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Variational algorithms to remove stationary noise.
Application to SPIM imaging.

Jérôme Fehrenbach, Pierre Weiss, and Corinne Lorenzo

Abstract—In the present paper, a framework and an algorithm
are presented in order to remove stationary noise from images.
This algorithm can be seen both as a restoration method in
a Bayesian framework and as a cartoon+texture decomposition
method. In numerous denoising applications the white noise
assumption fails: structured patterns (e.g. stripes) appear in the
images. The model described here addresses cases where the
white noise assumption is replaced by a stationary noise as-
sumption. An application to an emerging fluorescence microscopy
technique (SPIM: Selective Plane Illumination Microscope) is
presented, where the adequate noise modeling allows to neatly
improve the image quality and provides much better results than
methods designed for white noise.

Index Terms—Stripe removal, non linear filtering, fast algo-
rithms, total variation, Gabor filter, SPIM microscope, texture-
geometry decompositions.

I. INTRODUCTION

THe main purpose of this work is to propose a general
noise or texture model that is both numerically tractable,

and describes complex real-life situations.
Many image formation models can be stated as follows:

u0 = Hu+ b

where u0 is the observed digital image, H is a deterministic
linear operator that models the acquisition process (sampling,
convolution, indirect measurements, ...) and b is a noise
or a texture. In restoration, the objective is to retrieve u
knowing the observation u0 and the observation operator H .
In texture+cartoon decomposition, H is the identity operator,
and the objective is to retrieve both the cartoon component u
and the texture component b.

A standard assumption in the literature is that the noise
is white, meaning that the different components of b are
independent random variables of finite variance. Though this
noise assumption models accurately some real applications,
it fails to do so in many scenarii. In the case of image
restoration/denoising problems, it often leads to unsatisfactory
results.

In this article we propose a noise model that suits more
complex frameworks and that can be handled numerically
in reasonable computing times. We replace the white noise
assumption by a stationary noise assumption. A stationary
noise b can be defined as a stochastic process having the
following translation invariance property:

∀τ ∈ Z2, p(b) = p(Tτ (b)) (1)

Jérôme Fehrenbach and Pierre Weiss are with the Institut de Mathématiques
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where p denotes the probability density function and Tτ is the
translation of vector τ with periodic boundary conditions on
the image domain.

This hypothesis is natural in many applications since it
amounts to saying that there is no a-priori knowledge about
location of any feature or noise pattern in the image. This can
be seen as an axiomatic approach to noise modelling as in
[1]. However, the general hypothesis of stationarity appears to
be hardly numerically tractable. In this work, we restrict to a
subclass of stationary stochastic processes, that can be easily
described in the frequency domain: the processes are generated
by convolving white noise with a given kernel. The noise thus
appears as ”structured” in the sense that some pattern might
be visible, see Figures 2, 3, 4.

This work was initially motivated by the recent devel-
opment of a microscope called Selective Plane Illumination
Microscope (SPIM). The SPIM is a fluorescence microscope
which performs optical sectioning of a specimen, see [12] for
more details. It allows to do long term 3D imaging of thick
specimens and seems to have no rival for many biological
applications [2], [13], [23]. One of the differences with con-
ventional microscopy is that the fluorescence light is detected
at an angle of 90 degrees with the illumination axis. This
procedure leads to the generation of stripe artifacts that can
be seen as irregular lines aligned with the illumination axis see
Figures 8 (a,d), 10 (a,c) and 11 (a). They strongly impair image
interpretation. One of the applications of our formalism is to
model and remove these stripes using variational principles.

Even though this work was initially devoted to the SPIM
microscope, it can be useful in a variety of applications, where
stationary patterns must be removed or detected. For instance,
stripes appear in many recent imaging modalities as Atomic
Force Microscope (AFM) [8], [14], electron microscopy and
Synchrotron X-Ray Tomographic images [16], or in remote
sensing imaging such as Moderate-resolution Imaging Spec-
troradiometer (MODIS) images or digital elevation models [6],
[7].

The proposed model shares many similarities with the
negative norm models of Y. Meyer [15], its successors [3],
[11] and the decomposition algorithms proposed in [10], [26].
Meyer’s idea is to decompose an image into a piecewise
smooth component and an oscillatory component. We refer to
[3] for a review of the principles, algorithms and results using
this approach. An alternative way of decomposing images
was proposed in [26]. The idea is to seek for components
that are sparse in given dictionaries. Different choices for
the elementary atoms composing the dictionary will allow to
recover different kind of textures. See [10] for a review of
these methods and a generalization to the decomposition into
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an arbitrary number of components.
The main contributions of the present paper are:
1) We propose a simple class of random processes that

describes real-life noises and textures.
2) Similarly to [10], the texture is described through a

dictionary. In our work each dictionary is composed
of a single pattern shifted in space, ensuring translation
invariance and fast computation in Fourier domain.

3) The proposed formalism and algorithms can be used
when dealing with inverse problems such as deblurring
or sampling with indirect measurements.

4) A Bayesian approach is provided in order to take into ac-
count the statistical nature of textures precisely. It sheds
a new light on the negative norm models and allows to
interpret them as maximum a posteriori approaches.

5) The decomposition problem is recast into a convex opti-
mization problem that is solved with a recent algorithm
of A. Chambolle and T. Pock [5] allowing to obtain
results in an interactive time.

6) We propose a C and Matlab implementation on our
webpage in the spririt of reproducible research http:
//www.math.univ-toulouse.fr/∼weiss/PageCodes.html.

The outline of this paper is as follows. In section II,
we introduce the notation and tools helpful for the paper
understanding. Section III contains detailed definitions and
some elementary properties of the noise model. Section IV
presents a restoration or decomposition model based on the
maximum likelihood estimator. Section V details an efficient
numerical scheme based on [5] to solve the resulting convex
programming problems. In section VI we present some appli-
cations and results on synthetic and real images.

II. NOTATION

In all the paper n = nx × ny will refer to the number
of pixels of the degraded image. m stands for the number of
filters used to describe the noise. Let u ∈ Rnx×ny be an image.
u(x) denotes the pixel of coordinates x ∈ {1, 2, · · · , nx} ×
{1, 2, · · · , ny}.
‖u‖p refers to the standard lp-norm of u. Let (u1, u2) ∈

Rn × Rn the dot product is denoted 〈u1, u2〉 = uT1 u2.
Let Λ = Rn×n and Q = Rn×2. These Euclidean spaces

are endowed with inner products 〈·, ·〉Λ and 〈·, ·〉Q. We set
‖q‖Q =

√
〈q, q〉Q and ‖λ‖Λ =

√
〈λ, λ〉Λ.

Let A : Λ → Q be a linear operator. The adjoint A∗ of A
is defined by:

〈Aλ, q〉Q = 〈A∗q, λ〉Λ, ∀(λ, q) ∈ Λ×Q. (2)

The norm of the operator A is defined by:

|‖A‖| = max
‖λ‖Λ≤1

‖Aλ‖Q (3)

∗ is the convolution operator with periodic boundary con-
ditions. F and F−1 respectively denote the discrete Fourier
and inverse Fourier transforms. We will also make use of the
notation û = Fu. Finally, ∇ denotes the discrete gradient
operator. In this article we use the discretization proposed in
[5].

Let φ : Λ→ R ∪ {+∞} be a convex, closed function with
non-empty domain. The domain of φ is defined by dom(φ) =
{λ ∈ Λ, φ(λ) < +∞}. φ∗ refers to the Fenchel conjugate of
φ defined by:

φ∗(λ2) = sup
λ1∈Λ
〈λ1, λ2〉Λ − φ(λ1).

The sub-differential of φ at λ1 is the set defined by:

∂φ(λ1) = {η ∈ Λ, φ(λ2) ≥ φ(λ1)+〈η, λ2−λ1〉Λ, ∀λ2 ∈ Λ}.

A function φ is said to be strongly convex of parameter γ,
if it is convex and that the following inequality holds for all
(λ1, λ2) ∈ dom(φ) and for all η ∈ ∂φ(λ1):

φ(λ2) ≥ φ(λ1) + 〈η, λ2 − λ1〉Λ +
γ

2
‖λ2 − λ1‖2Λ,

The resolvent of φ at point λ is defined by:

(Id + ∂φ)−1(λ) = arg min
λ′∈Λ

φ(λ′) +
1

2
‖λ′ − λ‖2Λ.

We refer to [24] for a complete introduction of the above
tools.

III. NOISE MODEL

In most denoising methods, the noise is supposed to be
white. However this assumption does not hold in some applica-
tions. For instance, Figures 5 (b,e) and 8 (a,d) are perturbed by
a directional noise, which is clearly not pixelwise independent.

A. A class of stationary noises

In this paper, we address the class of stationary noises that
satisfy the following hypothesis.

Hypothesis 3.1: We assume that the noise b can be written
as:

b =
m∑
i=1

λi ∗ ψi, (4)

where:

• each ψi ∈ Rn is a known elementary pattern,
• The λi’s are independent realizations of white noise

processes with known probability density functions.

This class of noises is stationary - in the sense that it
satisfies Equation (1) - as shown below.

Proposition 3.1: Let L be a random vector in Rn, the
components of which are i.i.d. Let B = h ∗ L be a random
vector where h is a convolution kernel. Then B is stationary.
The proof of this proposition can be found in [25], page 404.

Proposition 3.2: The class of noises described by Equation
(4) is stationary.

Proof: It suffices to use proposition 3.1 and the fact that
the sum of two independent stationary processes is stationary.
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B. Justification of the noise model in SPIM imaging
In light-sheet microscopy, images are corrupted by parallel

stripes. A noise removal algorithm should be able both to
locate their position and to estimate their intensity. Such a
perturbation b can be modeled by the following equation

b = λ ∗ ψ, (5)

where ψ is an elementary pattern, similar to a stripe, and
λ describes the positions and intensities of the pattern. We
assume that if ψ is chosen adequately, then λ can be modeled
as a sample of a white noise process.

In realistic applications, the noise is seldom describable
simply as in Equation (5). A more realistic noise description
would be the sum of processes of type (5). For instance,
in SPIM imaging in addition to stripes, Poisson or Gaussian
white noise appears due to the imperfections of the imaging
system. The Gaussian white noise is a special case of (5) where
ψ is a Dirac function and λ is a sample of a Gaussian white
noise process. In this work, we will make experiments with
Gaussian noise, but the extension to Poisson noise is quite
straightforward.

The common feature of the stripes in SPIM is their orien-
tation θ, as well as their dimensions (width and length) that
belong to a restricted range. Some stripes could also have
a frequency that characterizes their spatial oscillations. One
given stripe will thus be modeled by a Gabor function, which
is a 2-dimensional Gaussian modulated by a plane sinusoidal
wave. Its expression in space domain is

ψ(x, y) = exp

(
−x
′2

σ2
x

− y′2

σ2
y

)
sin(x′/λ+ ϕ),

where x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ.
In Fourier domain, the expression of this Gabor function is

the convolution of a Gaussian and the Fourier transform of the
plane wave (two Dirac masses).

Fig. 1. Left: a Gabor function in space domain – Right: the same Gabor
function in Fourier domain.

In order to describe stripes of different width or length,
several Gabor filters ψ1, . . . , ψm with different geometrical pa-
rameters can be used. As a summary we propose a description
of the stripes as in Equation (4) where the λi are white noise
realizations that will be described later and the ψi are Gabor
filters with the same orientation θ and different geometrical
parameters.

IV. RESTORATION/DECOMPOSITION MODEL

Throughout this paper, we assume the following image
formation model:

u0 = Hu+ b (6)

where H is a linear operator and b is independent of u
and satisfies hypothesis 3.1. In the numerical results, we will
concentrate on the case H = Id for simplicity, however all
the proposed algorithms extend in a straightforward manner
to H 6= Id.

A. A MAP reconstruction approach

The maximum a posteriori (MAP) approach in a Bayesian
framework usually leads to retrieve the image u that maxi-
mizes the likelihood probability

p(u|u0) =
p(u0|u)p(u)

p(u0)
.

In our setting, it is more natural to estimate the weights λ =
{λi}i=1..m since we assume that these processes have a known
probability density functions. The problem we propose is to
maximize the following probability:

p(λ|u0) =
p(u0|λ)p(λ)

p(u0)
.

Maximizing p(λ|u0) amounts to minimize − logp(λ|u0). The
restoration problem is thus expressed as:

Find λ∗ ∈ Arg min
λ∈Λ

− logp(u0|λ)− logp(λ). (7)

As we assumed independence of the λis,

− logp(λ) =

m∑
i=1

− logp(λi)

and

p(u0|λ) = p(Hu+

m∑
i=1

λi ∗ ψi|λ)

= p(Hu)

since we assume independence of λ and u.
Remark 4.1: In some applications the independence hy-

pothesis is questionable and a multiplicative model could be
considered. However our numerical experiments using such
multiplicative models did not improve the results sensibly
compared to the additive models and made the computations
much more involved.

B. Image prior

We need to devise a prior p(Hu) on the space of observa-
tions or a p.d.f. p(u) on the space of images (see remark 4.4)
in order to specify problem (7).

In this work, we use the standard assumption that images
are smooth or piecewise smooth. This can be promoted by
standard p.d.f. of the form p(u) ∝ exp(−αJR(u)) with:

JR(u) = ϕ(Bu).

In this equation, B is a linear operator and ϕ is a positive
convex function. Typically B = ∇ (the discrete gradient
operator) or a discrete wavelet transform and ϕ is a norm
or a regularized norm.
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In our experiments we use a quantity JR(u) that quantifies
the spatial regularity of the image:

JR(u) = ‖∇u‖1,ε

with:

‖ · ‖1,ε : Rn×2 → R
q 7→ ‖q‖1,ε =

∑
x φε(|q(x)|)

and

φε(t) =

{
t2

2ε if |t| ≤ ε
|t| − ε

2 otherwise.

Note that this function can be rewritten using duality as:

||z||1,ε := max
‖q‖∞≤1

〈z, q〉 − ε

2
‖q‖22.

The interest of setting ϕ(·) = ‖ · ‖1,ε is twofold:
• by choosing ε = 0, ‖ · ‖1,0 corresponds to the standard

isotropic l1-norm Rn×2 and lim
ε→+∞

ε‖ · ‖1,ε = ‖ · ‖22. This

formalism thus captures the standard l1 (total variation)
and l2 (Tikhonov) regularization.

• by setting ε 6= 0, the numerical schemes designed to
solve (7) converge faster than for ε = 0 and give similar
practical results.

Remark 4.2: it is straightforward to use sparsity priors in
the proposed formalism and we give the resulting optimization
problems for the sake of completeness in equation (11). In
the numerical experiments, we restricted our attention to total
variation like priors for the sake of simplicity.

C. Noise priors

The p.d.f. p(λi) in equation (7) still needs to be defined
in order to specify the optimization problem completely. The
p.d.f. should be chosen depending on the noise nature. In this
paper we considered three cases:
• Gaussian noise. This hypothesis consists in setting

p(λi) ∝ exp(−αi‖λi‖22). The corresponding noise com-
ponent bi = λi ∗ ψi is then a colored Gaussian noise. Its
power spectral density is given by the Fourier transform
of ψi. A typical example of such noise is given in Figure
2.

Fig. 2. Examples of Gaussian colored noises. Left: noise generated by
convolving a Gabor filter with a Gaussian white noise. Right: noise generated
by convolving a fish pattern with the same Gaussian white noise.

• Laplace noise. This hypothesis consists in setting
p(λi) ∝ exp(−αi‖λi‖1). This distribution is know to be
a good convex approximation of Bernoulli processes. The
corresponding noise component bi = λi ∗ψi is thus close

to a sparse signal in the dictionary composed of pattern
ψi translated in space. An example of such a process is
given in Figure 3.

Fig. 3. Left: noise generated by convolving a Gabor filter with a Bernoulli
process. Right: noise generated by convolving a fish pattern with the same
Bernoulli process.

• Uniform noise. This hypothesis consists in setting

p(λi) ∝

{
1 if ‖λi‖∞ ≤ αi
0 otherwise.

. This assumption al-

lows to model bounded noises. An example of such
process is given in Figure 4.

Fig. 4. Left: noise generated by convolving a Gabor filter with a uniform
white noise. Right: noise generated by convolving a fish pattern with the same
uniform white noise.

Remark 4.3: Notice that the images in Figure 2 and 4
look very similar. This can be explained using an extension
of the central limit theorem and has important practical
consequences. At each pixel, the result of a convolution
product between an elementary pattern and a white noise
can be interpreted as a weighted sum of independent random
variables. Lindeberg-Feller theorem’s [22] states that if the
random variables have finite variance, the pixelwise p.d.f.
of b in equation (5) tends to a Normal distribution as the
sampling step goes to 0, whatever the p.d.f. of the white
noise. Berry-Esseen’s theorem [22] states that the convergence
rate in infinite-norm to a normal distribution is of order
O
(
C√
n

)
where n is the convolution kernel’s support size and

C depends on the second and third order moments of the
process marginals. As a consequence: if the convolution kernel
has sufficiently slow spatial decrease, the p.d.f. of b in equation
(5) will be approximately the same whatever the marginal
distribution of λ. In practice it is much more convenient to
assume that λ is a Gaussian process for numerical purposes.
Indeed, Gaussian priors lead to the minimization of strongly
convex functions which can be achieved much more efficiently
using the iterative schemes we propose in this paper (see
proposition 5.3).
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D. Resulting optimization problems

We stated every necessary details to state the restoration
problem completely. In the case H = Id, which is the one
used in our experiments, it reads:

Find λ ∈ arg min
λ∈Λ

P (λ). (8)

where

P (λ) =

∣∣∣∣∣
∣∣∣∣∣∇
(
u0 −

m∑
i=1

λi ∗ ψi

)∣∣∣∣∣
∣∣∣∣∣
1,ε

+

m∑
i=1

αiφi(λi), (9)

and
λ = {λi}mi=1.

Remark 4.4: The model can be extended to cases where
H is not the identity. In order to avoid using the inverse
operator H−1, it suffices to add an extra variable u and solve
the linearly constrained problem:

min ‖∇u‖1,ε +
∑m
i=1 αiφi(λi)

subject to u ∈ Rn

λ ∈ Rn×m

Hu = u0 −
∑m
i=1 λi ∗ ψi

(10)

The resolution of (10) can be achieved using the algorithm
proposed later.

Remark 4.5: Sparsity priors would lead to problems of
kind:

min ‖γ‖1 +
∑m
i=1 αiφi(λi)

subject to γ ∈ Rp

λ ∈ Rn×m

u0 −
∑m
i=1 λi ∗ ψi = HSγ

(11)

where S : Rp → Rn is a dictionnary or a synthesis operator
and γ are the coefficients of u in this dictionnary.

Remark 4.6: The proposed model turns out to be equivalent
to the one proposed in [3] in the case of m = 1 component
and φ1(λ1) = α

2 ‖λ1‖22. In this work, the authors propose to
solve:

min
u∈Rn

JR(u) +
α

2
‖u− u0‖2K

where ‖u‖2K = 〈u,Ku〉 is a Hilbert norm defined with a
symmetric positive definite (SPD) convolution operator K.
Thus, there exists h such that

√
Ku = h ∗ u. Let us denote

ψ = F−1 1
Fh and λ = h ∗ (u− u0) then:

min
u∈Rn

JR(u) +
α

2
‖u− u0‖2K

= min
u∈Rn

JR(u) +
α

2
‖h ∗ (u− u0)‖22

= min
λ∈Rn

JR(u0 − ψ ∗ λ) +
α

2
‖λ‖22.

This last line is exactly equation (9). In this particular case
our models are equivalent, however our framework allows ψ
to vanish in the Fourier domain.

As a matter of fact, in the discrete setting, the model
proposed here can be seen as generalization of the negative
norm texture+cartoon decomposition models [15]. This will
be shown it in a forthcoming research report.

V. NUMERICAL ALGORITHMS

We completely specified problem (7) and we can now
describe a numerical scheme to solve it.

A. Problem relaxation

In the case of Tikhonov regularization (which corresponds
to φi(λ) = αi

2 ‖λi‖
2
2 and JR(u) = ‖∇u‖22), the above

problem can be solved exactly in O(m3n log n)) operations
using Fourier transforms and inversion of small m×m linear
systems. In the more general case, it is impossible to get an
exact solution and we need to design iterative methods that
will lead to approximate solutions.

The objective of this section is to provide a numerical
scheme to solve the following natural relaxation of problem
(8):

Find λε ∈ Ξ such that P (λε)− P (λ∗) ≤ ε (12)

where
Ξ =

{
λ ∈ Rn×m, ‖λ‖∞ ≤ C

}
.

This constrained problem is convex. We will show that adding
the constraint λ ∈ Ξ allows to design reliable stopping criteria
to ensure P (λε)−P (λ∗) ≤ ε. Moreover if C is large enough,
the extra box-constraint is inactive and the solutions of (12)
can be shown to be the same as those of:

Find λε ∈ Λ such that P (λε)− P (λ∗) ≤ ε. (13)

Problem (12) is a generic convex-concave saddle-point
problem. Many algorithms are proposed in the literature to
solve these kinds of problems (see e.g. [9] for an overview
of existing methods). Recently, Nesterov paved the way to
the development of new efficient algorithms ( [4], [17], [20],
[21]). From a theoretical point of view, these algorithms are
shown to be optimal in the class of first order methods and
they outperform second order algorithms - like interior point
methods - for large scale problems and moderate accuracy.

Among all the papers published recently on this topic, [5]
is probably the most versatile and we decided to present and
implement this strategy.

B. Reformulation as a saddle-point problem

This section is devoted to the resolution of (12). It is
straightforward to extend the algorithms to problems (10) and
(11). In order to apply the ideas presented in [5], we first need
to reformulate (12) as a saddle-point problem.

To simplify the reading, let us first introduce some notation.
A is the following linear operator:

A : Rm×n → Rn×2

λ 7→ ∇ (
∑m
i=1 λi ∗ ψi)

(14)

We detail a procedure to compute its highest singular value L
in appendix B. By denoting

F (q) = ‖∇u0 + q‖1,ε

and

G(λ) =

m∑
i=1

φi(λi) + χΞ(λ),
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problem (12) can be recast as the following convex-concave
saddle-point problem:

min
λ∈Ξ

max
q∈Q
〈Aλ, q〉Q − F ∗(q) +G(λ). (15)

The interest of this saddle-point reformulation is twofold:
• It allows the use of primal-dual algorithms which are

known as being robust and efficient.
• It will allow to define a duality gap, which will provide

a reliable stopping criterion for the iterative algorithm.

C. Elementary properties of the problem

By inverting the minimum and the maximum in (15) we
obtain the following dual problem :

max
q∈Q

min
λ∈Λ
〈λ,A∗q〉Q − F ∗(q) +G(λ). (16)

Let us denote:

P (λ) = max
q∈Q
〈λA∗q〉Λ − F ∗(q) +G(λ)

= F (Aλ) +G(λ),

D(q) = min
λ∈Λ
〈Aλ, q〉Q − F ∗(q) +G(λ)

= −F ∗(q)−G∗(−A∗q)

and
∆(λ, q) = P (λ)−D(q).

Note that P stands for Primal and D stands for Dual. By
using standard results of convex programming, we prove that:

Theorem 5.1 (Characterization of solutions of problem (12)):

1) Problem (12) admits a convex, non-empty set of solu-
tions.

2) Problem (15) admits a non-empty set of saddle points.
3) Let (λ∗, q∗) be a saddle point of (15). It satisfies

∆(λ∗, q∗) = 0 and λ∗ is a solution of problem (12).
4) Finally, for any (λ, q) ∈ Ξ× Rn×2,

∆(λ, q) ≥ P (λ)− P (λ∗).

The last item in this theorem indicates that the duality gap
might be used as a stopping criterion for an iterative algorithm:
it is an upper bound of the difference between the objective
function and the minimum.

Proof: Points (1) and (2) result from boundedness of the
set Ξ× dom(F ∗) and convexity of the functionals. Points (3)
and (4) are standard results of convex analysis [24].

The following propositions will be useful in order to deter-
mine the algorithm step sizes.

Proposition 5.1: In the standard Euclidean metric, if ε > 0,
then F ∗ is strongly convex with parameter ε:

∀(q, q′) ∈ Q2, F ∗(q′) ≥ F ∗(q)+〈∂F ∗(q), q′−q〉Q+
ε

2
‖q′−q‖2Q

Proof: Function F is differentiable and its gradient is 1/ε-
Lipschitz. The result follows from the fact that the conjugate
of a convex function with Lipschitz gradient is strongly convex
(see e.g. [27]).

Proposition 5.2: In the standard Euclidean metric, if
φi(λi) = αi

2 ‖λi‖
2
2 for all i ∈ {1..m}, then G is strongly

convex with parameter:

γ = min
i∈{1..m}

αi (17)

Proof: Since G(λ) =

m∑
i=1

φi(λi) + χΞ(λ), dom(G) = Ξ.

Let λ = (λi) and λ′ = (λ′i) ∈ Ξ. Then:

G(λ′)−G(λ) =

m∑
i=1

αi
2
〈λ′i − λi, λ′i + λi〉

=

m∑
i=1

αi
2

(
〈λ′i − λi, 2λi〉+ ‖λ′i − λi‖2

)
= DG(λ).(λ′ − λ) +

m∑
i=1

αi
2
‖λ′i − λi‖2

≥ DG(λ).(λ′ − λ) +
γ

2
‖λ′ − λ‖2

Note that these constants change if we change the inner
products.

We have provided all necessary preliminaries to describe
the algorithm.

D. A primal-dual algorithm

The algorithm proposed by Chambolle and Pock in
[5] applied to problem (12), can be written as follows:

Algorithm 1: Primal-Dual algorithm [5]
Input:
ε: the desired precision;
(λ0, q0): a starting point;
σ0, τ0 such that σ0τ0 = L2;
Output:
λε: a solution to problem (12).
begin

k=0;
while ∆(λ, q) ≤ ε∆(λ0, q0) do

qk+1 = (Id + σk∂F
∗)−1(qk + σkAλ̄k)

λk+1 = (Id + τk∂G)−1(λk − τkA∗qk+1)
(τk+1, σk+1, θk) =Update(τk, σk, ε, γ, L)
λ̄k+1 = λk+1 + θk(λk+1 − λk)
k = k + 1;

end
end

The calculation of the resolvents of F ∗ and G are described
in the appendix. The Update function corresponds to the
following updating rules:
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Algorithm 2: Step size update rules
Input:
ε: parameter of strong convexity of F ∗

γ: parameter of strong convexity of G (see eq. (17)
L: highest singular value of G
σk and τk: step sizes at iteration k
Output: θk, σk+1 and τk+1.
begin

if φi(·) = αi
2 ‖ · ‖

2
2 for all i ∈ {1..m} then

if ε > 0 then
The sequence ((τk, σk))k∈N is constant:
µ = 2

√
γε/L

τk+1 = µ
2∗γ

σk+1 = µ
2∗ε

θk = 1
1+µ

else
θk = 1√

1+2γτ
τk+1 = θkτk
σk+1 = σk

θk
end

else
The sequence ((τk, σk))k∈N is constant:
θk = 1
τk+1 = τk
σk+1 = σk

end
end

The convergence properties of this algorithm are summa-
rized below.

Proposition 5.3: The sequence (λk, qk)k∈N converges to a
saddle-point of (15). Moreover it guarantees the following
convergence rates:
• If ε = 0 and a function φi is non quadratic then:

∆(λk, qk) = O

(
L

k

)
• If ε = 0 and all functions φi are squared l2-norms:

∆(λk, qk) = O

(
L

k2

)
and

‖λk − λ∗‖22 = O

(
L2

k2

)
• If ε > 0 and all functions φi are l2-norms, the conver-

gence is at least linear:

∆(λk, qk) = O
(
ωk/2

)
and

‖λk − λ∗‖22 = O
(
ωk/2

)
with ω = 1

1+
√
γε

L

.

These convergence rates can be shown to be optimal for
first order methods [17], [19].

Remark 5.1: As Chambolle-Pock’s method is first-order,
the algorithm depends on the choice of the inner products on
the primal and dual spaces. It is possible to define different

inner products 〈·, ·〉Λ and 〈·, ·〉Q, leading to different iterative
methods. This remark can be used to precondition the problem
and obtain faster convergence rates, see paragraph VI-C for
more details.

VI. RESULTS

In this section we first present experimental results of
the proposed algorithm on synthetic images and then turn
to the application on SPIM imaging. We finish the section
by showing the experimental convergence behavior of the
algorithm.

A. Synthetic images

The method is first validated on two synthetic examples,
where ground truths are available.

In the first example, we use a real color image. We added
straigth lines (stripes) on the images with random independent
Gaussian amplitudes. The image is denoised by setting m =
1 (one noise component is sought after), the filter ψ1 is a
horizontal line of width 1 pixel and φ1(λ1) = α1

2 ‖λ1‖22 which
corresponds to a Gaussian noise assumption. Every channels
are treated separately. The extension to color total variation
is straightforward. Removing this kind of noise is probably a
simpler task than standard white noise, as it is incoherent with
the image content.

(a) (d)

(b) (e)

(c) (f)

Fig. 5. (a),(d) Original image. (b),(e) Noisy image. (c),(f) Denoised image
using the proposed algorithm.
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In a second example, we added the sum of two stationnary
noises to the Baboon image. The first one is the convolution
product of a Gaussian white noise with an isotropic sinc. The
second one is the convolution product of a Bernoulli process
with a Gabor function.

Fig. 6. Synthetic image used for the toy example. PSNR = 21.5dB.

The results are shown below:

(a) (d)

(b) (e)

(c) (f)

Fig. 7. Toy example. Left column: real components; right column: estimated
components using our algorithm. (a,d): Baboon image. PSNR = 27dB. - (b,e):
Colored Gaussian noise - (c,f): Impulse like noise

B. Real images

The proposed algorithm is tested on 3 SPIM images with
different contents. The images all come from the SPIM

microscope prototype developed at ITAV-UMS3039 (CNRS).
Algorithm 1 is applied with two filters ψ1 and ψ2. The first
filter ψ1 is a Dirac (which allows the recovery of Gaussian
white noise), and the second filter ψ2 is an anisotropic Gabor
filter with principal axis directed by the stripes (this orientation
is determined by the user). Different parameters were tested for
filter ψ2 and led to similar results. This outlines the robustness
of this approach with respect to the filter choice. A comparison
with a TV-L2 denoising algorithm is presented in Figure 8.

Let us discuss the results:

• Figure 8: in the image (d), cell groups are visible (top left
and bottom right). The raw image is seriously interfered
with stripes artifacts which are very marked within the
cells. In the result (e), the stripes disappeared and the
contours of cells are preserved and they are still well
resolved. The image is restored without adding others
artefacts. The results of TV-L2 optimization is also pre-
sented in (c) and (f).

• In Figure 10 only the contour of the cells is stained.
The images are significantly denoised and small details
are preserved. This is a particularly hard example as the
images are not piecewise constant (i.e. the perfect BV
images). This shows that the proposed noise model is a
good approximation of reality.

• Figure 11 is a 3D visualisation of a stack, corresponding
to a region of a multicellular tumor spheroid express-
ing a nuclear fluorescent protein, the H2B-HcRed. The
denoising obtained on the stack is significant. Moreover,
the 3D reconstruction of some objects (nuclei) performed
by extraction of the isosurfaces of fluorescence intensity
(in red, Imaris software) is substantially improved after
processing.

C. Numerical behavior

In this section, we briefly describe some aspects of the
algorithms and its numerical performances.

a) Parameter tuning: These performances depend quite
heavily on the parameters choice in algorithm 1. There are at
least 4 parameters that should be tuned:

1) First, it is important to have a tight estimate of L, the
highest singular value of A, in order to choose σ and
τ such that στ = L2. An overestimation of L will
slow down the scheme and an underestimation will make
the scheme diverge. In the case of total variation, this
computation can be done explicitly as shown in appendix
B.

2) Second, the relationship στ = L2 still leaves a degree
of freedom in the choice of σ and τ . It makes it is
uneasy to choose these step sizes and it seems that only
experimental tuning is available today.

3) Third, as stated in remark 5.1, choosing different inner
products in the primal space Λ and dual space Q
will lead to different algorithms and can change the
numerical performances of algorithm 1 drastically. This
question is related to the previous one and we are
currently conducting theoretical investigations in order
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(a) (d)

(b) (e)

(c) (f)

Fig. 8. SPIM images of branchial arcs of Xenopus leavis’s late taibud
acquired with an objective 40X NA 0.8, an excitation wavelength of 473 nm
and an emission wavelength of 510 nm. The voxel size is 0.16*0.16*1 µm.
Left column, from top to bottom: (a) Single plane of a 3D stack. (b) Restored
image using our algorithm. (c) Restored image using TV-L2 optimization.
Right column: details.

to provide analytical solutions for these choices. We
propose a heuristic choice described later in this section.

4) Finally, it is important to have a reliable stopping crite-
rion in order to automatize the algorithm and simplify its
use for people not specialized in computing. In all our
experiments, choosing ε = 10−3 as a stopping criterion
in algorithm 1 led to solutions that were accurate enough
for the visual system (no visible difference with the true
solution) 1. We believe that this is a very nice property
of the proposed scheme as no user input is necessary.

b) Analytical and empirical complexity: The scheme’s
analytical complexity A is given by:

A = (iterations number)× 2×m× (FFT(n) +O(n) op.)
+m× FFT(n)

(18)

1For most problems, we experienced that ε = 10−2 was enough, so that
ε = 10−3 is a very cautious choice.

(a) (b)

Fig. 9. Left: the stripes identified by our algorithm (λ2 ∗ ψ2). Right: the
gaussian noise identified by our algorithm (λ1 ∗ ψ1)

where n is the pixels number, m is the number of filters used in
the model, FFT(n) indicates an FFT applied to a size n vector
and op. means operations. This theoretical convergence rate
indicates that the scheme is adapted to large scale problems:
the dependence in n is just O(n log(n)).

Overall, if all the parameters in algorithm 1 are chosen
correctly (σ, τ and the metrics), the scheme requires less than
50 iterations in order to decrease the initial duality gap by a
factor ε = 10−3 2. The overall cost is thus around 100×m FFT
computations. This takes around 5 seconds for a 1024× 1024
image, on a 1.2GHz laptop, using m = 1 filter. This is quite
fast and it can be accelerated using parallel computing. For
instance, the scheme can be implemented easily on a GPU.
This would decrease the computing times to less than 1 second
for a 1024× 1024 image.

c) A heuristic choice of the metrics: All the tools used
in algorithm 1 (Adjoints, singular values, Fenchel transforms,
subgradients, proximal operators,...) depend on the choice of
the inner products 〈·, ·〉Λ and 〈·, ·〉Q. Let M : Rm×n → Rm×n
and N : Rn×2 → Rn×2 be two symmetric, positive definite
matrices. They allow to specify the inner products on Λ and
Q by:

〈λ1, λ2〉Λ = 〈Mλ1, λ2〉
〈q1, q2〉N = 〈Nq1, q2〉Q. (19)

It is not possible to choose N and M arbitrarily if we wish
to use explicit expressions for the resolvents of F ∗ and G. In
this work, we thus simply use diagonal matrices which allow
explicit computations (see appendix A).

Usually, metric change or preconditionning are used in
linear systems in order to improve the condition numbers of
matrices. The case of convex programming is more involved:
the Lipschitz constant of the gradient and the modulus of
strong convexity - which generalize the notion of smallest and
highest singular value - can be infinite or null. A potential goal
for choosing σ, τ , N and M could thus be to minimize:

‖λ∗ − λ0‖2Λ
2τ

+
‖q∗ − q0‖2Q

2σ
(20)

such that στ = L2. This quantity defines the scheme’s
theoretical convergence rate [5]. However our tries using this
strategy did not provide good enough results.

2for easy problems, even 10 iterations are enough.
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(a)

(b)

(c) (d)

Fig. 10. SPIM images of a Multicellular Tumor Spheroid stained with DiI
acquired with an objective 20X NA 0.5, an excitation wavelength of 532 nm
and an emission wavelength of 593 nm. The voxel size is 0.32*0.32*1 µm.
(a) Single plane of a 3D stack; (c) A magnified view of a region of (a); (b)
Denoised image; (d) A magnified view of the same region of (b).

That is why we finally proceed by trial and error using
very simple matrices. The matrix N is used the dual space
which represents the level lines orientation. There is a priori
no reason to promote different pixels so that we simply use
N = Id. The matrix M is used in the primal space and allows
to balance the different filters. We define it as a diagonal matrix
of form:

M =


m1Idn 0n 0n

0n
. . . 0n

0n 0n mmIdn

 (21)

where mm are positive real numbers allowing to weight the
different filters. The coefficients mm are obtained by trial and
error. This strategy is satisfactory when dealing with a single
imaging modality (here we use the same SPIM device), and

(a)

(b)

Fig. 11. Isosurface rendering (in red) of a three- dimensional stack of 42
planes of a Multicellular Tumor Spheroid expressing a fluorescent nuclear
protein, H2B-HcRed. SPIM images were acquired with an objective 10X NA
0.25, an excitation wavelength of 595 nm and a detection using a 593 nm long
pass filter (a) raw data (b) denoised data. The voxel size is 0.645*0.645*1µm.

the parameters can be tuned once for all.

VII. CONCLUSION

We proposed a variational approach to denoise images im-
paired by a large class of stationary noise. It takes advantage of
recent advances in convex optimization, leading to interactive
computing times. Applications to synthetic images, and to
images issued from an emerging microscope (SPIM) were
presented, leading to very clear improvements of the image
quality.

APPENDIX A
EXPLICIT EXPRESSIONS OF THE RESOLVENTS

The resolvent of F ∗ and G depend on the choices of the
inner products. By using definition (19), we obtain - using
standard rules of conjugacy - that:

F ∗(q) =

{
ε
2‖Nq‖

2
2 − 〈∇u0, q〉Q if ‖Nq‖∞ ≤ 1

+∞ otherwise
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and

G∗(λ) =

m∑
i=1

(φi + χ[−C,C]n)∗ (Mλi) .

The adjoint of A also depends on M and N . Elementary
calculus leads to:

A∗ = M−1ATN

where the transpose is:

AT : Rn×2 → Rm×n

q 7→
(
∇T q ∗ ψ̌1, · · · ,∇T q ∗ ψ̌m

)
The different Fenchel transforms of φi are:
• If φi(λ) = αi‖λ‖1:

(φi + χ[−C,C]n)∗(λ) = C‖max(0, |λ| − αi)‖1.

• If φi(λ) = αi
2 ‖λ‖

2
2:

(φi + χ[−C,C]n)∗(λ)

= α

∥∥∥∥∥min

(∣∣∣∣λα
∣∣∣∣ , C) ∣∣∣∣λα

∣∣∣∣− 1

2
min

(∣∣∣∣λα
∣∣∣∣ , C)2

∥∥∥∥∥
1

• If φi(λ) = χ[−αi,αi](λ):

(φi + χ[−C,C]n)∗(λ) = min(αi, C)‖λ‖1

1) Resolvent of F ∗: Let us detail the calculation of:

q∗ = (Id + σ∂F ∗)−1(qn)

= arg min
q∈Q,‖Nq‖∞≤1

σε

2
‖Nq‖22 − 〈σ∇u0, Nq〉

+
1

2
‖q − qn‖2Q (22)

We assume that N is a diagonal matrix and N(x) denotes the
diagonal element of N associated to pixel x. Let

q̃n = qn + σ∇u0

By writing the Karush-Kuhn-Tucker optimality conditions, we
obtain the following solution to problem (22):

q∗(x) =
q̃n(x)

max(N(x)|q̃n(x)|, σεN(x) + 1)

2) Resolvent of G: In the second step of the algorithm, we
must compute

λ∗ = (I + τ∂G)−1(λn)

= arg min
λ∈Λ

τG(λ) +
1

2
‖λ− λn‖2Λ

= arg min
λ∈Ξ

m∑
i=1

φi(λi) +
1

2τ
‖λi − λn,i‖2Λi

As all the functions φi are separable and M is diagonal,
this problem reduces to m × n unidimensional problems of
form:

arg min
λ∈R,|λ|≤C

τf(λ) +
1

2
m|λ− λn|2 (23)

where f is a convex function. In this work we focus on the
cases:

• f(λ) = α|λ|.

The solution of (23) is given by:

λ∗ =
max(|mλn| − τα

m , 0) · sign(λn)

max(1,max(|mλn| − τα
m , 0)/C)

.

• f(λ) = αλ
2

2 .

The solution of (23) is given by:

λ∗ =
mλn
τα+m

max(1, | mλnτα+m |/C)
.

• f(λ) =

{
0 if |λ| ≤ α

+∞ otherwise

Let δ = min(C,α). The solution of (23) is given by:

λ∗ =
λn

max(1, |λn|/δ)
.

APPENDIX B
COMPUTATION OF THE OPERATOR NORM L

In order to make the iterative methods as fast as possible,
it is important to use a tight estimation of L, the highest
singular value of A defined in equation (14). In the case of
total variation, L can be computed exactly if periodic boundary
conditions are used to define the discrete gradient operator.

With these boundary conditions, the discrete gradient opera-

tor ∇ =

(
∂1

∂2

)
can be rewritten using convolution products

and is thus diagonalized by the discrete Fourier tranform
(DFT):

∂1u = d1 ∗ u = F−1diag(d̂1)Fu

and
∂2u = d2 ∗ u = F−1diag(d̂2)Fu

where d1 and d2 are finite difference filters in the horizontal
and vertical directions.

Let Hi be the matrix associated to the convolution product
with ψi. It satisfies Hiλi = ψi ∗ λi and is thus diagonalized
by the DFT:

Hi = F−1diag
(
ψ̂i

)
F . (24)

Let us denote Di = diag
(
d̂i

)
, |Di|2 = D̄iDi where D̄i

is the complex conjugate of Di and Σ =
∑m
i=1 diag

(
|ψ̂i|2

)
.

Elementary calculus then leads to:

AAT =

[
F−1 0

0 F−1

]
·

[
|D1|2Σ D1ΣD∗2

D2ΣD∗1 |D2|2Σ

]
·

[
F 0

0 F

]
.

The eigenvalues of AAT are the same as those of[
|D1|2Σ D1ΣD∗2

D2ΣD∗1 |D2|2Σ

]
.
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This matrix is symmetric, positive, semi-definite and is consti-
tuted of four diagonal blocks. L is thus given by the maximum
largest eigenvalue of the following n, 2× 2 matrices:

M(k) =

 |d̂1(k)|2Σ(k) d̂1(k)d̂2(k)Σ(k)

d̂1(k)d̂2(k)Σ(k) |d̂2(k)|2Σ(k)

 ,
where k belongs to the frequency domain, d̂1 and d̂2 where
defined above and Σ(k) =

∑m
i=1 diag

(
|ψ̂i(k)|2

)
. This com-

putation is achieved in O(n log n) arithmetic operations 3.
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in Toulouse cancéropole for their tireless support during
this work and for all SPIM related questions. They also
thank François De Vieilleville for fruitful discussions. Jérôme
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