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A framework and an algorithm are presented in order to remove stationary noise from images. This algorithm is called VSNR (Variational Stationary Noise Remover). It can be interpreted both as a restoration method in a Bayesian framework and as a cartoon+texture decomposition method. In numerous denoising applications the white noise assumption fails: structured patterns (e.g. stripes) appear in the images. The model described here addresses these cases. Applications are presented with images acquired using different modalities: scanning electron microscope, FIB-nanotomography, and an emerging fluorescence microscopy technique called SPIM (Selective Plane Illumination Microscope).

I. INTRODUCTION

M Any imaging modalities tend to impair images with structured noise. For instance, stripes appear in images produced by recent microscopes such as Single Plane Illumination Microscope (SPIM) [START_REF] Huisken | Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy[END_REF], Atomic Force Microscope (AFM), scanning electron microscopy (SEM) [START_REF] Chen | DeStripe: frequency-based algorithm for removing stripe noises from AFM images[END_REF], [START_REF] Kienberger | Improving the contrast of topographical AFM images by a simple averaging filter[END_REF], Synchrotron X-Ray Tomographic images, Focused Ion Beam nanotomography [START_REF] Münch | Stripe and ring artifact removal with combined wavelet-Fourier filtering[END_REF], or in remote sensing imaging such as MODerate-resolution Imaging Spectroradiometer (MODIS) images or digital elevation models [START_REF] Chen | Destriping CMODIS Data by Power Filtering[END_REF], [START_REF] Chen | Oblique Striping Removal in Remote Sensing Imagery Based on Wavelet Transform[END_REF]. Figure 1 shows examples of stripes in images obtained using different modalities.

The main purpose of this work is to propose a simple noise model which describes accurately the kind of distortions appearing in Figure 1. This statistical modeling allows to formulate the restoration problem in a Bayesian framework. It leads to the resolution of a large scale convex programming problem which is solved using recent advances in numerical optimization. We call our algorithm VSNR which stands for Variational Stationary Noise Remover.

As far as we know, few works address this restoration problem. Recently, [START_REF] Münch | Stripe and ring artifact removal with combined wavelet-Fourier filtering[END_REF] proposed a combined wavelet and Fourier method which allows to interpolate and restore wavelet coefficients impaired by stripes. In [START_REF] Chen | DeStripe: frequency-based algorithm for removing stripe noises from AFM images[END_REF], a Fourier filtering is proposed, where noisy Fourier coefficients are first detected using statistical tests. Contrarily to our work, these approaches do not rely on a precise statistical modeling of the noise and incorporate prior information on the images only implicitly.

The general image formation model we consider can be stated as follows:

u 0 = Hu + b
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Corinne Lorenzo is with Université de Toulouse and ITAV-UMS3039, France. where u 0 is the observed digital image, H is a deterministic linear operator that models the acquisition process (sampling, convolution, indirect measurements, ...) and b is a noise or a texture. In restoration applications, the objective is to retrieve u knowing the observation u 0 and the observation operator H. In texture+cartoon decomposition, H is the identity operator, and the objective is to retrieve both the cartoon component u and the texture component b.

A standard assumption in the literature is that the noise is white, meaning that the different components of b are independent random variables of finite variance. Though this noise assumption models accurately some real applications, it fails to do so in many scenarii. In the case of image restoration/denoising problems, it often leads to unsatisfactory results.

In this article we propose a noise model that suits more complex frameworks and that can be handled numerically in reasonable computing times. We replace the white noise assumption by a stationary noise assumption. A stationary noise b can be defined as a stochastic process having the following translation invariance property:

∀τ ∈ Z 2 , p(b) = p(T τ (b)) (1) 
where p denotes the probability density function and T τ is the translation of vector τ with periodic boundary conditions on the image domain. This hypothesis is natural in many applications, since it amounts to assume that there is no a-priori knowledge about the location of any feature or noise pattern in the image. However, the sole hypothesis of stationarity appears to be hardly numerically tractable. In this work, we restrict to a subclass of stationary stochastic processes, that can be easily described in the frequency domain: these processes are generated by convolving white noise with a given kernel. The noise thus appears as "structured" in the sense that some pattern might be visible, see Figure 3.

The proposed model shares many similarities with the negative norm models of Y. Meyer [START_REF] Meyer | Oscillating Patterns in Image Processing and Nonlinear Evolution Equations[END_REF], its successors [START_REF] Aujol | Structure-Texture Image Decomposition -Modeling, Algorithms, and Parameter Selection[END_REF] and the decomposition algorithms proposed in [START_REF] Fadili | Image decomposition and separation using sparse representations: an overview[END_REF]. Meyer's idea is to decompose an image into a piecewise smooth component and an oscillatory component. We refer to [START_REF] Aujol | Structure-Texture Image Decomposition -Modeling, Algorithms, and Parameter Selection[END_REF] for a review of the principles, algorithms and results using this approach. An alternative way of decomposing images was proposed in [START_REF] Fadili | Image decomposition and separation using sparse representations: an overview[END_REF]. The idea is to seek for components that are sparse in given dictionaries. Different choices for the elementary atoms composing the dictionary allow to recover different kind of textures.

The main contributions of the present paper are: 1) We propose a simple class of random processes that describes real-life noises and textures. 2) Similarly to [START_REF] Fadili | Image decomposition and separation using sparse representations: an overview[END_REF], the texture is described through a dictionary. In our work each dictionary is composed of a single pattern shifted in space, ensuring translation invariance and fast computation in Fourier domain.

3) The proposed formalism and algorithms can be used when dealing with inverse problems such as deblurring or sampling with indirect measurements. 4) A Bayesian approach is provided in order to take into account the statistical nature of textures precisely. 5) The decomposition problem is recast into a convex optimization problem that is solved with a recent algorithm of A. Chambolle and T. Pock [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] allowing to obtain results in an interactive time. 6) We propose a C and Matlab implementation on our webpage in the spririt of reproducible research http: //www.math.univ-toulouse.fr/ ∼ weiss/PageCodes.html. The outline of this paper is as follows. In section II, we introduce the notation. Section III contains detailed definitions and some elementary properties of the noise model. Section IV presents a restoration or decomposition model based on the maximum a posteriori (MAP) estimator. Section V details an efficient numerical scheme based on [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] to solve the resulting convex programming problems. In section VI we present some applications and results on synthetic and real images.

II. NOTATION

In all the paper n = n x × n y will refer to the number of pixels of the degraded image. m stands for the number of filters used to describe the noise. Let u ∈ R nx×ny be an image.

u(x) denotes the pixel of coordinates x ∈ {1, 2, • • • , n x } × {1, 2, • • • , n y }. u p refers to the standard p -norm of u. Let (u 1 , u 2 ) ∈ R n × R n the dot product is denoted u 1 , u 2 = u T 1 u 2 . Let Λ = R n×m and Q = R n×2
. These spaces are endowed with inner products •, • Λ and •, • Q . We set q Q = q, q Q and λ Λ = λ, λ Λ . Let A : Λ → Q be a linear operator. The adjoint A * of A is defined by:

Aλ, q Q = A * q, λ Λ , ∀(λ, q) ∈ Λ × Q. ( 2 
)
The norm of the operator A is defined by:

| A | = max λ Λ ≤1
Aλ Q (3) * is the convolution operator with periodic boundary conditions. F and F -1 respectively denote the discrete Fourier and inverse Fourier transforms. We will also use the notation û = Fu. Finally, ∇ denotes the discrete gradient operator. In this article we use the following discretization:

∇u = (∂ x u, ∂ y u)
where

(∂ x u)(i, j) = u(i + 1, j) -u(i, j) if i < n x 0 if i = n x (4) 
(∂ y u)(i, j) = u(i, j + 1) -u(i, j) if j < n y 0 if j = n y . (5) 
Let φ : Λ → R ∪ {+∞} be a convex, closed function with non-empty domain. The domain of φ is defined by dom(φ) = {λ ∈ Λ, φ(λ) < +∞}. φ * refers to the Fenchel conjugate of φ defined by:

φ * (η) = sup λ∈Λ η, λ Λ -φ(λ). (6) 
The sub-differential of φ at λ 1 is the set defined by:

∂φ(λ 1 ) = {η ∈ Λ, φ(λ 2 ) ≥ φ(λ 1 )+ η, λ 2 -λ 1 Λ , ∀λ 2 ∈ Λ}.
A function φ is said to be strongly convex of parameter γ > 0, if the following inequality holds for all λ 1 , λ 2 ∈ dom(φ) and for all η ∈ ∂φ(λ 1 ):

φ(λ 2 ) ≥ φ(λ 1 ) + η, λ 2 -λ 1 Λ + γ 2 λ 2 -λ 1 2 Λ ,
Let Ξ ⊆ Λ be a set. The indicator function of Ξ is denoted χ Ξ and defined by:

χ Ξ (x) = 0 if x ∈ Ξ +∞ otherwise .
The resolvent or proximal operator of φ at point λ is defined by:

(Id + ∂φ) -1 (λ) = arg min λ ∈Λ φ(λ ) + 1 2 λ -λ 2 Λ .
It can be seen as a generalization of the projection operator since (Id + ∂χ Ξ ) -1 (λ) is the projection of λ on the set Ξ. We refer to [START_REF] Rockafellar | Convex Analysis[END_REF] for a detailed presentation of the above tools.

III. NOISE MODEL

A. A class of stationary noises

In this paper, we address the class of stationary noises that satisfy the following hypothesis.

Hypothesis 3.1: We assume that the noise b reads:

b = m i=1 λ i * ψ i , (7) 
where:

• each ψ i ∈ R n is a known elementary pattern,

• The λ i 's are independent realizations of white noise processes with known probability density functions. Proposition 3.1: This class of noises is stationary -in the sense that it satisfies property [START_REF] Arrenberg | Optogenetic control of cardiac function[END_REF]. The proof of this proposition can be found in [START_REF] Shiryaev | Probability Second Edition[END_REF], page 404.

B. Rationale for the noise model

The images presented in Figure 1 are corrupted by parallel stripes. A noise removal algorithm should be able both to locate their position and to estimate their intensity. Such a perturbation b can be modeled by the following equation

b = λ * ψ, (8) 
where ψ is an elementary pattern, similar to a stripe, and λ describes the pattern positions and intensities.

In realistic applications, the noise is seldom describable simply as in Equation [START_REF] Chen | DeStripe: frequency-based algorithm for removing stripe noises from AFM images[END_REF]. A more realistic noise description would be the sum of processes of type [START_REF] Chen | DeStripe: frequency-based algorithm for removing stripe noises from AFM images[END_REF]. For instance, in SPIM imaging in addition to stripes, Poisson or Gaussian white noise appears due to the imperfections of the imaging system. The Gaussian white noise is a special case of (8) where ψ is a Dirac function and λ is a sample of a Gaussian white noise process.

The common feature of the stripes is their orientation θ, as well as their dimensions (width and length) that belong to a restricted range. In this paper, we simply model a stripe as an anisotropic Gaussian function defined by :

ψ(x, y) = exp - x 2 σ 2 x - y 2 σ 2 y ,
where x = x cos θ + y sin θ and y = -x sin θ + y cos θ. In order to describe stripes of different width or length, several filters ψ 1 , . . . , ψ m with different geometrical parameters can be used. IV. RESTORATION/DECOMPOSITION MODEL Throughout this paper, we assume the following image formation model:

u 0 = Hu + b (9)
where H is a linear operator and b is independent of u and satisfies hypothesis 3.1. In the numerical results, we will concentrate on the case H = Id, however all the proposed algorithms extend to an arbitrary operator H = Id.

A. A MAP reconstruction approach

In this work we assume that the samples λ = {λ i } i=1..m are drawn from stochastic processes with known probability density functions. The prior probability on the space of images is denoted p(u). The maximum a posteriori (MAP) approach leads to maximize:

p(λ, u|u 0 ) = p(u 0 |λ, u)p(λ, u) p(u 0 ) = p(u 0 |λ, u)p(λ)p(u) p(u 0 ) .
Taking the log of the conditional probability leads to the following optimization problem:

Find λ * ∈ Arg min λ∈Λ -log p(u 0 |λ, u) -log p(λ) -log p(u).
(10) As we assumed independence of the λ i s,

-log p(λ) = m i=1 -log p(λ i ) and p(u 0 |λ, u) = p(Hu + m i=1 λ i * ψ i |λ, u) = δ Hu + m i=1 λ i ψ i -u 0 ,
where δ denotes the Dirac mass.

In order to specify problem [START_REF] Facchinei | Finite-dimensional variational inequalities and complementarity problems[END_REF], we need to define the densities p(u) (image prior) and p(λ) (noise prior).

Remark 4.1: In some applications the independence of u and λ is questionable and a multiplicative model could be considered. However our numerical experiments using multiplicative models did not improve the results sensibly compared to the additive models and required heavier computations.

B. Image prior

In this work, we use the standard assumption that images are smooth or piecewise smooth. This can be promoted by a p.d.f. of the form

p(u) ∝ exp(-∇u 1, ). (11) 
where

• 1, : R n×2 → R q → q 1, = x φ ( q(x) 2 )
and

φ (t) = t 2 2 if |t| ≤ |t| -2 otherwise.
This function can be rewritten using duality as [START_REF] Weiss | Efficient schemes for total variation minimization under constraints in image processing[END_REF]:

||z|| 1, := max q ∞ ≤1 z, q - 2 q 2 2 .
The interest of this prior is twofold:

• by choosing = 0, • 1,0 corresponds to the standard isotropic 1 -norm R n×2 and lim

→+∞ • 1, = • 2 2
. This formalism thus captures the standard 1 (total variation) and 2 (Tikhonov) regularization.

• by setting = 0, the numerical scheme designed to solve [START_REF] Facchinei | Finite-dimensional variational inequalities and complementarity problems[END_REF] converges faster than for = 0 and may provide better results in some applications.

C. Noise priors

The p.d.f. p(λ i ) in equation ( 10) still needs to be defined in order to specify the optimization problem completely. The p.d.f. should be chosen depending on the noise nature. In the experiments of this paper we consider three cases:

• Uniform noise. It is obtained by setting p(λ i ) ∝ 1 if λ i ∞ ≤ α i 0 otherwise. .
This assumption allows to model bounded noises. See right images in Figure 3. • Gaussian noise. This hypothesis consists in setting

p(λ i ) ∝ exp(-α i λ i 2 
2 ). The corresponding noise component b i = λ i * ψ i is then a colored Gaussian noise. Its power spectral density is given by the Fourier transform of ψ i . See middle images in Figure 3.

• Laplace noise. It is obtained by setting p(λ i ) ∝ exp(-α i λ i 1 )
. This distribution is known to be a convex approximation of Bernoulli processes [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF], [START_REF] Mallat | A Wavelet Tour of Signal Processing: The Sparse Way[END_REF]. See left images in Figure 3.

All these noise priors are generalized Gaussian distributions and their distribution function writes:

p(λ i ) ∝ exp(-φ i (λ i )). ( 12 
)
Remark 4.2: The middle and right columns in Figure 3 look very similar. This can be explained using Lindeberg-Feller theorem (an extension of the central limit theorem). It asserts that under suitable hypotheses, a weighted sum of independent variables tends to a normal distribution. This remark has an important practical consequence: in most applications, it is convenient to approximate λ by a Gaussian process. Indeed, the numerical algorithms we develop have a convergence rate of order O(1/k 2 ) -where k is the iteration counter -for Gaussian priors, while it is only of order O(1/k) for the others (see proposition 5.3). 

D. Resulting optimization problems

By replacing formulas ( 11) and ( 12) in ( 10) and denoting λ = {λ i } m i=1 , we obtain the following optimization problem:

Find (λ, u) ∈ arg min ∇u 1, + m i=1 φ i (λ i ) subject to u ∈ R n , λ ∈ Λ Hu + m i=1 λ i * ψ i = u 0 (13) In the case H = Id it simplifies to: Find λ ∈ Arg min λ∈Λ P (λ), (14) 
where

P (λ) = ∇ u 0 - m i=1 λ i * ψ i 1, + m i=1 φ i (λ i ). ( 15 
)
Remark 4.3: We show in [START_REF] Fehrenbach | Variational algorithms to remove stripes: a generalization of the negative norm models[END_REF] that the proposed model provides a Bayesian interpretation and generalizes the negative norm texture+cartoon decomposition models [START_REF] Aujol | Structure-Texture Image Decomposition -Modeling, Algorithms, and Parameter Selection[END_REF], [START_REF] Meyer | Oscillating Patterns in Image Processing and Nonlinear Evolution Equations[END_REF] in the discrete setting.

V. NUMERICAL ALGORITHMS

In the case of Tikhonov regularization (which corresponds to

φ i (λ) = αi 2 λ i 2 2 and J R (u) = ∇u 2 2 )
, Problem ( 14) can be solved exactly in O(m 3 n log n) operations using Fourier transforms and inversion of small m × m linear systems. In the more general case, it is impossible to get an exact solution. The objective of this section is to design iterative methods that lead to approximate solutions of [START_REF] Keller | Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy[END_REF].

A. Problem relaxation

Since problem ( 14) cannot be solved exactly, we are interested in finding an -solution defined by: Find λ ∈ Λ such that P (λ ) -P (λ * ) ≤ .

(

) 16 
An iterative optimization algorithm defines a sequence (λ k ) k∈N that converges to a solution of [START_REF] Keller | Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy[END_REF]. The resolution of [START_REF] Mallat | A Wavelet Tour of Signal Processing: The Sparse Way[END_REF] amounts to define an appropriate stopping criterion. Since P (λ * ) is unknown, P (λ k ) -P (λ * ) cannot be evaluated, but this quantity can be bounded by the duality gap defined in equation ( 23) [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms[END_REF]. In order to prevent the duality gap to be infinite (corresponding to an infeasible dual variable), we add a box constraint to problem [START_REF] Mallat | A Wavelet Tour of Signal Processing: The Sparse Way[END_REF]. This extra constraint also allows to obtain convergence rates, see Proposition 5.3.

To summarize, the constrained problem we consider reads :

Find λ ∈ Ξ such that P (λ ) -P (λ * ) ≤ .

where

Ξ = λ ∈ R n×m , λ ∞ ≤ C
and where λ * is one exact solution of ( 14) and C is large enough (e.g. C ≥ λ * ∞ ). Under the latter condition, the extra box-constraint is inactive and the solutions of ( 17) are the same as those of ( 16).

B. Reformulation as a saddle-point problem

This section is devoted to the resolution of [START_REF] Meyer | Oscillating Patterns in Image Processing and Nonlinear Evolution Equations[END_REF]. The extension to problems (13) is straightforward. In order to apply the ideas presented in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF], we reformulate (17) as a saddlepoint problem.

To simplify the reading, let us first introduce some notation. A is the following linear operator:

A : Λ → Q λ → ∇ ( m i=1 λ i * ψ i ) (18) 
We detail a procedure to compute the highest singular value L of A in appendix B. By denoting

F (g) = ∇u 0 -g 1, (19) 
and

G(λ) = m i=1 φ i (λ i ) + χ Ξ (λ), (20) 
problem ( 17) can be recast as the following convex-concave saddle-point problem:

min λ∈Ξ max q∈Q Aλ, q Q -F * (q) + G(λ). (21) 
The interest of this saddle-point reformulation is twofold:

• It allows the use of primal-dual algorithms which are known as being robust and efficient. • It will allow to define a duality gap, which will provide a reliable stopping criterion for the iterative algorithm.

C. Elementary properties of the problem

By inverting the minimum and the maximum in ( 21) we obtain the following dual problem :

max q∈Q min λ∈Ξ λ, A * q Q -F * (q) + G(λ). (22) 
Let us denote:

P (λ) = max q∈Q λ, A * q Λ -F * (q) + G(λ) = F (Aλ) + G(λ), D(q) = min λ∈Λ Aλ, q Q -F * (q) + G(λ) = -F * (q) -G * (-A * q) and ∆(λ, q) = P (λ) -D(q). (23) 
The letter P stands for Primal and D stands for Dual. By using standard results of convex programming, we prove that:

Theorem 5.1 (Characterization of problem (17) solutions):

1) Problem ( 17) admits a convex, non-empty set of solutions. 2) Problem ( 21) admits a non-empty set of saddle points.

3) Let (λ * , q * ) be a saddle point of [START_REF] Nesterov | Introductory Lectures on Convex Optimization: A Basic Course[END_REF]. It satisfies ∆(λ * , q * ) = 0 and λ * is a solution of problem [START_REF] Meyer | Oscillating Patterns in Image Processing and Nonlinear Evolution Equations[END_REF]. 4) Finally, for any (λ, q) ∈ Ξ × R n×2 , ∆(λ, q) ≥ P (λ) -P (λ * ).

The last item in this theorem indicates that the duality gap might be used as a stopping criterion for an iterative algorithm: it is an upper bound of the difference between the objective function and the minimum.

Proof: Points (1) and ( 2) result from boundedness of the set Ξ × dom(F * ) and convexity of the functionals. Points (3) and ( 4) are standard results of convex analysis [START_REF] Rockafellar | Convex Analysis[END_REF].

The following propositions will be useful in order to determine the algorithm step sizes.

Proposition 5.1: In the standard Euclidean metric, if > 0, then F * is strongly convex with parameter .

Proposition 5.2: In the standard Euclidean metric, if

φ i (λ i ) = αi 2 λ i 2 
2 for all i ∈ {1..m}, then G is strongly convex with parameter:

γ = min i∈{1..m} α i (24) 

D. A primal-dual algorithm

Indeed, Nesterov paved the way to the development of new efficient algorithms in ( [START_REF] Nemirovski | Information-based complexity of linear operator equations[END_REF], [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF]). From a theoretical point of view, these algorithms are shown to be optimal in the class of first order methods and they outperform second order algorithms -like interior point methods -for large scale problems and moderate accuracy. Among all the papers published recently on this topic, [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] is probably the most versatile and we decided to present and implement this strategy.

The algorithm proposed by Chambolle and Pock in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] applied to problem [START_REF] Meyer | Oscillating Patterns in Image Processing and Nonlinear Evolution Equations[END_REF], can be written as follows:

Algorithm 1: Primal-Dual algorithm [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] Input: : the desired precision; ( λ0 , q 0 ): a starting point; σ 0 , τ 0 such that σ 0 τ 0 L 2 < 1; Output: λ : a solution to problem [START_REF] Meyer | Oscillating Patterns in Image Processing and Nonlinear Evolution Equations[END_REF]. begin k=0; while ∆(λ k , q k ) > ∆(λ 0 , q 0 ) do

q k+1 = (Id + σ k ∂F * ) -1 (q k + σ k A λk ) λ k+1 = (Id + τ k ∂G) -1 (λ k -τ k A * q k+1 ) (τ k+1 , σ k+1 , θ k ) =Update(τ k , σ k , , γ, L) λk+1 = λ k+1 + θ k (λ k+1 -λ k ) k = k + 1; end end
The calculation of the resolvents of F * and G are described in the appendix. Following [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF], the Update function should be implemented according to the following rules:

Algorithm 2:

Step size update rules Input: ε: parameter of strong convexity of F * γ: parameter of strong convexity of G (see eq. ( 24)) L: highest singular value of G σ k and τ k : step sizes at iteration k Output:

θ k , σ k+1 and τ k+1 . begin if φ i (•) = αi 2 • 2 2 for all i ∈ {1..m} then if ε > 0 then
The sequence ((τ k , σ k )) k∈N is constant:

µ = 2 √ γε/L τ k+1 = µ 2 * γ σ k+1 = µ 2 * ε θ k = 1 1+µ else θ k = 1 √ 1+2γτ τ k+1 = θ k τ k σ k+1 = σ k θ k end else
The sequence ((τ k , σ k )) k∈N is constant:

θ k = 1 τ k+1 = τ k σ k+1 = σ k end end
The convergence properties of this algorithm are summarized below.

Proposition 5.3: The sequence (λ k , q k ) k∈N converges to a saddle-point of [START_REF] Nesterov | Introductory Lectures on Convex Optimization: A Basic Course[END_REF]. Moreover it guarantees the following convergence rates:

• If = 0 and a function φ i is non quadratic then:

∆(λ k , q k ) = O L k
• If = 0 and all functions φ i are squared 2 -norms:

∆(λ k , q k ) = O L k 2 and λ k -λ * 2 2 = O L 2 k 2
• If > 0 and all functions φ i are 2 -norms, the convergence is at least linear:

∆(λ k , q k ) = O ω k/2 and λ k -λ * 2 2 = O ω k/2 with ω = 1 1+ √ γ L .
The proof of this proposition is a straightforward application of results in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]. These convergence rates can be shown to be optimal for first order methods [START_REF] Nemirovski | Information-based complexity of linear operator equations[END_REF], [START_REF] Nesterov | Introductory Lectures on Convex Optimization: A Basic Course[END_REF].

Remark 5.1: As Chambolle-Pock's method is first-order, the algorithm depends on the choice of the inner products on the primal and dual spaces. It is possible to define different inner products •, • Λ and •, • Q , leading to different iterative methods. This remark can be used to precondition the problem and obtain faster convergence rates, see [START_REF] Pock | Diagonal preconditioning for first order primal-dual algorithms in convex optimization[END_REF] and paragraph VI-C for more details.

VI. RESULTS

In this section we first present experimental results on images impaired by synthetic noise. We perform comparisons between the proposed algorithm and two recent works dedicated to stripes removal [START_REF] Chen | DeStripe: frequency-based algorithm for removing stripe noises from AFM images[END_REF], [START_REF] Münch | Stripe and ring artifact removal with combined wavelet-Fourier filtering[END_REF]. We also present an example where the noise is synthetized as the sum of m = 2 stationary processes. This illustrates our algorithm's ability to cope with more complicated noises. We then present results on real images acquired using different modalities: FIB-nanotomography, SEM and SPIM. We finish the section by showing the experimental convergence behavior of the algorithm.

A. Synthetic noise examples

In order to evaluate the performance of the proposed VSNR algorithm, we synthetise noise according to model [START_REF] Chen | Oblique Striping Removal in Remote Sensing Imagery Based on Wavelet Transform[END_REF] and add it to Figure 4. In the first experiment, we consider m = 1 noise component, the filter ψ 1 is a straight vertical line running over the entire vertical direction and λ 1 is the realization of a Gaussian white noise process with different variances. The noisy images are then restored using three algorithms: VSNR, the DeStripe algorithm available on http://biodev.cea.fr/destripe/ [START_REF] Chen | DeStripe: frequency-based algorithm for removing stripe noises from AFM images[END_REF], and the wavelet-FFT algorithm [START_REF] Münch | Stripe and ring artifact removal with combined wavelet-Fourier filtering[END_REF]. The wavelet-FFT algorithm implementation was kindly provided by Dr. Beat Münch as a Fiji plugin.

We compare the results of the different restoration algorithms using a rescaled SNR measure (denoted SNRr) defined as follows: . This measure provides the best SNR among all possible affine transforms of the grey levels of u 0 . We chose this measure since the wavelet-FFT algorithm tends to decrease the contrasts.

SN Rr(u 0 , u) = SN R( u 0 , u) = 10 log 10 u 2 2 u 0 -u 2
The results are shown in Table I and in Figure 5. VSNR outperforms the two other methods by a few dBs. Note that when the noise level is low (first line of Table I), both the Destripe and wavelet-FFT methods tend to degrade images. This is due to the fact that the noise description is too rough and this affects signal recovery. In the second experiment, we consider m = 1 noise component, the filter ψ 1 is an elongated Gaussian and λ 1 is the realization of a Gaussian white noise process with different variances. The results are shown in table II and in Figure 6. Once again, VSNR clearly outperforms the two other methods. Figure 6 shows that the algorithm recovers most of the signal even when the noise level is higher than the signal level. In the third experiment, we consider m = 2 noise components, the first filter ψ 1 is a radial sinc function, the second filter ψ 2 is an elongated Gaussian in the vertical direction, λ 1 is a sample of a white Gaussian process and λ 2 is a sample of a white Bernoulli process with low probability. The noisy image is shown in Figure 7 and the decomposition result is shown in Figure 8. [START_REF] Chen | DeStripe: frequency-based algorithm for removing stripe noises from AFM images[END_REF]. Bottom-right: denoised using Wavelet-FFT [START_REF] Münch | Stripe and ring artifact removal with combined wavelet-Fourier filtering[END_REF]. This experiment corresponds to the last line of Table I. The noise pattern is a vertical line. The Destripe and Wavelet-FFT algorithms do not completely remove low frequencies while VSNR leads to near perfect results.

B. Real images

In order to assess the efficiency of VSNR algorithm, we perform tests on images coming from different modalities:

• FIB-nanotomography. This image was used in [START_REF] Münch | Stripe and ring artifact removal with combined wavelet-Fourier filtering[END_REF]. Results are shown in Figure 9. • SEM imaging. This image was used in [START_REF] Chen | DeStripe: frequency-based algorithm for removing stripe noises from AFM images[END_REF]. Results are shown in Figure 10. • SPIM imaging. Results are shown in Figure 11 and12.

The images come from a microscope prototype developed at ITAV-UMS3039 (CNRS). In all experiments, algorithm 1 is applied with m = 2 filters ψ 1 and ψ 2 . The first filter ψ 1 is a Dirac (which allows the recovery of white noise), and the second filter ψ 2 is an anisotropic Gabor filter with principal axis directed by the stripes (this orientation is determined by the user). Different parameters were tested for filter ψ 2 and led to similar results, outlining the robustness of this approach with respect to the filter choice. Since no ground truth is available for these images, only visual inspection can help assessing the algorithm's performance. Let us discuss the results:

• Figure 9 and 10 show that VSNR is able to preserve the small image details and to remove the stripes and most of the white noise. The output of the wavelet-FFT and DeStripe algorithms are still impaired with low frequency striping and white noise. • In Figure 11 only the cells contour is stained. The images are significantly denoised and small details are preserved. This is a particularly hard example as the images are not piecewise constant (i.e. the perfect BV images).

Fig. 6. Top-left: noisy pirate. Top-right: denoised using VSNR. Bottom-left: denoised using DeStripe [START_REF] Chen | DeStripe: frequency-based algorithm for removing stripe noises from AFM images[END_REF]. Bottom-right: denoised using Wavelet-FFT [START_REF] Münch | Stripe and ring artifact removal with combined wavelet-Fourier filtering[END_REF]. This experiment illustrates the third line of Table II. In that example, the noise pattern is an elongated Gaussian in the vertical direction. The noise level is higher that the signal level. The VSNR algorithm retrieves most of the signal while the other two algorithms do not. 

C. Numerical behavior

In this section, we briefly describe some aspects of the algorithm and of its numerical performance. The convergence rates depend on the parameters in algorithm 1. There are at least 4 parameters that should be tuned:

1) First, it is important to have a tight estimate of L, the highest singular value of A, in order to choose σ and τ as large as possible such that στ L 2 < 1. An overestimation of L will slow down the scheme and an underestimation will make the scheme diverge. In the case of total variation, the calculation of L can be done explicitly, see appendix B. 2) Second, the relationship στ L 2 < 1 still leaves a degree of freedom in the choice of σ and τ . It is uneasy to choose these step sizes and it seems that only experimental tuning is available today. 3) Third, as stated in remark 5.1, choosing different inner products in the primal space Λ and dual space Q will lead to different algorithms and can change the numerical performances of algorithm 1 drastically. This question is related to the previous one and we are currently conducting theoretical investigations in order to provide analytical solutions for these choices. A first answer was provided in [START_REF] Pock | Diagonal preconditioning for first order primal-dual algorithms in convex optimization[END_REF]. 4) Finally, it is important to have a reliable stopping criterion in order to automatize the algorithm. In all our experiments, choosing = 10 -3 as a stopping criterion in algorithm 1 led to solutions that were accurate enough for the visual system (no visible difference with the true solution). We believe that this is a very nice property of the proposed scheme as no user input is necessary. b) Analytical and empirical complexity: The scheme's analytical complexity A is given by:

A = (iterations number) × 2 × m × (FFT(n) + O(n) op.) +m × FFT(n) ( 25 
)
where n is the pixels number, m is the number of filters used in the model, FFT(n) indicates an FFT applied to a size n vector and op. means operations. This theoretical convergence rate indicates that the scheme is adapted to large scale problems: the dependence in n is just O(n log(n)).

Our experiments showed that when the parameters in algorithm 1 are chosen correctly (σ, τ and the metrics), the scheme requires less than 50 iterations in order to decrease the initial duality gap by a factor = 10 -3 . The overall cost is thus around 100 × m FFT computations. The computational time is around 5 seconds for a 1024 × 1024 image, on a 1.2GHz laptop, using m = 1 filter. This can be accelerated using parallel computing.

A more formal complexity result could be obtained using the worst case convergence rates of the algorithm, but this rate seems to be always outperformed for the class of problems considered in this paper. c) A heuristic choice of the metrics: All the tools used in algorithm 1 (Adjoints, singular values, Fenchel transforms, subgradients, proximal operators,...) depend on the choice of the inner products •, • Λ and •, • Q . In [START_REF] Pock | Diagonal preconditioning for first order primal-dual algorithms in convex optimization[END_REF] some choices of the metrics are proposed in order to improve the convergence rate. In the present work, we simply rescaled the filters ψ i and weights α i . This normalization is equivalent to a block-wise constant diagonal preconditionner.

VII. CONCLUSION

We proposed a variational approach to denoise images impaired by a class of stationary noises. It takes advantage of recent advances in convex optimization, leading to interactive computing times. Applications to synthetic images, and to images issued from different microscopy imaging modalities were presented, leading to clear improvements of the image quality compared to existing methods.

APPENDIX A EXPLICIT EXPRESSIONS OF THE RESOLVENTS

In this section, we assume that •, • Λ and •, • Q are the standard dot products. The Fenchel conjugates F * and G * can be computed using Equation (6):

F * (q) = 2 q 2 2 -∇u 0 , q Q if q ∞ ≤ 1 +∞ otherwise and G * (η) = m i=1 (φ i + χ [-C,C] n ) * (η i ) .
The adjoint of A is A * = A T , where:

A T : R n×2 → R m×n q → ∇ T q * ψ1 , • • • , ∇ T q * ψm and ψi = F -1 ψ i .
The different Fenchel transforms useful for the computation of G * are:

• If φ i (λ) = α i λ 1 : (φ i + χ [-C,C] n ) * (η) = C max(0, |η| -α i ) 1 . • If φ i (λ) = αi 2 λ 2 2 : (φ i + χ [-C,C] n ) * (η) = α min η α , C η α - 1 2 min λ α , C 2 1 • If φ i (λ) = χ [-αi,αi] (λ): (φ i + χ [-C,C] n ) * (η) = min(α i , C) η 1 
1) Resolvent of F * : Let us detail the calculation of:

q * = (Id + σ∂F * ) -1 (q n ) = arg min q∈Q, q ∞≤1 σ 2 q 2 2 -σ∇u 0 , q + 1 2 q -q n 2 Q . (26) 
Let qn = q n + σ∇u 0 By writing the Karush-Kuhn-Tucker optimality conditions, we obtain the following solution to problem (26):

q * (x) = qn (x) max(|q n (x)|, σ + 1)
2) Resolvent of G: In the second step of the algorithm, we must compute

λ * = (I + τ ∂G) -1 (λ n ) = arg min λ∈Λ τ G(λ) + 1 2 λ -λ n 2 Λ = arg min λ∈Ξ m i=1 φ i (λ i ) + 1 2τ λ i -λ n,i 2 Λi
As all the functions φ i are separable, this problem reduces to m × n unidimensional problems of form:

arg min λ∈R,|λ|≤C τ f (λ) + 1 2 |λ -λ n | 2 (27) 
where f is a convex function. In this work we focus on the cases:

• f (λ) = α|λ|.
The solution of ( 27) is given by:

λ * = max(|λ n | -τ α, 0) • sign(λ n ) max(1, max(|λ n | -τ α, 0)/C) . • f (λ) = α λ 2 2 .
The solution of ( 27) is given by:

λ * = λn τ α+1 max(1, | λn τ α+1 |/C) . • f (λ) = 0 if |λ| ≤ α +∞ otherwise
Let δ = min(C, α). The solution of ( 27) is given by:

λ * = λ n max(1, |λ n |/δ)
.

APPENDIX B COMPUTATION OF THE OPERATOR NORM L

In order to Algorithm 1 as fast as possible, it is important to use a tight estimation of L, the highest singular value of A defined in equation [START_REF] Münch | Stripe and ring artifact removal with combined wavelet-Fourier filtering[END_REF]. In the case of total variation, L can be computed exactly if periodic boundary conditions are used to define the discrete gradient operator.

With these boundary conditions, the discrete gradient operator ∇ = ∂ 1 ∂ 2 can be rewritten using convolution products and is thus diagonalized by the discrete Fourier tranform (DFT): 

∂ 1 u = d 1 * u = F -1 diag( d1 )Fu
AA T = F -1 0 0 F -1 • |D 1 | 2 Σ D 1 ΣD * 2 D 2 ΣD * 1 |D 2 | 2 Σ • F 0 0 F .
The eigenvalues of AA T are the same as those of

|D 1 | 2 Σ D 1 ΣD * 2 D 2 ΣD * 1 |D 2 | 2 Σ .
This matrix is symmetric, positive, semi-definite and is constituted of four diagonal blocks. L is thus given by the maximum largest eigenvalue of the following n, 2 × 2 matrices: 

M (k) =   | d1 (k)| 2 Σ(k) d1 ( 

Fig. 1 .

 1 Fig. 1. Stripes for various imaging modalities. Top-left: cement paste image using Ion beam nanotomography. Top-right: sintered specimen of CeO2 image using Scanning Electron Microscope (SEM). Bottom: medaka fish embryo image using Selective Plane Illumination Microscope (SPIM)

Fig. 2 .

 2 Fig. 2. Left: a Gaussian function in space domain -Right: the same Gaussian function in Fourier domain.

Fig. 3 .

 3 Fig. 3. Examples of stationary processes obtained by convolving white noises with different marginals with a filter. Top row : convolution with a Gabor filter. Bottom row: convolution with a fish pattern. From left to right : convolution with a white Bernoulli process, a Gaussian white noise and a uniform white noise.

where u 0

 0 = au 0 -b and (a, b) = arg min (a,b)∈R 2 au 0 -b -u 2 2

Fig. 4 .

 4 Fig. 4. Original pirate image.

Fig. 5 .

 5 Fig.5. Top-left: noisy pirate. Top-right: denoised using VSNR. Bottom-left: denoised using DeStripe[START_REF] Chen | DeStripe: frequency-based algorithm for removing stripe noises from AFM images[END_REF]. Bottom-right: denoised using Wavelet-FFT[START_REF] Münch | Stripe and ring artifact removal with combined wavelet-Fourier filtering[END_REF]. This experiment corresponds to the last line of TableI. The noise pattern is a vertical line. The Destripe and Wavelet-FFT algorithms do not completely remove low frequencies while VSNR leads to near perfect results.

Fig. 7 .

 7 Fig. 7. Synthetic image used for the toy example. PSNR = 21.5dB.

Fig. 8 .

 8 Fig. 8. Toy example. Left column: real components; right column: estimated components using our algorithm. (a,d): Baboon image. PSNR = 27dB. -(b,e): Colored Gaussian noise -(c,f): Impulse like noise

and ∂ 2 u

 2 = d 2 * u = F -1 diag( d2 )Fuwhere d 1 and d 2 are finite difference filters in the horizontal and vertical directions.Let H i be the matrix associated to the convolution product with ψ i . It satisfies H i λ i = ψ i * λ i and is thus diagonalized by the DFT:H i = F -1 diag ψi F. (28)Let us denoteD i = diag di , |D i | 2 = Di D i where Di is the complex conjugate of D i and Σ = m i=1 diag | ψi | 2 .Elementary calculus then leads to:

  k) d2 (k)Σ(k) d1 (k) d2 (k)Σ(k) | d2 (k)| 2 Σ(k)   ,where k belongs to the frequency domain andΣ(k) = m i=1 diag | ψi (k)| 2 .This computation is achieved in O(n log n) arithmetic operations.

Fig. 9 .

 9 Fig. 9. Destriping of a single section from a 3D volume of unhydrated particles of cement paste accessed by FIB-nanotomography. (a) original image is severely affected by the waterfall effect. (b) restored image using VSNR. (c) restored image using wavelet-FFT. (d) restored image using DeStripe.

Fig. 10 .Fig. 11 .

 1011 Fig. 10. SEM imaging on a sintered specimen of CeO2 (cerium oxide) at a sintering temperature of 1400 C for 2 hours and 50 minutes [8]. The image is composed of 512x512 pixels with each side measuring 70.55 µm; the intensity unit is 0.1 µm.

Fig. 12 .

 12 Fig. 12. Isosurface rendering (in red) of a three-dimensional stack of 42 planes of a Multicellular Tumor Spheroid expressing a fluorescent nuclear protein, H2B-HcRed. SPIM images were acquired with an objective 10X NA 0.25, an excitation wavelength of 595 nm and a detection using a 593 nm long pass filter (a) raw data (b) denoised data. The voxel size is 0.645*0.645*1µm.

TABLE I SNRR

 I OF THE IMAGES DENOISED USING DIFFERENT ALGORITHMS. THE NOISE IS OBTAINED BY CONVOLVING WHITE GAUSSIAN NOISE WITH A STRAIGHT LINE. THE THIRD LINE CORRESPONDS TO FIGURE 5.

	Initial SNRr	DeStripe	Wavelet -FFT	VSNR
	33.85	33.70	22.61	43.00
	19.73	20.52	22.03	37.54
	8.63	16.60	15.15	25.32

TABLE II SNRR

 II OF THE IMAGES DENOISED USING DIFFERENT ALGORITHMS. THE NOISE IS OBTAINED BY CONVOLVING WHITE GAUSSIAN NOISE WITH AN ELONGATED GAUSSIAN. THE THIRD LINE CORRESPONDS TO FIGURE 6.

	Initial SNRr	DeStripe	Wavelet-FFT	VSNR
	32.68	30.64	23.63	34.42
	21.80	22.53	18.98	26.31
	8.14	8.15	8.29	13.31
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