
X, =1+ 0B
t *‘VWM+A gV (s) = 5, Xa, Zs) v HV(T) -5 Xy)

ds. (3.22)
Moreover, V(1) = inf{t € [0,1] : X} = 0}, where inf ) =1 by convention, and one has limy X; =
Zy1 on the set of non-default [T > 1]. As a consequence, V(7) is a predictable stopping time in the

market filtration FM.
Furthermore, the expected profit of the insider is

1 1 1AV (T)

E / (H*(0,u) — a*)du + / H*(s,€(5,a"))ds | | (3.23)
£(0,a) 2 Jo

where a* = 1;;511f(Z1) and £(t, a) is the unique solution of H(t,&(t,a)) = a for all a > 0.

Proor. Observe that

H*(t,x) = /_Z f(:c+y)\/27r(117_t> exp <2(1yit)> dy,

v _ f( )7 20;
f@*—{—ﬂ-$,5<a

Thus, clearly, H* € C“2([0,1) x R), E[D1H*(1, B1)] < oo, and E[[) D;H*(t, B;)?dt] < co. To
show that it is a pricing rule in the sense of Definition 2.1, it is enough to show that it is strictly
increasing for any ¢ € [0,1). We have, due Assumption 2.1.3, for x > z and t < 1,

where

[e.e]

H(t,z) — H(t,z) = /

—00

~ - 1 y2 )
r+y)— flz+ —————exp| ——=—"—= | dy > 0.
(fz+y) = flz+y) = p( sa-1n)%
Note that the above holds in equality if and only if f(z+vy) = f(z+y) for almost all y, which is
not possible due to the construction of f and the assumption on f. Therefore H* is a pricing rule

in the sense of Definition 2.1.
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Moreover, direct calculations show that H* as defined above satisfies (3.8). Since the process
(L P(t, Zt))iejo,) is a martingale for the insider’s filtration, (DyH*(t, X}'))e[o,1) would be an
FM_martingale as soon as we show that (X} )telo,1] 18 a Brownian motion stopped at V(7) in its
own filtration, where V(7) is the first time that it hits 0. This would imply that FX = FM and
that H* is a rational pricing rule in the sense of Definition 2.1 and that the proposed optimal
strategy is admissible for the insider.

To do so, we prove that there exists a unique strong solution of (3.22) on [0,1), X*, satisfying
the following properties:

1) limtﬂ X

v =0 as. on [T < 1],

2) limy X/ = Z; a.s. on the set [7 > 1],

3) (X% )iepo,1) is a Brownian motion stopped at V(7) in its own filtration.

This will establish (H*,6*) as equilibrium in view of Proposition 3.1 since, due to 1) and 2), we
have limy H*(t A V(7), Xenv(r) = Lrs1)f(Z21). Moreover, the expected profit of the insider is
given by (3.23) due to (3.9).

Due to Theorem 3.1 there exists unique strong solution, X*, to (3.22) on [0,1). Moreover,
V() =inf{t > 0: X} = 0} on the set [T < 1], so that property 1) above is satisfied.

On the non-default set [7 > 1], which is the same as [V (7) > 1], the SDE (3.22) becomes

t —
Xt:1+Bt+/ 0:(V(s) = 5, X, Zs)

o q(V(s)—s, X, Zs) ds, t<[0,1). (3.24)

The function % appearing in the drift above can be decomposed as follows
ql’(t7xﬁz) Z_x+b(t ) Z—l'+ exp(_ztxz) 2z
= ST, 2) = —.
q(t,z, z) t t 1—exp(=22) ¢

We want to prove that limu; X; = Z; a.s. on the set [T > 1]. Consider the process

ds

Ry = X7 — A() /0 bV (8) = . X5, Z2) 55

oo (- [ )

Zi—Ry
VD)t
Back and Pedersen [2] (see also [4], Proposition 3.2) to conclude that R; goes to Z; ast 11 a.s. on
the set of non-default [r > 1]. To deduce from it that X; — Z; a.s. on [r > 1] when ¢ 1 1, we have

to show

where

Direct calculations give that, on [t > 1], dR; = dt + dBy, thus we can apply the results in

ds

)

t
lim A(t) / b(V(s) — 5, X7, Z,)
t11 0

a.s. on [T > 1].

Observe that b(V(t) —t, X}, Z:) = ¢ (%) X%;" with g(u) = %u, and g(u) € [0,1] for all
u € [0,+00]. Since on the set [T > 1] we have inf,cp 1) Z; > 0 and inf,cjo 1) X7 > 0 (as, due to
Theorem 3.1, infyc( 1y X; > 0), we obtain infyc[o 1) b(V (t) — ¢, X}, Z;) > 0 on [r > 1], and therefore

the following two cases are possible:
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e Case 1: limyyy fg b(V(s) —s, X2, Zs)% < 00. Then, since

tods
Oglim)\()<hmexp< / > =0,
1 11 o 1—s

we are done.

o Case 2: limy fo — 5, X Z) (e = 00 Since both A(t) and fo — 8, X7, Zs )

are differentiable for ﬁxed w in [T > 1], we can use de I’ Hopltal’s rule to get.

Als)

. ! * ds 1 o o * _
lgﬁl )\(t)/o b(V(s) —s, X2, Zs)wds = ltlTIIll(V(t) Oo(V(t) —t, X[, Z:) =0 (3.25)

a.s. on the set of non-default [r > 1] provided lim supy b(V (t) — ¢, X}, Z;) < 00 ass..

Since b(V (t)—t, X[, Zs) = g (%) X7 With g being a bounded function on [0, +00], to show
that limsupy b(V (t) —t, X}, Z;) < o0, it is sufficient to demonstrate that liminfyy X7 > 0
on [t > 1].

To prove it, consider two processes X and Y which follow

. Z, — X, 2X,7, \ 1
X, = 1,ondt +dB;, te 0,1
! V(t)—t (V(t)—t)x] roydt+dB, € [0 1),
Zy —Ys
Wy = Gy treadt+ B te (01

The process X is well defined and is strictly positive for all t € [0,1) due to the Theorem 3.1.
Moreover, for all t € [0,1) we have Y;1(;1) = Rilj;5q) and X;1i;5q) = X;'1};54) and therefore

it is sufficient to show that liminf; X;>0o0n[r>1].

Observe that X X
X, - 2X:7, \ 1
- 1, pdt,
VD) —t 9<v<t> )x] =

and g and X are strictly positive, so that by Tanaka’s formula (see Theorem 1.2 in Chap. VI

of [12])
Xs B Y;; o QXSZS i 1 d
Vi(s)—s g V(s)—s) X, [r>s)%
X, - Y,
V(s) —

d(Y; — Xy) =

t
(Y;_Xt)—’— = A 1[YS>XS]

t
< / 1[YS>XS]
0

since the local time of Y — X at 0 is identically 0 (see Corollary 1.9 in Chap. VI of [12]).
Thus, on the set [T > 1] we have

1[T>5]d8 <0

liminf X} = hmlant >Y1i=R1=71>0
1 11

as required.
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Recall that P[r = 1] = 0, therefore, one has V(7) = inf{t € [0,1] : X; = 0}, where inf() = 1 by
convention. This makes V() a stopping time with respect to X" and yields that FX~ = FM . To
complete the proof we need to show that X* is a Brownian motion in its own filtration, stopped
at V(7). Notice first that the construction of the dynamic Bessel bridge in [5] implies in particular
that X* is a Brownian motion in its own filtration over each interval [0,T] for every T' < 1, i.e.

(X:/\V(T))te[o»l) is a Brownian motion. As we have seen, limy Xt*/\V(T) = Zins; thus, it follows
from Fatou’s lemma that (X :/\V(T))tE[O,l] is a supermartingale. In order to obtain the martingale
property over the whole interval [0, 1], it suffices to show that E[X] /\V(T)] = 1. However, since
Xy ) = Z1par, this follows from the fact that Z is a martingale. In view of Lévy’s characterization,
we conclude that X* is a Brownian motion in its own filtration, stopped at V(7). [

4 Comparison of dynamic and static private information

In this section we compare the expected profits of the insider in the cases of dynamic and static,
i.e. when the insider knows 7 and Z; in advance, private information. In order to do so, we first
need to obtain the equilibrium and the associated expected profit when the private information is
static. The concepts of equilibrium, admissibility and the market microstructure are analogous to
the definitions in Section 2.

Recall that the proof of Proposition 3.1 did not depend on the type of the private information,
therefore, the optimality conditions for the insider with a static information are still described by
it after replacing expectations with conditional expectations (see Remark 3).

Theorem 4.1 Suppose that the insider observes T and Zy at time 0. Then, under Assumption 2.1
there exists an equilibrium (H*, %), where

(i) H*(t,x) = P(V~L(t),x) where P(t,x) is given by (3.20) for (t,z) € [0,1] x R.
(ii) 0f = [J akds fort € 0,1 AV (r)],where

* qz(l_st:7zl) EG(V(T)_SaX:)
O T A5 X0 20) T V() — s, xp) e

(4.26)

where the process X* is the unique strong solution under insider’s filtration F*>Z17 of the

following SDE:

V(r)At s X* -5, X3
) go(1— s, X%, Z1) V(1) — 5, X7)
Xe =1+ By + /O { a1l =5, X3,Z1) Y Vi) — s x2)

1[T§1} } ds.
(4.27)

Moreover, V(1) = inf{t € [0,1] : X} = 0}, where inf ) =1 by convention, and one has limy X, =
Zy1 on the set of non-default [T > 1]. As a consequence, V(7) is a predictable stopping time in the
market filtration FM.

Furthermore, the expected profit of the insider is

1 1 1AV (T)
/£ o 00— a5 | s (4.28)

where a* = 1;;511f(Z1) and §(t, a) is the unique solution of H(t,&(t,a)) = a for all a > 0.
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PROOF. Since the optimality conditions for the insider are still described by Proposition 3.1, the
proof will follow the same lines as the proof of Theorem 3.2 once we show that there exist unique
strong solution of (3.24) on [0,1), X*, satisfying the following properties:

1) limtTl X

v =0 as. on [T < 1],

2) limy X/ = Z; a.s. on the set [7 > 1],
3) (X% )iepo,1) is a Brownian motion stopped at V(7) in its own filtration.

To see this consider a Brownian motion 3, in a possibly different probability space, with Gy = 1
and Ty = inf{t > 0: B, = 0}. Let (G;);>0 be the minimal filtration satisfying usual conditions and
to which § is adapted and Gy D o(f1,Tp). Direct calculations show that

]P[TO € duu TO > 17 181 € dy|ftﬁ] = 1[1/\To>t]€(u - 17 y)Q(l - tv ﬁta y) dy du + 1[To>t21]€(u - tu ﬁt) du
2
Y )E(u—t,ﬁt)dydu

1
1[T0>t] /277_‘_(1 — u) €xp <_2(1 _ u)
1 (y — /Bt)Q
Hlinoz N D <_ 2(1—1t) > W

Thus, it follows from Theorem 1.6 in [11] that

tAINTy
o > qg:(l_saﬁsaﬁl) Ea(TO_Syﬁs)
do= i +/0 { AL 5B, Br) 00210 ey =5 gy sl g 48

tATy Th — tA1 _
+/ Ea( 0 8768) d8+/ 61 63 dS,
t t

A1ATY K(TO - S, 55) A1ATY 1-s

P[Ty € du, Ty < 1,1 € dy|F}]

where ,5’ is a G-Brownian motion independent of 57 and Ty. Observe that Zy-1(p) 1s a standard
Brownian motion starting at 1 with V(7) as its first hitting time of 0. Moreover, the SDE satisfied
by 8 until Ty A1 is the same as (3.24) until time 1 since (81, Ty, §) has the same law as (Z1, V(7), B)
due to V(1) = 1. Therefore, the law of (Xt*/\V(T)/\l)tZO is the same as that of (Biarya1)e>0 since the
solution of the SDE for § has strong uniqueness. In particular, properties 1), 2) and 3) above are

satisfied. [ |

Now, we are in a position to compare the value of static and dynamic information. This
comparison is relevant to an uninformed and risk-neutral investor at time 0 who is about to decide
whether to purchase a particular private information at a given price. Obviously, as the investor
is uninformed her information prior to making this decision is trivial. Thus, the decision will be
based on the comparison of the expected profits resulting from the purchased information, and the
expectation will be taken with respect to the trivial o-algebra. Comparison of (3.23) and (4.28)
leads to the immediate conclusion that this risk-neutral investor is indifferent between purchasing
static or dynamic information, whose value is given by (3.23).

This indifference might appear counterintuitive at first. However, it is clear that a necessary
condition for the optimality is that the insider drives the market price to the fundamental value
of the asset at the termination of the market since otherwise she wouldn’t have used all her infor-
mational advantage. On the other hand, Proposition 3.1 demonstrates that this is also sufficient.
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Consequently, the only thing she strives to achieve is to make sure that the price converges to the
fundamental value. This observation together with her risk-neutrality will lead her to value both
types of information same since the variance of the signals does not affect her valuation.

The same phenomenon is also responsible for the fact that the price of information does not
depend on V', which also manifests itself in expression (3.23) since the distribution of V' (7) is the
same as that of the first hitting time of 0 by a Brownian starting at 1. In fact, it is easy to observe
that the static information is the limiting case of dynamic ones characterized by an increasing
sequence of functions V™ with lim,_,. V"(¢) = 1 for all ¢ € (0, 1].

The value of information, (3.23), can be computed more explicitly as the following proposition
shows.

Proposition 4.1 Suppose f is invertible with f(0) = 0 and satisfies Assumption 2.1. Then, (3.23)
becomes

EW{] = EIF(1+ 8] -E[F (18T V(D) 1] - FO)PIr > 1]
+E[{(Z1 - Df(Z1) = (F(Z1) = F(1)} s (4.29)
where 3 is a standard Brownian motion independent of B? with By =0, and F(z fo

PrROOF. For any a > 0 let

1 1AV (7)
g(a) ::/£ (H*(o,u)—a)dw;/o H (s, (s, 0))ds.

(0,0)

Since £(s,0) = 0 for any s > 0,

1 1 1/\V(T)
—/ H*(0,u)du + / HZ(s,0)ds.
0 2 Jo

We will first compute the first term in the equation above.

/OlH*(O,u)du = // f(y)q 1uy)dydu——/OOOF(y)/Olqy(l,u,y)dudy

1 _w=1? _ wtn? *° 1 2
= /0 F(y)m<e 7 te 2 )dy2/0 F(y)\/%6 2 dy
E[F([1+ B1])] = E[F(|B1])]-

In particular, this implies E[F(|1 + S1|)] — E[F(c|81])] > 0 for any constant 0 < ¢ < 1 since F is
increasing.
The second term is given by

1 1AV () 1AV (1) poo oo 1AV (T)
s meoas = [ [T re—spayas= [Tiw) [ w0 = s dsay

- /wﬂwM%<1My—/wﬂwM%<1—1NWﬂhMy
0 0

_ /mfwumwl>m—PmkmwM>yM}@
= E[F(|51])] F(/1=1AV(1)|5])|7],
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where in the one to the last equality, we used the reflection principle and the last equality follows
from the scaling property of Brownian motion. Thus,

9(0) = E[F([1+ A1])] - E[F(v/1 = LA V(7)[B1])|7]. (4.30)

Next, observe that

1 1AV (T)
@ =00 =145 [ i€ 0)als,0)ds.
0

Differentiating the equality H*(s,{(s,a)) = a with respect to s and a yields
1
&’

and using the fact that H} + %H;x =0, we get %H;xfa = &;. Therefore,

H;+ H;{ =0, and H; =

1AV (7T)
g/(a)zf(O,a)—l—t—/ &s(s,a)ds =&(1LAV(T),a) —1,
0
and thus

g(a) = E[F (|1 + B1))] — EF(v/T— LA V(7)|B1])l7] + / A AV(F),u) — 1)du.

Plugging a = 1511 f(Z1) into above yields

f(Z1)
g@) = E[F(1+B])] -E[F(/T=1AV@)|a) +1[T>1/0 (F () = 1)du
= E[F([1+ B1])] F(V1=1AV(D)BDIT] + Loy {(Z1 = V) f(Z1) — F(Z1)} .

Taking the expectation of above, it is easy to see that the conclusion holds. |

Below are some explicit examples where we can compute the value of information.

Example 1 In the case of defaultable stock, f(z) = x. Then, the value of information becomes

EW{] = % (E[(1+81)°] —E [ E[(1 = V(T)1jrey] +E[(Z] —2Z1)1}5q)))

= PV(r) 2 1]+ E[V()ly(n<y] =E[V(r) Al].

According to the last equality above, the longer the defaultable stock is traded, the higher is the
insider’s expected profit. Such a result is to be expected since the insider can speculate on her
private information only when the market operates.

Although Proposition 4.1 requires f is invertible, one can still calculate the value of the information
even if f fails this condition.
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Example 2 Consider the defaultable zero-coupon bond with payoff f = 1. Then, observe that
(4.30) is still valid as we did not use the conditions on f to obtain it. Moreover, in this case a*
takes values in {0,1}. Thus, it remains to calculate g(1). First, observe that H is bounded by 1
and strictly increasing, thus, £(¢,1) = oo and H.(¢,£(¢,1)) = 0. Therefore,

1 oo 0O 2
g(1) = / (H*(0,u) — 1)du = /1 / (1 —sgn(y + u))\/lz?e%dydu = \/Z— 2P[p < —1].

Thus, the value of information is

EW! ] =E [g(0)1p<y + 9(1)1psy] = \/Z— \EE [ 1- V(T)I[V(T)<1]} -

The last expectation on the RHS is an indicator on how far is, on average, the default time from
the defaultable bond’s maturity in the case of default before maturity. As in the previous example,
the larger is that expectation, i.e. the larger is the average distance between market’s default time
and the maturity, the lower the value of the private information is.
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A Appendix

Lemma A.1 Suppose that h is a nondecreasing right-continuous function with at most an expo-
nential growth. Let

H(t,z) = /Z h(z + y)%(ll_t) exp <—2(1y2t)> dy,

and (&n)n>1 be a convergent sequence such that limy, oo H(t,,&,) = a for some a in the range of h
or in the interval (inf, h(x),sup, h(x)), and some sequence (t,)n>1 C [0,1) converging to 1. Then,

lim &, € [X2,,, X2

n=so0 man> ma;r]?
where
in = nf{z : h(z) > a} and X aw i=sup{z : h(z) < a}.
PROOF. Suppose lim,, o0 & < X200
Since H is nondecreasing in x, one has

Then, there exists some & such that lim, . &, < § < X,

in°

nhanolo H(tnagn) < nlg{olo H(tnvé) - h(f) <a,

which is a contradiction. Similarly, we have that lim, 00 & < X2 00

18



