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Abstract

Nitrogen is the most important crop limiting factor, thus plant nitrogen sta-

tus during plant cycle is a key parameter for crop monitoring. Many new

techniques, based on leaf optical properties have been proposed for a non-

destructive diagnosis to replace Nitrogen Nutrition Index which is a costly

and destructive method. We intend here to study leaf nitrogen concentra-

tion accessibility from reflectance (400-1000 nm) spectra of whole plants from

a field hyperspectral imaging set-up including difficulties related to variable

solar lighting and potential specular reflexion. Firstly, we calibrated a chemo-

metrical model between leaf nitrogen concentration and reflectance spectra

of flat leaves (R2=0.903, SEP=0.327 %DM), which validated the sensor and

our reflectance correction process. As a second step, we calibrated a chemo-

metrical model between nitrogen concentration and reflectance spectra of in-

dividual leaves from isolated plants grown in pots in greenhouse (R2=0.889,

SEP=0.481 %DM) or under field conditions (R2=0.881, SEP=0.366 %DM).
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Pooling the two datasets provided us a relevant model to predict leaf nitrogen

content for the two culture conditions (R2=0.875, SEP=0.496 %DM) sug-

gesting that this technique is promising to assess nitrogen plant parameters

with a non destructive method. This tool could be used to follow-up plant

nitrogen dynamics criteria or to generate nitrogen spatial cartographies.

Keywords: hyperspectral, reflectance, nitrogen concentration, durum

wheat

1. Introduction1

As nitrogen availability in soil affects both yield and harvest quality in2

most annual cultivated species, nitrogen (N) is considered as key plant nutri-3

ment. During vegetative growth soil N is taken up by roots and assimilated4

in leaves to synthesize proteins, which are integrated in structural compo-5

nents to constitute cell wall or enzymes in metabolic pathways. In leaves,6

main part of nitrogen is involved in photosynthetic process through the Ru-7

bisco (which represents about 50 % of leaf nitrogen content, Evans (1983))8

or enzymes implied in transportation or assimilation of fixed carbon.9

10

As soil N supply is often limited, nitrogen fertilizer management should11

be adjusted to crop N requirements to optimize plant production (Lemaire12

et al., 2008). To evaluate this plant demand, a well established diagnostic13

tool is the Nitrogen Nutrition Index(NNI) (Lemaire and Gastal, 1997). NNI14

is based on comparing actual crop bulk N concentration with an empirical N15

dilution curve. The biomass dependent, critical N concentration (Nc) is the16

minimal N concentration required for maximal growth, developed by Lemaire17
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and Salette (1984) and then adapted for most cultivated plants (Justes et al.18

(1994) for winter wheat, Sheehy et al. (1998) for rice, Colnenne et al. (1998)19

for rape, Bélanger et al. (2001) for potato and Ziadi et al. (2010) for spring20

wheat). Obviously the method is laborious and destructive. In other hand, as21

a strong relationship exists between leaf nitrogen content and photosynthetic22

pathway, N leaf indirect estimations based on chlorophyll measurement have23

been suggested (Baret and Fourty, 1997). Indirect and non destructive N24

methods derived from chlorophyll measurement through leaf transmittance25

were proposed; such as Chlorophyll meter SPAD 502 R©, which provides leaf26

chlorophyll content based on leaf transmittance at two wavelengths : 65027

and 940 nm.28

29

If some authors, as Lee et al. (1999) found a good relationship (R2 between30

0.81 and 0.96 according to the stages of growth) between the chlorophyll31

content and the actual nitrogen concentration (%DM), others works demon-32

strated that this linear relationship nitrogen/chlorophyll does not work in33

every condition; it could vary according to environmental conditions or/and34

cultivars (Spaner et al., 2005). To stabilize this relationship the use of ratio35

between data from experimental plots with overfertilizer reference plot have36

been recommended (Ziadi et al., 2008) although this reference plot may be37

sometimes difficult to put in place as underlined by Fox et al. (2001). Any-38

way, Houlès et al. (2007) connect successfully chlorophyll and NNI with a39

linear equation (R2 between 0.63 and 0.71 according to growing stage) and40

Ziadi et al. (2008) measured a determination coefficient of 0.61 between NNI41

and SPAD values. An integrated approach consists in calculating the NNI42

3
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using remote sensing: the biomass is found through the LAI and the nitrogen43

content through the chlorophyll content at the canopy scale (Houlès et al.,44

2007; Lemaire et al., 2008; Chen et al., 2010; Fitzgerald et al., 2010).45

46

In these approaches, the chlorophyll-nitrogen relationship quality is the47

key point of the nitrogen prediction quality. Yet, this chlorophyll-nitrogen48

relationship depends on growing season (Evans, 1983) or on nitrogen content49

range as shown by Evans (1983) and Hidema et al. (1991) at leaf level.50

51

An alternative approach was proposed by Kokaly (2001); it consists to52

estimate directly plant nitrogen content from a greater wavelength number53

from visible and infrared spectra as it was classically done in spectroscopy.54

Wavelength range characteristics and chemometrical models have been in-55

vestigated to carry out the more efficient models to predict N plant concen-56

tration.57

58

Hansen and Schjoerring (2003) demonstrated that visible and NIR spec-59

tra from 400 to 900 nm coupled with a Partial least Square regression (PLS)60

allows to calibrate N plant content with R2 of 0.71 and an error of prediction61

of 0.38 % of dry matter, improving of 24 % nitrogen concentration prediction62

based on vegetation indices as the NDVI for example. Similar results were63

reported by Alchanatis and Schmilovitch (2005) from spectra of leaves in the64

field measured from 530 to 1100 nm (R2 = 0.81 and an error of prediction65

of 0.27 %DM) and by Morón et al. (2007) with spectra (400-2500 nm) col-66

lected spectra from excised fresh material (R2 = 0.89, with prediction errors67

4

Author-produced version of the article published in Field Crops Research, 2011, 122 (1), 25-31. 
The original publication is available at http://www.sciencedirect.com



of 0.64). In this later work, authors pointed out that a robust model could68

be obtained on fresh material, if appropriate sampling data set representing69

a large range of environmental conditions and different cultivars was used.70

71

These results suggested that an alternative approach based on an ex-72

tended number of wavelength coupled with chemometrics could provide direct73

estimation of nitrogen leaf content. By diversifying calibration samples (cul-74

ture conditions, genotypes, etc.), the variability of the relation chlorophyll-75

nitrogen should be included in the model.76

For this purpose, we built a close-range hyperspectral imaging set-up to take77

images above wheat plots. In this context, hyperspectral imagery combines78

several advantages: first, it brings a sufficient spectral resolution for a direct79

access to nitrogen content, as discussed above. Second, its spatial resolution80

allows collecting the spectra of individual leaves when observing a whole plot.81

Since nitrogen content of the well illuminated leaves at the top of the canopy82

is well correlated to the crop NNI (Farrugia, 2004), the measurement of their83

individual spectra enables to access NNI in a non-destructive way. Moreover,84

spatial nitrogen distribution makes it possible to analyse individual plants85

within crops; this provides an innovative tool to quantify heterogeneity in-86

side canopy, in context of monogenetic cultivars as well as multigenotypic or87

multispecific crops.88

89

The hyperspectral imagery also presents several advantages compared90

with punctual spectrometers (such as SPAD 502 R©). First, it gives spectra91

of each visible leaf of the plot in one image, which is considerably time92

5
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saving. Furthermore, these spectra are available for each pixel of the leaf93

surface, providing a better representativeness of the leaf spectral information,94

compared to a single spectrometric measurement.95

In counterpart, such a close-range imaging system presents some specific96

difficulties related to the management of variable solar lighting, specular97

reflection and variable illumination level due to leaf inclination. In this pa-98

per, we describe successive correction procedures to obtain light-independent99

reflectance spectra from the original images. Then the calibration of chemo-100

metrics models between N content and reflectance spectra for isolated wheat101

plants in various conditions (field and greenhouse) are presented and dis-102

cussed.103

2. Material and methods104

2.1. Hyperspectral image acquisition system105

All hyperspectral images were acquired with a pushbroom CCD camera106

(HySpex VNIR 1600-160, Norsk Elektro Optikk, Norway) fitted on a tractor-107

mounted motorised rail (see Figure 1). The camera spectral range was from108

400 nm to 1000 nm divided in 160 bands (3.7 nm spectral resolution). The109

first image spatial dimension was determined by the 1600 across-track pixels110

of the CCD matrix and the second one came from the camera forward move-111

ment on the ramp. At 1 m above the vegetation and with a nadir sighting,112

the ground track was about 30 cm and the spatial resolution across track113

was 0.2 mm (the lens and the view angle are fixed). The spatial resolution114

along track was set to 0.5 mm. The integration time, i.e. the time duration115

during which sensor is storing light energy, was fixed manually by the user116

6
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depending on meteorological conditions (cloudy or sunny weather). Images117

were then corrected in radiance using sensor characteristics (e.g. spectral118

sensitivity, etc.) provided by the manufacturer.119

120

2.2. Reflectance correction121

As a first approximation (i.e. if we consider Lambertian surfaces), radi-122

ance L(λ) is the product of the target reflectance R(λ), which is intrinsic123

information and the illumination during image acquisition, i.e. in our case124

solar lighting E(λ).125

126

L(λ) = R(λ) ·E(λ) (1)

Radiance can not be used directly because illumination depends on date127

and meteorological conditions. To obtain the variable of interest R, it is128

thus necessary to know the illumination. For that purpose, spectralon R©129

(Labsphere, Inc., New Hampshire, USA) placed in the field of view of the130

sensor is commonly used because it is a perfect Lambertian diffuser. Another131

alternative is to use a reference whose spectral characteristics are known.132

Indeed, in given lighting conditions:133

Ltarget = Rtarget · E (2)

Lref = Rref · E (3)

7
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Rtarget =
Ltarget

Lref

· Rref (4)

where R designs the reflectance, L the radiance, and ref the reference.134

In this study, we used a ceramic plate appropriate for an every day field use.135

Rref was obtained from laboratory measurements.136

An example of raw, radiance and reflectance spectra is presented in Figure137

2.138

Only reflectance spectra are used for model calibration.139

140

This process is theoretically correct for flat leaves but not for inclinated141

leaves. Indeed, the leaf inclination toward the sun implies two phenomena142

which must be taken into account. Due to their dissimilar orientation toward143

the sun, all leaves do not receive the same level of illumination. They do not144

receive either the same level than the reference ceramic. Each illumination145

level is linked to the cosine of the angle between the surface and the light146

incidence. Because this difference is independent of the wavelength, it can147

be introduced as a multiplicative factor. So Eleaf (λ) = k1Eref(λ) with Eleaf148

is the lighting received by an inclinated leaf and Eref , the lighting received149

by the horizontal ceramic plate.150

151

Moreover, the Lambertian approximation above is not exact. Leaves can152

undergo specular reflexion, i.e. a fraction k of the incident light is reflected by153

the leaf with no spectral modification (Grant, 1987; Bousquet et al., 2005;154

Chelle, 2006). Because this specular reflexion is independent of the wave-155

length (Bousquet et al., 2005), we can write:156
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Rleaf (λ) = ρ(λ) + k (5)

Lleaf = (ρ(λ) + k) · k1Eref (6)

where ρ(λ) is the Lambertian part of the leaf reflectance and k is the157

specular part.158

Therefore applying the correction process (equation 4) leads to :

Lleaf

Lref

· Rref =
(ρ(λ) + k) · k1E

E

Rapp = k1 · ρ(λ) + k2 (7)

where Rapp is the reflectance obtained after the correction process, ρ(λ)159

is the Lambertian part of the leaf reflectance and k1 and k2 are two scalar160

factors independent of the wavelength.161

162

As a summary, the solar lighting and the leaf inclination imply a multi-163

plicative effect and an additive effect on the obtained reflectance with our164

correction process.165

2.3. Chemometrical model calibration166

We calibrated chemometrical models between reflectance spectra (400-167

1000 nm) and nitrogen concentration values of individual leaves using Par-168

tial Least Square regression (PLS) (Martens and Næs, 1998; Wold et al.,169

2001). Each dataset, if the number allowed it, was split in a calibration set170
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(2/3 of the samples) and a test set (the last third) with the same distribu-171

tion of nitrogen concentration. We calibrated the model by cross-validation172

leave-one-out on the calibration set. The best calibration equation and the173

number of latent variables (LV) were selected on the basis of a large coefficient174

of multiple determination (R2) and a low standard error of cross-validation175

(SECV). SECV is the root mean square error between the actual and pre-176

dicted values calculated over all cross-validation calibrations. The model was177

then tested on the test set and its quality was evaluated with the standard178

error of prediction corrected of the bias (SEPc) calculated as following:179

SEPc =

√∑
(ŷi − yi − bias)2

N
(8)

where N is the number of sampling of test set, yi, the actual value of the180

sampling i and ŷi the predicted value for the sampling i. The bias is the181

mean value of the difference between actual and predicted values (this value182

can thus be negative). It represents the distance between the prediction and183

the first bisector. In the following, we will present for each model the SEPc184

and the bias separately.185

186

In order to overcome leaf inclination and specular reflectance effects, we187

used common preprocessings. Against additive effects, we used data center-188

ing as recommended by Vandeginste et al. (1998). Against multiplicative189

effects, we used normalisation as recommended by Martens and Næs (1998).190

The calibration and test steps were done using Matlab R© software (The-191

MathWorks, Natick, MA, USA) and our own Matlab functions.192
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2.4. Datasets193

In a first step, we have focused our attention on flat leaves in order to194

study potentiality of our sensor and our correction process. Cut flat leaves195

measurements were similar to laboratory measurements and we wanted to196

see if we could obtain similar results as those reported previously. In a197

second step, architecture effects have been taken into account. We saw in198

section 2.2 that leaf inclination induced illumination level differences and199

potential specular reflection. We studied whether it was still possible to200

calibrate a chemometrical model to predict nitrogen when recorded signal201

was modified by these phenomena.202

2.4.1. Flat leaves203

Flag leaves of about 30 various French durum wheat registrated varieties204

were cut during the 2009 growing season between flowering and maturity.205

They were dried and conserved in a cold room. Leaves were put on a flat black206

background (we used the leaf-clip disc of a field spectrometer (FieldSpec R©,207

Analytical Spectral Devices, Inc. (ASD), Boulder, Colorado, USA)). The208

reference ceramic plate was put beside leaves and the leaves were imaged209

with the set-up described above. On Figure 3, we can see an image obtained210

with this protocol.211

Once images corrected in reflectance (with the process described in para-212

graph 2.2), regions of interest were drawn on the leaves to calculate a mean213

reflectance spectrum for each leaf. The corresponding leaf part was send214

to laboratory for destructive nitrogen concentration measurement (Perkin-215

Elmer elemental analyser (PE 2400 CHN, CNRS Cefe Montpellier)). No216

pre-processing was applied on this dataset because leaves were flat-imaged217
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(no specular reflexion, no illumination level issue).218

2.4.2. Isolated plants219

Greenhouse plants220

221

During winter 2009-2010, several wheat plants were grown in pots in222

greenhouse with two nitrogen treatments: with or without nitrogen supply.223

Four French durum wheat registrated varieties (Neodur, Primadur, Ixos et224

Lloyd) were imaged at five phenological stages (tillering, 2 nodes, flowering,225

450 day-degrees after flowering and maturity). For each plant, the two-upper226

leaves were marked with coloured plastic collars to be located on the images.227

After each image (Figure 4), the leaves were cut and send to laboratory for228

destructive nitrogen measurement. After image correction, regions of interest229

were drawn on the images to calculate a mean reflectance spectrum for each230

leaf. In order to take into account illumination level and specular reflexion,231

two preprocessings were applied on the dataset: normalisation and centering232

combined in the SNV function.233

234

Field plants235

236

During the 2010 growing season, wheat field plants were imaged. In237

order to have isolated plants (to avoid environment effects like multiple re-238

flections) plants were singled by hand. On each plot, 4 leaves were marked239

with coloured plastic collars and all the no-marked leaves were cut (see Fig-240

ure 5). This protocol was repeated 5 times (on the 10th, 20th and 28th of May,241

the 4th of June and the 1st of July 2010 which correspond to flowering, 165242
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day-degrees after flowering, 260 day-degrees after flowering, 407 day-degrees243

after flowering and maturity). Once again, the SNV function was used as244

preprocessing.245

3. Results246

3.1. Nitrogen concentration range247

On table 1 are summarised the results of laboratory experiments for each248

dataset.249

According to the experiments, leaf nitrogen concentration (LNC) varies250

from 0.4 %DM to 5.88 %DM. Reference LNC values have a quite continuous251

distribution for the flat leaf dataset and a distribution more segmented (in 2252

or 3 clusters) for the two other datasets.253

3.2. Models calibrated on various datasets254

The model on flat leaves (called flat leaf model or Mf in the following)255

was calibrated without preprocessing. The best model was obtained with 5256

LV (Figure 6).257

The optimal processed model on greenhouse plants (called greenhouse258

model or Mg in the following) required the function SNV (data normalisation259

and centering)and was calibrated with 6 LV (Figure 7).260

Data normalisation and centering (SNV function) were also needed to261

perform the best calibration on field dataset with 4LV (called field model or262

Mc in the following)(Figure 8).263

For each of these three models, high R2 (> 0.8) mean that PLS is rele-264

vant to extract nitrogen information from reflectance spectra. All the mod-265

els have a negligible bias, which show the prediction accuracy. Calibration266
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step for each model shows that LNC can be predicted with a rather low267

SECV (≤ 0.45 %DM). Moreover, the test step (only for flat leaf model and268

greenhouse leaf model), using new data does not increase so much the error269

(≤ 0.48 %DM), meaning that there is no overfitting in the model.270

3.3. Cross-application of models271

Each model calibrated on isolated plants was applied on the other and272

vice versa. As the field dataset nitrogen concentration range was only 0-273

4 %DM, the field model was applied only on the greenhouse dataset whose274

nitrogen concentration was inside this range (Figure 9).275

All the data of isolated plants (greenhouse and field plants) were used276

to calibrate a model. The best model (called isolated plant model or Mt in277

the following) required once again the function SNV (data normalisation and278

centering) and called for only 6 LV (Figure 10).279

Figure 11 shows the PLS-coefficients of model calibrated on isolated280

plants (greenhouse and field plant datasets together). The coefficient values281

reveal the importance of each wavelength to build the model.The most im-282

portant coefficients (in absolute value) correspond to chlorophyll absorption283

bands (660 nm) but also to other spectral bands: around 500 nm, 550 nm,284

700 nm, 750 nm and 930 nm.285

4. Discussion286

The objective of our work was to evaluate hyperspectral imaging as a non287

destructive technology to assess leaf nitrogen content in wheat leaves. In this288

work we used a sensor with a spectral range from 400 to 1000 nm. Our mea-289

sure leans so mainly on the photosynthetic nitrogen: chlorophyll, chlorophyll290
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a-proteins complexes at 675 nm (Hopkins, 2003) and some proteins accessible291

via their N −H bound near 900 nm (Curran, 1989). As the sun was used as292

light source, correction in reflectance was firstly carried out and next models293

was calibrated based on PLS approach. To illustrate the potential of the294

method, calibrations were built in two steps: firstly on dried excised leaves295

to specify the capacity of this technology to assess LNC and secondly on296

whole plant to take into account different leaf angles and variable leaf water297

content in the model. On excised dried flat leaves, a good accurate model was298

performed (Figure 6). Statistical parameters of this prediction were pretty299

good: the R2 - which measures the accuracy of regression - was closed to 1300

(0.903), the prediction error did not exceed 16% of the mean of the dataset,301

and bias was negligible. These results are similar to those obtained by Morón302

et al. (2007) (R2=0.88 and SECV=0.27). Obviously they demonstrate the303

relevance of our sensor and validate our reflectance correction process to infer304

leaf nitrogen concentration with a good relevance.305

306

In a second step, LNC was inferred from leaf spectra collected on fresh and307

non excised leaves from greenhouse or field plants. In both cases, calibrations308

obtained have a good accuracy: R2 values remain high (> 0.889), prediction309

errors do not exceed 15% of the mean of the dataset and, as previously, the310

bias was negligible (Figures 7 and 8). These results are slight higher than311

those obtained previously by Morón et al. (2007) (R2=0.82 and SECV=0.74312

in laboratory with a spectrometer equipped with an internal light). The313

combination of reflectance correction process and pre-processings (data nor-314

malisation and centering) was very efficient to take into account different315
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leaf inclinations on plants and possible specular reflection: our calibration316

quality decreases slightly but remains very relevant. These results suggest317

strongly that it possible to assess leaf nitrogen concentration directly from318

fresh leaves during plant cycle following a non destructive approach.319

320

Although all these different models provide accurate leaf nitrogen predic-321

tion, these models were built on different bases. Therefore, a model built322

on a given dataset was not relevant to the next one: for example calibration323

on fresh field leaves could not be used on greenhouse leaves: the prediction324

bias is too high (Figure 9(a)) indicating that in our case models are dataset325

dependent. Both low sample number and growing conditions (especially326

plant nitrogen supply) could explain these differences. Correlations between327

leaf characteristics (physical properties as thickness, biochemical composi-328

tion such as chlorophyll, protein content, etc.) and LNC may vary from one329

experiment to the other and affect the relative importance of the different330

wavelengths involved in the PLS process. Otherwise, as we underlined it in331

introduction, the relation between photosynthetic nitrogen and total nitro-332

gen could vary according to environmental conditions, leaf age, etc. Anyway,333

pooling the two datasets (plants in greenhouse and in field) let us to propose334

a common model (Figure 10). The high R2 (0.875), the low SEPc and the335

negligible bias mean that variable growing conditions of the samples do not336

prevent from accessing to nitrogen information. The model coefficients of337

the plant model Mt (Figure 11) show that many spectral bands are solicited338

and not only chlorophyll absorption bands. We can thus think that using339

the whole spectra allow us to include chlorophyll-nitrogen relation variability340
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inside the PLS model. Indeed, Hansen and Schjoerring (2003) showed that341

using PLS improved the prediction (by 24 %) of the nitrogen concentration342

with regard to the use of vegetation indices as the NDVI for example. The343

results obtained by combining all the datasets suggest that including a larger344

dataset would allow to obtain a satisfactory robustness, provided every possi-345

ble situation is represented in the samples. For that it is necessary to include346

several genotypes, several growing years and different growing conditions (in347

greenhouse and in field) and particularly plant density.348

5. Conclusion349

A few main conclusions can be established from this study. First, nitrogen350

concentration is accessible from reflectance spectra in 400-1000 nm range not351

only from dried leaves but also from fresh samples scanned on whole plants.352

Secondly, reflectance correction process and pre-processings used allow to free353

oneself from solar lighting issues and plant architecture effects (illumination354

level and specular reflection) leading to the same quality than the models355

obtained with laboratory spectra. Moreover, using the whole spectra allow356

us to overcome variability due to growing conditions, compared to the use357

of only chlorophyll absorption bands. Nevertheless, a wide calibration set is358

necessary to calibrate models robust to growing conditions, year, etc.359

360

Finally, this study showed that field close range hyperspectral imaging is361

a promising technology for non destructive nitrogen monitoring. Its use can362

be enlarged to physiology or modeling issues. Applying this chemometrical363

model on whole plot hyperspectral images produces spatial nitrogen cartogra-364
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phies. It will be thus possible to follow-up nitrogen dynamics at each leaf365

level. Data can be introduced in growing models or nitrogen remobilisation366

models for example.367
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Figure 1: Hyperpsectral imaging set-up.
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Table 1: Nitrogen concentration range for each dataset: nitrogen concentrations are in

%DM

dataset n min max mean standard deviation

flat leaves 146 0.4 3.78 2.07 1.05

greenhouse plants 180 0.81 5.88 3.22 1.42

field isolated plants 56 0.71 4.2 2.37 1.07
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Figure 2: Example of (a) raw, (b) radiance and (c) reflectance spectra for an isolated leaf.

Absorption peaks due to the atmosphere are removed in (c) by the reflectance correction.
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Figure 3: Example of an image obtained with the protocol for flat leaves (black and white

background discs were set but only black ones are used in this study).
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(a)

(b)

Figure 4: Example of an image obtained with the protocol for greenhouse plants.
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Figure 5: Example of an image obtained with the protocol for field isolated plants.
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Figure 7: Results of the chemometrical model calibrated on greenhouse plants with SNV

and 6LV (blue stars for calibration step and red circles for test step).
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Figure 8: Results of the chemometrical model calibrated on field isolated plants with SNV

and 4LV.
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Figure 9: Cross-application of the models calibrated on isolated plants: (a) model cali-

brated on field plants applied on greenhouse plants, (b) model calibrated on greenhouse

plants applied on field plants.
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Figure 10: Results of the chemometrical model calibrated on isolated plants (greenhouse
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