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Abstract

The study of reliable automatic systems for protein classification is important for several 

domains, including finding novel drugs and vaccines. The last decade has seen a number of 

advances in the development of reliable systems for classifying proteins. Of particular interest has 

been the exploration of new methods for extracting features from a protein that enhance 

classification for a given problem. Most methods developed to date, however, have been evaluated 

in only one or two application areas. Methods have not been explored that generalize well across a 

number of applications areas and datasets. The aim of this study is to find a general method, or an 

ensemble of methods, that work well on different protein classification datasets and problems.    

Towards this end, we evaluate several feature extraction approaches for representing proteins 

starting from their amino acid sequence as well as different feature descriptor combinations using 

an ensemble of classifiers (support vector machines). In our experiments, more than ten different 

protein descriptors are compared using nine different datasets. We develop our system using a blind 

testing protocol, where the parameters of the system are optimized using one dataset and then 

validated using the other datasets (and so on for each dataset). Although different stand-alone 

classifiers work well on some datasets and not on others, we have discovered that fusion among 

                                                
1
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different methods obtains a good performance across all the tested datasets, especially when using 

the weighted sum rule.  

Included in our feature descriptor combinations is the introduction of two new descriptors, one 

based on wavelets and the other based on amino acid groups. Using our system, both outperform 

their standard implementations. We also consider as a baseline the simple amino acid composition 

(AC) and dipeptide composition (2G), since they have been widely used for protein classification. 

Our proposed method outperforms AC and 2G. 

 

Keywords: proteins classification; machine learning; ensemble of classifiers, support vector 

machines. 

 

1. Introduction 

Extracting features from proteins for protein classification has value in many applications, 

including subcellular localization (Chou and Shen, 2007a; Chou and Shen, 2010; Shen and Chou, 

2010) and protein-protein interactions (Nanni and Lumini, 2006). Several techniques for extracting 

features from proteins have been developed (Chou and Shen, 2007a). They can be roughly 

classified, according to their characteristics, into three main classes. The first class comprises the 

Chou’s pseudo amino acid (PseAA) composition (Chou and Shen, 2007a), probably the most used 

feature extractor for proteins, and its variants. To avoid losing important information hidden in 

protein sequences, the pseudo amino acid composition (PseAAC) was proposed (Chou, 2001; Chou, 

2005) to replace the simple amino acid composition (AAC) for representing the sample of a protein. 

PseAA composition represents a protein sequence with a discrete model without completely losing 

its sequence order information; the model is composed of a set of more than 20 discrete factors, 

where the first 20 factors represent the components of its conventional amino acid (AA) 

composition while the additional factors incorporate some of its sequence order information via 
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various modes (i.e., as a series of rank-different correlation factors along a protein chain). For a 

summary about its development and applications, such as how to use the concept of Chou's 

PseAAC to develop 16 different forms of PseAAC, including those that are able to incorporate the 

functional domain information, GO (gene ontology) information, Cellular Automaton image 

information, sequential evolution information, among many others, see a recent comprehensive 

review (Chou, 2009). In this paper, we consider also other additional forms of PseAAC in the hopes 

of further strengthening the power of PseAAC. 

The second class includes feature extractors based on a vectorial representation of the protein 

where the feature extraction is not explicitly related to groups of amino acids. For example, in 

(Nanni and Lumini, 2006) the physicochemical encoding is proposed, it combines the value of a 

given property for an amino acid together with its 2-grams representation. 

The third class includes methods based on kernels. One of the first approaches is the Fisher 

kernel (Jaakkola et al., 1999) proposed for remote homology detection. A different kernel, the 

mismatch string kernel, is proposed in (Leslie et al., 2004), which measures the sequence similarity 

based on shared occurrences of subsequences. In (Leslie et al., 2004) it is shown that string kernels 

perform similarly to Fisher kernel but with a lower computational cost. A class of new kernels is 

developed in (Lei and Dai, 2005) for vectors derived from k-peptide vectors mapped by a matrix of 

high-scored pairs, measured by BLOSUM62 scores, of k-peptides: the kernel functions are used for 

training a support vector machine and their good performance for predicting protein subcellular 

localization is reported in (Lei and Dai, 2005). Another interesting approach is the bio-basis 

function neural network (Yang and Thomson, 2005). In this method the sequences are not encoded 

in a feature space but rather the distances obtained by sequence alignment are used to train the 

neural network. 

In practical applications, particularly in developing high throughput tools for predicting 

various biological attributes, many different pseudo amino acid compositions for biological 

sequence feature representation have been developed and widely used. For example, cellular 
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automata image (Lin et al., 2009; Xiao et al., 2008a; Xiao et al., 2009a; Xiao et al., 2006a), 

complexity measure factor (Xiao et al., 2006b; Xiao et al., 2005); Grey dynamic model (Xiao and 

Lin, 2009; Xiao et al., 2008b); functional domain composition (Xiao et al., 2009b). 

The aim of this work is to propose a general system for protein classification based on the 

combinations of different feature extractors, mainly derived from the first two classes, and to 

evaluate the system on different protein classification problems using different datasets. Several 

studies have proposed systems that work well on a given dataset, but their parameters tuning (e.g., 

the number of psychochemical properties) are optimal only for the proposed problem and not for 

others. Methods have not been explored that generalize well across a number of applications areas 

and datasets. The aim of this study is to find a general method, or ensemble, that works well on 

different protein classification datasets and problems. 

Some advantages in exploring protein classification methods that generalize well include 

deepening our understanding of protein representation, speeding up real world development in new 

areas involving protein classification, developing more robust and powerful classification systems, 

and providing standards for comparing protein classification methods across a host of application 

areas. 

To obtain an ensemble of methods that works well on different protein problems, we study 

several combinations of feature extractors, and we perform an experimental evaluation on seven 

different datasets and nine different test sets. As a result of our experiments, we obtain a number of 

statistically robust observations regarding the effectiveness of the proposed system.  

The remaining of the paper is organized as follows. In section 2 we introduce the feature 

extraction methods explored in this work. In section 3 we report experimental results obtained on 

nine different classification problems. Finally, in section 4, we draw a number of conclusions. 
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2 Feature Extraction 

Several studies, e.g., (Chou and Shen, 2007c; Nanni and Lumini, 2008), deal with the problem 

of finding a compact and effective representation from proteins, because there are many 

classification problems (e.g., subcellular localization, protein-protein interactions) that require a 

machine learning approach. In many cases a feasible solution is based on extracting a fixed length 

encoding to be coupled with a general purpose classifier. In this section we briefly describe the 

encoding methods explored in this study. 

For each feature extraction method we used the support vector machine
2
 (SVM) as the 

classifier. The SVM is a technique for classification that arose from the field of statistical learning 

theory (Cristianini and Shawe-Taylor, 2000). SVM is a binary-class prediction method trained to 

find the equation of a hyperplane that divides the training set leaving all the points of the same class 

on the same side while maximizing the distance between the two classes and the hyperplane. In 

cases where a linear decision boundary does not exist, a kernel function can be used. A kernel 

function projects the data onto a higher-dimensional feature space where they can be separated by a 

hyperplane. Typical kernels are polynomial kernels and the radial basis function kernel. All the 

features used for training SVM are linearly normalized to [0 1] considering the training data. 

The set of physicochemical properties are obtained from the amino acid index (Kawashima 

and Kanehisa, 2000) database
3
. An amino acid index is a set of 20 numerical values representing the 

different physicochemical properties of amino acids. This database currently contains 544 indices 

and 94 substitution matrices.  Unfortunately, many properties are highly correlated with each other. 

To reduce the number of properties considered in the feature extraction process, we could select the 

k best physicochemical properties for a particular classification problem by running Sequential 

Forward Floating Selection (SFFS)
4
 (where the features are the physicochemical properties) as in 

                                                 
2
 SVM is implemented as in the OSU svm toolbox 

3
 available at http://www.genome.jp/dbget/aaindex.html. We have not considered the properties where the amino 

acids have value 0 or 1. 
4
 implemented as in PRTools 3.1.7 Matlab Toolbox 
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our previous work, e.g., (Nanni and Lumini, 2006). We noticed when running some new tests that a 

random selection of a large number of properties works as well as a smaller number of properties 

specifically selected by SFFS.  It is thus a viable option to use either the ten best selected properties 

selected by SFFS or the 50 random selected properties. By using a randomly selected set of 

properties, we avoid a parameter, i.e., we no longer need to an elaborate method to select a set of 

properties for a given problem. Although it is the case that using the randomly selected properties 

will require more computational power than using those selected by SFFS (50 versus 10 features in 

the feature set), we obtain the advantage of producing, as will be noted in the experimental section, 

a more robust generic system. It should be noted that for each of the protein descriptors, where the 

features are extracted considering a given physiochemical property, we combine the score obtained 

from the 50 randomly selected properties using the sum rule.  

Since the aim of this work is to find an ensemble of methods that works well on different 

problems, in each protein classification problem, we extract a set of features using the descriptors 

described below. We then use a leave-one-out dataset testing protocol for selecting (using SFFS) a 

set of n descriptors used to train the SVMs. These classifiers are combined by a fusion rule (Kittler, 

1998). We have also tested the sum rule and the weighted sum rule, where a different weight is 

assigned to each descriptor. The weights of the weighted sum rule are selected by SFFS. The testing 

protocol we use is blind: the set of descriptors used to classify the proteins in a given problem are 

selected using the other remaining datasets. 

SFFS is a bottom up search procedure introduced by (Pudil et al., 1994). It uses a forward step 

followed by a conditional backward step. The forward step starts from an initially empty set of 

features and successively adds features from a set of original candidates in order to optimize a given 

objective function. Each time a single feature is added, a backward step is performed that identifies 

the least significant feature in the current feature set and removes it, unless it is the last property 

added. The number k of retained features is determined according to the objective function, as the 

minimum number of features that maximizes the performance.   



7 

 

 

2.1 Physicochemical 2-Grams (P2G) 

The physicochemical 2-grams (Nanni and Lumini, 2006) are a model for protein 

representation that combines the value of a given property for an amino acid together with its 2-

grams representation (2G). 2G is a vector of 20
2
 values cl, each counting the number of occurrences 

of a given couple of amino acids in a protein sequence. We define Fd
(i,j) for a given 

physiochemical property d, and a couple of amino acids i,j  (i,j [1,..20]) as: 

 

where i and j denote the 20 different amino acids
5
; Len is the length of the protein; d denotes the 

selected physicochemical property; the function index(i,d) return the value of the property d for the 

amino acid i; the function h(i, j) count the number of occurrences of a given couple of amino acids 

(i, j) in a protein sequence. 

 The feature vector of a protein for a given physiochemical property d is made by the 

concatenation of all the Fd
(i,j)  for i,j=1...20; Therefore, we obtain a 800-dimensional vector. 

 

2.2 Quasi Residue Couple (RC)   

The quasi residue couple is a model for protein representation proposed by (Nanni, 2006) and 

inspired by Chou’s quasi-sequence-order model and Yuan’s Markov chain model (Guo et al., 2005). 

This encoding combines the information related to a fixed physicochemical property of the protein 

with the sequence order effect of the composition of the amino acid. A residue couple model of 

order less than three (Guo et al., 2005) is considered to represent the sequence. Each nonzero entry 

in the residue couple is substituted by the corresponding value of the selected property.   

In this work we use the residue couple model with order m 3, which for a physicochemical 

property d is given by: 

5 we use the indexes 1,2,…,20 to represent the 20 native amino acids, respectively, corresponding to the alphabetical 
order of their single letter codes: A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y. 
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where i and j denote the 20 different amino acids; Len is the length of the protein; d denotes the 

selected physicochemical property; the function index(i,d) returns the value of the property d for the 

amino acid i; and the function Hi,j(a, b, d) = index(i,d), if the amino acid in location a is i and the 

one in location b is j and is 0 otherwise. 

 The parameter m is called the order of the residue couple model and the feature vector that 

describes a given protein is a 400-dimensional vector obtained by calculating  for each 

couple of i j. In the present work, we extract the RC features for m ranging from 1 to 3, and we 

concatenate the resulting descriptors into a 1200-dimensional vector.  

 

2.3 Autocovariance approach (AUC) 

 In (Zeng et al., 2009) a sequence-based algorithm combining the augmented Chou's pseudo 

amino acid composition (Chou, 2001) based on auto covariance is presented. In (Chou, 2001), a set 

of pseudo-amino-acid-based features
6
 are extracted from a given protein as the concatenation of the 

20 standard amino acid composition values (AC) and m values reflecting the effect of sequence 

order (where m is a parameter denoting the maximum distance between two considered amino acids 

i,j). 

 In this work we consider only the last m feature of the vector C = (C1,…,C20, 

,.., ) which is defined as:  

 

 

where A(k) denotes the index of the amino acid in the kth
 position of the protein; Len is the length of 

the protein; d denotes the selected physicochemical property; the function index(i,d) returns the 

                                                 
6
 Extracted by the matlab code shared by the original authors. 
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value of the property d for the amino acid i; and Md and Vd are normalization factors denoting the 

average and the variance of the physicochemical property d on the 20 amino acids. 

 

 

 

 In this work we set mmax=20. We perform the feature extraction for each m=1...mmax for each 

physicochemical protein present in the Amino Acid index database (Kawashima and Kanehisa, 

2000). Therefore, the number of extracted features is given by np×mmax, where np equals the 

number of physicochemical properties. 

 

2.4 Amino Acid Group Based Physicochemical Encoding (AAG) 

This method, proposed in (Hu & Zhang, 2009), is based on clustering amino acids considering 

the value of a given physicochemical property d. Given a protein sequence A(k) k=1...Len, its index 

score vector is obtained by replacing each amino acid with its physicochemical value: 

 

The vector  is threshold bounded according to the value of its elements:  

 

where Md and Vd are normalization factors denoting the average and the variance of the 

physicochemical property d on the 20 amino acids; λ is a parameter fixed to 1.  

 The clustering procedure consists in merging adjacent amino acids with equal positive or 

negative labels into an amino acid group (AAG). Then each group is represented by a couple of 

values denoting the initial position and the length of the group. Only the AAGs having a minimum 
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length L (L=2 in this work) are considered. To give some tolerance to small gaps, we will keep 

merging two positive or negative AAGs if the gap between them is 1 (in this work an element k can 

be considered a gap only if ). For example the sequence [-1;0;-1;0;0;0;0;0;1;0;1;1] has a 

positive AAG group of length 4 in position 8. In (Hu & Zhang, 2009) only the first AAG group of 

positive amino acids is considered. In this work we test the following configurations: 

 PA, only the first AAG group of positive amino acids is considered for each 

physicochemical property (the final vector has length 2×np, np = number of 

physicochemical properties); 

 NA, only the first AAG group of negative amino acids is considered for each 

physicochemical property (the final vector has length 2×np, np = number of 

physicochemical properties); 

 PN, the features are the number (normalized with the length of the protein) of positive and 

negative AAG groups for each physicochemical property (the final vector has length 2×np, 

np = number of physicochemical properties). 

The features after the computation are normalized considering the length of the protein.  

 

Due to the large number of features extracted with this method, instead of using SVM as the 

classifier, we use a random subspace of SVM. Random subspace (RS) (Ho, 1998) is a method for 

creating ensembles that modifies the training data set, generating K new training sets containing 

only a subset of the lower dimensionality of the original features. Then the scores of the classifiers 

trained on these modified training sets are combined by sum rule. In this work we design an 

ensemble of K=50 SVM classifiers, and we generate feature vectors containing only a random set of 

50% of all the features. 

2.5 AAIndexLoc (AA) 

The AAIndexLoc (Tantoso and Li, 2008) describes a given protein P as follows: 
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 Amino acid (AC) composition (20 features): this is fraction of a given amino acid in P; 

 Weighted AA composition (20 features): this is defined for a given amino acid y as (Amino 

acid composition of y) (index value a for the amino acid y); 

 Five-level grouping composition (25 features): this is where the amino acids are classified 

by k-means clustering into five groups considering their amino acid index values. The five-

level dipeptide composition is then performed. The five-level dipeptide composition is 

defined as the composition of the occurrence of two consecutive groups, see (Tantoso and 

Li, 2008) for more details.  

 

2.6 Global Encoding (GE) 

In this method, proposed in (Xi et al., 2009), the amino acids are first classified into the 

following six classes: 

A1 = {A,V,L,I,M,C} 

A2 = {F,W,Y,H} 

A3 = {S,T,N,Q} 

A4 = {K,R} 

A5 = {D,E} 

A6 = {G,P} 

For each combination, each of which contains three different classes (hence we have ten 

combinations), we extract a different feature set. 

For example, a given combination could be: {A1, A2, A3} vs {A4, A5, A6}. The protein 

vector is then transformed into a numerical sequence where a given amino acid is assigned a value 

of 1 if it belongs to {A1, A2, A3}, otherwise it is assigned a value of 0. The first set of extracted 

features is the “composition,"  i.e., the frequency of 0s and 1s. The latter set of extracted features is 
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the “transition”, i.e., the percent of frequency with which 1 is followed by 0 or 0 is followed by 1  in 

a characteristic sequence. 

Moreover, we have tested a modified GE where the amino acids are classified into different 

classes using a genetic algorithm (GA) approach proposed in (Nanni and Lumini, 2008). In this 

study, we run the GA n times and then combine these n results. 

 

2.7 Full Sequence (FS)  

This protein descriptor is based on all the physicochemical properties of the AAindex. In order to 

represent a protein sequence, a single feature is extracted for each physicochemical property. The 

average value of that physicochemical property of the amino acids of that protein is defined as: 

 

where Ad(i) is the value of the i-th amino acid of the d-th physicochemical property and fr(i) is the 

compositional fraction of the i-th amino acid. 

 

2.8 N-Gram (NG) 

NG is similar to the standard 2G but here we train five different SVMs. Each classifier is trained 

using a different N-peptide composition with different amino acid alphabets. We have used the 

following alphabets (Murphy et al., 2000): 

G–I–V–F–Y–W–A–L–M–E–Q–R–K–P–N–D–H–S–T–C 

LVIM–C– A–G– S–T–P–FY–W–E–D–N–Q–KR–H 

LVIMC–AG–ST–P–FYW–EDNQ–KR–H 

LVIMC–ASGTP–FYW–EDNQ–KRH 

LVIMC–ASGTP–FYW–EDNQKRH 
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From the first two alphabets, we extract the 2-grams. From the other three alphabets, we 

extract the 3-grams. These five classifiers are combined by weighted sum rule, where the weight of 

the first method is 1, the fourth is 0.5, and the last (which is the SVM trained with the reduced 

alphabets with five elements) is 0.25. 

Moreover, we tested a modified NG where the amino acids are classified into different classes 

using a GA approach proposed in (Nanni and Lumini, 2008). In this study we run the GA ten times, 

and then combine the ten results. We assign a weight of 10 when the standard alphabets is coupled 

with 2-gram, and a weight of 1 in the others cases (i.e., the alphabets obtained by GA). All these 

weights are calculated using only the training data. 

 

2.9 Wavelet descriptor (WA) 

Recently some studies have shown that it is possible to extract features from the protein using 

wavelets. First the protein sequence is converted to a numerical sequence, substituting each amino 

acid with its value of a given physicochemical property. In (Li et al., 2008) the Meyer continuous 

wavelet is applied to the numerical sequence. Then the wavelet power spectrum is extracted 

considering different decomposition scales. We obtain the best performance with 100 

decomposition scales and without the applications of the principal component analysis as in (Li et 

al., 2008).  

In this work, we test a different approach for extracting features from the continuous Meyer 

wavelet image obtained by a given protein: we extract the dominant local ternary patterns (DLTP). 

DLTP is a combination of dominant local binary patterns and local ternary patterns. Dominant local 

binary pattern (DLP) was proposed in (Liao et al., 2009) for selecting the rotation invariant patterns 

to be selected in local binary pattern (LBP). Instead of selecting the uniform patterns, they proposed 

choosing those patterns that represent 80% of the whole pattern occurrences in the training data. 

The LBP operator is calculated by evaluating the binary differences between the gray value of a 

pixel x and the gray values of P neighboring pixels on a circle of radius R around x. The LBP 
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operator is made rotation invariant by selecting the smallest value of P-1 bitwise shift operations on 

the binary pattern. A pattern is considered uniform if the number of transactions in the sequence 

between 0 and 1 is less than or equal to two. In local ternary patterns (LTP) (Tan and Triggs, 2007) 

the difference between a pixel x and its neighbor u is encoded by 3 values according to a threshold 

  :  1 if u  x +  ; -1 if u  x –  ; else 0. The ternary pattern is then split into two binary patterns 

by considering its positive and negative components. Finally, the histograms that are computed 

from the binary patterns are concatenated to form the feature vector. Here =0.15; P=16; R=2. We 

name this  method, based on dominant LTP, as DL in section 3, table 4. 

In (Qiu et al., 2009) the biorthogonal discrete wavelet is used to describe a protein from the 

wavelet coefficients. Using different scales, the maximum, minimum, mean and standard deviation 

values are extracted. We name this method BASE in section 3, table 4. To improve the method 

proposed in (Qiu et al., 2009), we also propose extracting the first five discrete cosine coefficients 

from the approximation coefficients, and the maximum, minimum, mean and standard deviation 

values from both detail and approximation coefficients of the wavelet decomposition (4 scales are 

used). We name this method DW in section 3, table 4. 

Finally, we examine the performance benefit of concatenating DL and DW features, which we 

name DW+DL.  

 

2.10 Split amino acid composition (SAC) 

With SAC (Kumar et al., 2005; Verma et al., 2009) the protein sequence is divided into parts, 

and the composition of each part is calculated separately. Each protein is divided into three parts: (i) 

20 amino acids of N-termini, (ii) 20 amino acids of C-termini, and (iii) the region between these 

two terminuses. 
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2.11 Mismatch kernel (MK)
7
  

MK (Leslie et al., 2004) is a discriminative approach for the protein classification problem. It 

measures sequence similarity based on shared occurrences of k-length subsequences (in our 

experiments k=3) counted with up to m mismatches (in our experiments m=1) that do not rely on 

any generative model for the positive training sequences.   We use this method for extracting a fixed 

length feature vector so that any standard classifier could be used. 

 

3 Experiments 

This section reports the results of an experimental evaluation of the protein descriptors 

performed on several datasets for testing the approaches of protein classification. 

 

3.1 Datasets and testing protocol 

The datasets used in this work are described below. We have used the same protocols as 

reported by the original creators. The performance of the different approaches combined in this 

work are evaluated and compared with the performance of the stand-alone descriptors. To reduce 

homology bias, a culling program performed a redundancy cutoff to winnow those sequences which 

have a given sequence identity to any other protein of the same class. In each dataset the sequence 

identity threshold used to cutoff the proteins is reported. 

The proposed approach has been evaluated on the following datasets:  

GPCR (Xiao et al., 2009a): this dataset contains G protein-coupled receptor (GPCR) and non-

GPCR. The aim is to identify a query protein as GPCR or non-GPCR. None of the proteins included 

has ≥ 40% pairwise sequence identity to any other in the same subset. 

GRAM (Shen and Chou, 2007b): this dataset contains gram-positive proteins that belong to 

five subcellular location sites: (1) cell wall, (2) cytoplasm, (3) extracell, (4) periplasm, and (5) 

plasma membrane. To eliminate redundancy and homology bias, only those proteins that have 

                                                 
7 Extracted by the matlab code shared by the original authors 
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<25% sequence identity to any other in a same subcellular location were allowed to be included in 

the benchmark datasets. The aim is to classify a given query protein in a given localization. 

 Viral (VIR) (Shen and Chou, 2007a): the subcellular localization of viral proteins within a 

host cell or virus-infected cell is very useful for studying the function of viral proteins as well as 

designing antiviral drugs. This dataset contains proteins that belong to: cytoplas, extracellular, 

nucleus, and plasma membrane. The aim is to classify a given query protein in a given localization. 

None of the proteins has 25% sequence identity to any other in the same subset (subcellular 

location). 

 Membrane sub-cellular (MEM) (Chou and Shen, 2007c): this dataset contains membrane 

proteins that belong to 8 membrane types: (1) single-pass type I transmembrane, (2) single-pass 

type II, (3) single-pass type III, (4) single-pass type IV, (5) multipass transmembrane, (6) lipid-

chain-anchored membrane, (7) GPI-anchored membrane, and (8) peripheral membrane. The aim is 

to classify a given query protein in a given localization. None of the proteins has 80% sequence 

identity to any other in the same subset (subcellular location). 

Virulent dataset (Garg and Gupta, 2008): this dataset contains bacterial  virulent  protein  

sequences that were  retrieved  from  the  SWISS-PROT (Bairoch and Apweiler, 2000) and VFDB, 

an integrated and comprehensive database of virulence factors of bacterial pathogens, (Chen et al., 

2005). It consists of 1025 virulent and 1030 nonvirulent bacterial sequences. It is used as training 

set, as in the original testing protocol (Garg and Gupta, 2008) for the following three testing sets: 

ADHESINS dataset, Independent dataset 1, Independent dataset 2. 

ADHESINS dataset (VIR1) (Garg and Gupta, 2008): this dataset consists of 469 adhesins 

and 703 non-adhesins proteins (including several archaebacterial, viral and yeast non virulent 

proteins). 

 Independent dataset 1 (VIR2) (Garg and Gupta, 2008): this dataset consists of  83 SWISS-

PROT  sequences  (40  virulent  and  43  nonvirulent  protein sequences) such that there are no two 

sequences that are more than 40% similar. 
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Independent dataset 2 (VIR3) (Garg and Gupta, 2008): this dataset consists of  141 virulent 

and 143 nonvirulent sequences from bacterial pathogens sequences of organisms that were not 

represented in the Virulent dataset, divided as follows:  

 Campylobacter (39 virulent and 40 nonvirulent protein sequences); 

 Neisseria  (25  virulent  and  24  nonvirulent); 

 Bordetella  (27  virulent  and  27  nonvirulent sequences); 

 Haemophilus  (35  virulent  and  35  nonvirulent); 

 Listeria  (15  virulent  and  17  nonvirulent). 

Human protein-protein interaction (HUM) (Bock and Gough, 2003): this dataset contains a 

total of 1882 human protein pairs. Each pair of proteins is labeled as either an interacting pair  or a 

non-interacting pair. 

Helicobacter protein-protein interaction (HEL) (Bock and Gough, 2003): this dataset 

contains a total of 2916 helicobacter protein pairs. Each pair of proteins is labeled as either an 

interacting pair  or a non-interacting pair. 

A summary of the characteristics of these datasets is reported in Table 1. 

We use the area under the ROC curve (AU)
8
 (Fawcett, 2004) as the performance indicator. 

AU is a scalar measure that can be interpreted as the probability that the classifier will assign a 

lower score to a randomly picked positive pattern than to a randomly picked negative pattern. When 

a multiclass dataset is used, the one-versus-all area under ROC curve is used as performance 

indicator (Landgrebe & Duin, 2007). 

The area under the ROC is considered one of the most reliable performance indicators as it is 

based on both sensitivity and specificity. Accuracy is not as reliable an indicator (Qin, 2006); it is 

thus not reported. 

 

 

                                                 
8 

Implemented as in DDtool 0.95 Matlab Toolbox 
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DATASET  #E #C 

GPCR proteins 
training 365 

2 
independent 365 

GRAM proteins 
training 220 

5 
independent 232 

Virulent Proteins  

training 2055 

 2 
ADHESINS 1172 

independent 2 83 

independent 3 284 

Membrane sub-cellular 
training 3249 

8 
independent 4333 

Viral proteins 
training 70 

4 
independent 42 

Human protein-protein 
training 941 

2 
independent 941 

Helicobacter protein-protein 
training 1458 

2 
independent 1458 

 

Table 1. Characteristics of the datasets used in the experimentation: number of examples (#E), 

number of classes (#C). 

 

When the original dataset is divided into training and testing sets (Viral, Membrane, GRAM, 

Virulent) we use the testing protocol appropriate to the dataset.  In the other datasets, we perform a 

2-fold cross-validation test, that is repeated ten times. We then average the results. 

Among the independent dataset tests, sub-sampling (e.g., 2, 5, or 10-fold cross-validation) 

test, and jackknife test, which are often used for examining the accuracy of a statistical prediction 

method (Chou and Zhang, 1995), the jackknife test was deemed the most objective that can always 

yield a unique result for a given benchmark dataset, as elucidated in (Chou and Shen, 2008a) and as 

demonstrated by Eq.50 in (Chou and Shen, 2007a). Therefore, the jackknife test has been 
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increasingly and widely adopted by investigators to test the power of various prediction methods 

(see, e.g. (Chen et al., 2009; Chou and Shen, 2007b; Chou and Shen, 2008b; Ding and Zhang, 2008; 

Esmaeili et al., 2010; He et al., 2010; Jiang et al., 2008; Li and Li, 2008; Lin, 2008; Lin et al., 2008; 

Qiu et al., 2009; Zeng et al., 2009; Zhou, 1998; Zhou et al., 2007)). However, to reduce the 

computational time, we adopted the 2-fold cross-validation in this study as done by many 

investigators with SVM as the prediction engine. 

 

3.2 Experimental results  

The first experiment is aimed at comparing the performance on the different datasets of the 

following configurations: PA, NA and PN (see section 2), as well as AAG. The methods NA and PN 

are proposed in this paper for the first time.  

The results reported in table 2 are obtained using a fixed value for the parameter L (L=1) and 

λ (λ=0.5). Other internal experiments for improving the performance by testing different values of 

the parameters show that no significant improvement can be obtained.  

 

 

 

 

 

 

 

 

 

    Table 2. Performance on the different datasets for different configurations (PA, NA, PN) of 

the method AAG. 

 

DATASETS PA NA PN 
HUM 0.638    0.631    0.701    

HEL 0.883    0.877    0.917    

GPCR 0.930    0.916    0.988    

GRAM 0.863    0.813    0.905    

MEM 0.887    0.865    0.953    

VIRAL 0.644    0.700    0.808    

VIR1 0.700    0.705    0.788    

VIR2 0.585    0.764    0.859    

VIR3 0.647    0.652    0.731    
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It is clear examining Table 2 that PN outperforms the other two approaches. In the following, 

all the experiments related to the AAG method are performed according to the PN configuration. 

Now we compare the standard NG and GE with their version based on GA (named NG ens 

and GE ens). In order to avoid excessive computation time, the alphabets are calculated using the 

NG descriptor on the training set of the HUMAN dataset, then these alphabets are used in all the 

tests performed with NG ens and GE ens. The performance of NG ens and NG are very similar.  GE 

ens slightly outperforms GE. In our opinion a better performance could be obtained if a different 

GA is run on each dataset to create different alphabets for the different datasets. However, there are 

two problems with this approach: computational time and lack of generality. Our aim in this paper 

is to find a generic method without a fine tuning of the parameters for each dataset.  

 

 
DATASETS 

HUM HEL GPCR GRAM MEM VIRAL VIR1 VIR2 VIR3 

FE
AT

U
RE

 

EX
TR

AC
TI

O
N

 GE 0.701 0.894 0.987 0.896 0.951 0.771 0.782 0.773 0.760 

GE ens 0.695 0.917 0.989 0.901 0.967 0.803 0.781 0.735 0.765 

NG  0.696 0.918 0.990 0.913 0.958 0.743 0.789 0.777 0.754 

NG ens 0.693 0.920 0.991 0.906 0.943 0.735 0.791 0.828 0.735 

 

Table 3. Comparison of the standard NG and GE with their version based on GA. 

 

In Table 4 we compare the different WA approaches reported in section 3. It is clear that the 

combined approach DW+DL outperforms the other methods. In the following all the experiments 

related to the WA method are performed according to the DW+DL configuration. 
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DATASETS 

HUM HEL GPCR GRAM MEM VIRAL VIR1 VIR2 VIR3 
FE

AT
U

RE
 

EX
TR

AC
TI

O
N

 Base 0.592 0.755  0.896   0.812 0.755  0.627    0.636 0.618 0.545  

DL 0.628 0.743 0.954 0.810 0.878 0.781 0.601 0.508 0.531 

DW 0.678   0.871  0.991 0.916 0.946 0.731     0.798  0.765  0.696 

DW+ DL 0.690   0.889  0.992 0.918     0.953   0.755     0.789 0.750  0.701  

 

Table 4. Comparison of the tested wavelet-based descriptors. 

 

 

 

The experiment reported in Table 5 is aimed at comparing different solutions, both stand-

alone classifiers and ensembles. Most of the methods in the comparison are implemented using the 

original code (shared by the original authors). The column RANK reports the average rank of the 

given descriptor in the tested dataset (e.g., if a descriptor always obtains the best performance in 

each dataset, its rank is 1). The average rank is calculated for all the methods reported in Table 5. 

The following fusion approaches
9
 are also reported in Table 5: 

 FUS1, leave-one-out dataset where the methods are combined by sum rule; 

 FUS2, all the methods, except the 2-gram (2G) and amino acid composition (AC), 

combined by sum rule; 

 FUS3, all the datasets are used for selecting the best descriptors, then these methods 

are  combined by sum rule. The selected descriptors of FUS3 are RC, PE, AAG, AA, 

and 2G. 

 FUS4, leave-one-out dataset where the methods are combined by weighted sum rule. 

 

The Sum rule selects as final score the sum of the scores of the pool of the selected 

approaches, the scores are the output of the SVM trained with that approach. In the weighted sum 

rule the scores of each approach are weighted by a weight between 0.1 and  1. Also these weights, 

                                                 
9 Before the fusione the scores of each method are normalized to mean 0 and standard deviation 1
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to avoid any overfitting, are selected using the same data used by SFFS for selecting the approaches 

to be combined. 

 

 
DATASETS 

RANK 
HUM HEL GPCR GRAM MEM VIRAL VIR1 VIR2 VIR3 

FE
AT

U
RE

 E
XT

RA
C

TI
O

N
 

AC 0.613 0.780 0.960 0.872 0.889 0.615 0.745 0.813 0.717 15.0 

SAC 0.679 0.824 0.959 0.870 0.917 0.685 0.719 0.761 0.705 14.4 

2G 0.687 0.918 0.978 0.899 0.940 0.647 0.770 0.839 0.735 10.8 

AUC 0.704 0.901 0.992 0.929 0.926 0.754 0.762 0.824 0.744 8.6 

FS 0.667 0.786 0.981 0.857 0.880 0.660 0.722 0.805 0.728 14.4 

MK 0.665 0.768 0.988 0.702  0.936 0.718 0.754 0.790 0.735 13.2 

PE 0.696 0.919 0.956 0.866 0.947 0.651 0.780 0.845 0.721 11.2 

RC 0.717 0.925 0.991 0.880 0.953 0.608 0.812 0.872 0.730 7.3 

WA 0.690   0.889  0.992    0.918    0.953   0.755     0.789 0.750  0.701     10.1 

AAG 0.701   0.917  0.988 0.905 0.953  0.808 0.788  0.859  0.731   8.1 

AA 0.638 0.805 0.991 0.921 0.910 0.699 0.805 0.892 0.756 8.8 

GE 0.695 0.917 0.989 0.901 0.967 0.803 0.781 0.735 0.765 8.2 

NG 0.693 0.920 0.991 0.906 0.943 0.735 0.791 0.828 0.735 8.5 

 FUS1 0.725   0.910  0.997    0.921 0.960 0.817 0.814 0.825 0.751 4.7 

FUS2 0.732   0.921  0.997    0.930     0.959   0.827     0.818  0.859  0.769 2.7 

FUS3 0.725   0.925  0.997    0.947     0.960 0.825 0.829  0.861  0.760 2.4 

FUS4 0.724   0.923  0.998 0.940     0.960 0.812 0.810 0.846 0.745 3.8 

 

Table 5. AU obtained by different methods in the different datasets. The bold number represents 

the best result in a given dataset obtained by a stand-alone descriptor, the italicized numbers 

represent the best result in a given dataset considering all the methods. 

 

 

 

It would be interesting to consider as baseline the simple amino acid composition (AC) and 

dipeptide composition (2G), since they have been widely used for protein classification.  
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The following conclusions can be drawn from the results reported in this section:  

 Our experiments, show that there is not a “best” stand-alone method that performs 

better than others in all the case studies; better performance stability among different 

test sets is obtained by combining different methods, while the performance of a single 

approach is influenced by the origin of the proteins evaluated;  

 Combined approaches seem to be more robust, and in our experiments the ensemble 

named FUS4 obtains the best performance (note that FUS2 and FUS3 obtain better 

performance but they do not use a blind testing protocol); 

 Several stand-alone approaches obtain very similar performance also if they use very 

different approaches for extracting features (for example, see the description of RC 

and AAG and PE). This is a possible motivation of the good performance of the fusion 

approaches. The best stand-alone method is RC, which is a modified version of the 

pseudo Chou’s protein descriptor; 

 The new descriptors proposed in this paper obtain interesting results. Our AAG variant 

is the second method among the stand-alone descriptors. WA does not perform as well 

as AAG, but we have shown that standard texture descriptors could be used for 

extracting features from proteins (after the wavelet transform). So in our opinion a 

deep study of different texture descriptor could improve the performance of WA. 

 In our opinion the most interesting result is that obtained by FUS2 (it combines all the 

methods except AC and 2G). It obtains performance only slightly lower than that 

obtained by FUS3 where all the datasets are used for selecting the descriptors. It is 

clear the usefulness to combine a wide set of different descriptors each based on a 

different extraction methodology or protein representation. 

 

As a final experiment we report in Figure 1 the FAR/FRR-curve (false acceptation rate/false 

rejection rate) for the 2-class problems, obtained by AUC (the red x), the approach based on the 
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Chou’s amino acid descriptor, the most used stand-alone feature descriptor in the literature, and our 

proposed fusion FUS2 (the blue line). 
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Figure 1. FAR/FRR-curve of the 2-classes problems, the y-axis is the false acceptation rate while 

the x-axis is the false rejection rate 

 

These plots confirm our previous conclusions of the usefulness of the set of descriptors for 

classifying proteins in different classification problems. 

 

Finally, in Table 6 we report for each tested dataset the best results reported in the literature by 

other authors. It is important to stress that some methods use different sources of information. For 

example both (Shen and Chou, 2007a) and (Shen and Chou, 2007b) are based on the fusion between 

ontologies information and  amphiphilic pseudo amino acid composition approach, while (Garg & 

Gupta,  2008) and (Chou and Shen, 2007c) consider also features extracted by the position-specific 

scoring matrix (PSSM). In Table 6 for (Garg & Gupta,  2008) we report both results obtained 

considering or without considering the position-specific scoring matrix features. 

Notice that the performance indicator reported in Table 6 is the accuracy (except for (Garg & 

Gupta,  2008) where since the scores obtained in the datasets VIR1,VIR2 and VIR3 are available it 

is possible to calculate the area under the ROC curve) since the cited works used as performance 

indicator the accuracy. 

Moreover, we want to stress that several of the cited methods used as method for extracting the 

features from the amino-acid sequence the Chou’s amino acid composition method (named in this 

paper AUC). From the Figure 1 it is clear that our approach outperforms AUC. 

It is interesting to note that our method works well in almost all the datasets, without a parameters 

tuning for optimizing the performance in a given dataset. The only dataset where we obtain results 

far from the state-of-the-art is VIRAL, but it is important to note that (Shen and Chou, 2007a) is 

based on the ontologies (so the comparison is not fair).  
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DATASETS 

HUM HEL GPCR GRAM MEM VIRAL VIR1 VIR2 VIR3 

(Garg & Gupta,  2008) --- --- --- --- --- --- 0.770 0.870 0.834 

(Garg & Gupta,  2008) 

(No PSSM) 
--- --- --- --- --- --- 0.780 0.855 0.745 

(Martin et al., 2005) 70.0 83.0 --- --- --- --- --- --- --- 

(Xiao et al., 2009a) --- --- 91.6 --- --- --- --- --- --- 

(Shen and Chou, 2007b) --- --- --- 84.1 --- --- --- --- --- 

(Shen and Chou, 2007a) --- --- --- --- --- 92.9 --- --- --- 

(Chou and Shen, 2007c) --- --- --- --- 92.7 --- --- --- --- 

FUS2 70.0 85.0 98.1 84.4 91.5 78.6 0.818  0.859  0.769 

 
 

’ Table 5. Comparison with the state-of-the-art. 
 

 

4 Conclusion 

In this paper, we have presented an empirical study where different feature extraction 

approaches for representing proteins are compared and combined. Moreover, novel configurations 

of the AAG method and Wavelet descriptors are proposed for the first time and evaluated. We show 

that we obtain the best performance when the different descriptors are combined by weighted sum 

rule. 

We obtained a number of statistically robust observations regarding the generality and 

robustness of our system across an extensive evaluation of our system on different datasets. The two 

main conclusions that can be drawn from the results: 

 Our experiments show that there is not a best stand-alone method that performs better than 

others on all the case studies, i.e., the best method is different for different datasets; 

 Better performance stability and generality among the different test sets is obtained by 

combining different methods, combined approaches seem to be more robust. 
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To further improve the performance our method we plan on testing different classification 

approaches. Instead of using only SVM, we plan on investigating the performance of such 

ensembles of classifiers as AdaBoost and Rotation forest (Rodriguez et al., 2006). The main 

drawback using these ensemble methods is that they require more computational power than SVM. 

This is not a problem for the testing phase, but in the training phase this would be a problem if we 

want to compare several descriptors using several datasets.  

Another way to improve performance is to use different sources of information. For example, 

features could be extracted directly from an analysis of the protein's spatial structure (Daras et al., 

2006) or by considering the Position-Specific Scoring Matrix (PSSM) (Ben-Ga et al., 2005). 

Finally, since user-friendly and publicly accessible web-servers represent the future direction 

for practically developing more useful predictors (Chou and Shen, 2009), we shall make efforts in 

our future work to provide a web-server for the method presented in this paper. 
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