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Abstract

The problems of model and variable selections for classification trees are jointly con-
sidered. A penalized criterion is proposed which explicitly takes into account the number
of variables, and a risk bound inequality is provided for the tree classifier minimizing this
criterion. This penalized criterion is compared to the one used during the pruning step
of the CART algorithm. It is shown that the two criteria are similar under some specific
margin assumptions. In practice, the tuning parameter of the CART penalty has to be
calibrated by hold-out. Simulation studies are performed which confirm that the hold-out
procedure mimics the form of the proposed penalized criterion.

Keywords: Classification Tree, Variable Selection, Statistical Learning Theory

1 Introduction

Since the pioneering work of Breiman et al. [Breiman et al., 1984], classification trees have
become a classical tool in machine learning. In particular, the Classification and Regression
Tree (CART) algorithm is a well-established algorithm to build and prune tree predictors.
This algorithm has been successfully applied in various fields, see for instance Bel et al. [2009],
Chou et al. [1989], Dudoit et al. [2002], Wernecke et al. [1998]. A crucial step of the CART
algorithm is the pruning process, in which a tree classifier f̂T is selected from a short list of
classifiers based on trees pruned from a deep tree Tmax. The penalized criterion proposed to
select f̂T is of the form

Pnf̂T + αn × |T | , (1)

where n is the number of observations, Pnf̂T is the empirical risk of tree classifier f̂T , αn is a
tuning parameter (known to depend on n, see Gey and Nedelec [2005] for instance), and |T |
is the size of the tree, i.e. the number of leaves (terminal nodes) of T .
From a theoretical point of view, many works have investigated this pruning process. In
the Gaussian or bounded regression context, this criterion was validated in Gey and Nedelec
[2005] using model selection framework. Another validation was obtained in the classification
framework in Nobel [2002]. More recently, a refined analysis of the pruning step was proposed
in Gey [2010], where margin adaptive risk bounds were obtained in the binary classification
context.
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However, the results obtained so far are not completely satisfactory for at least two reasons.
First, by considering the problem of performance assessment for tree classifiers only through
the pruning step, one can only obtain theoretical guarantees conditionally to the construction
of Tmax. In this case, the performance of the candidate classifier f̂T is compared to the best
performance that can be achieved by one of the classifiers built on the subtrees of Tmax. The
alternative point of view adopted here will be to compare the performance of a candidate tree
classifier to the best performance that can be achieved by one of the classifiers built on any
tree. Second, it is well-known that CART belongs to the embedded variable selection methods
(Czekaj et al. [2008], Guyon and Elisseeff [2003], Lal et al. [2006]). A variable selection pro-
cess is called embedded when it is included in the training step of the classification algorithm.
Therefore the learning and variable selection processes cannot be separated. In CART, this
inner selection process results from the recursive growing strategy of the tree: at each node,
the “best” variable is selected among all for splitting. As a result, in many cases the maximal
tree (and consequently all of its subtrees) only includes a small subset of the p initial vari-
ables. This embedded property is actually one of the main arguments for the use of CART
to deal with large dimension data (see Breiman [2001], Dyer et al. [2007], Gey and Lebarbier
[2008] for example). However, criterion (1) does not obviously depend on the total number of
covariates p. This can be astonishing: in both the regression and classification frameworks,
theoretical studies have shown that in the variable selection context, an extra term should be
added to the penalty that is used when only one model is considered per dimension (Birgé and
Massart [2001], Mary-Huard et al. [2007]) to obtain oracle-type inequalities. Since the col-
lection of possible trees increases with p, p should play a crucial role in the regularization term.

Since parameter p does not explicitly appear in criterion (1), one can argue that p is
hidden in the constant term αn. This argument is verified from at least two penalties that
can be exhibited from previous works:

• In Nobel [2002] (equation 4), the penalty term has the form

pen(|T |, n) = C1 ×
√

|T |p log n
n

=

√
Cst

p log n

n
×
√
|T |

= α(p, n)
√

|T | ,

• In Gey [2010] (Theorem 1), the penalty term is of order

pen(|T |, n) ≈ C2 ×
p log (p)(1 + log(n/ log (p)))

n
× |T |

= α(p, n)|T | ,

where C1 and C2 are known constants. While these two penalty functions depend on p, one
can observe that their scaling order is much larger than the log(p) usually obtained in the
variable selection context (Birgé and Massart [2001], Mary-Huard et al. [2007]).

The goal of the present paper is to decipher the exact impact of variable selection on
tree classifier selection. First, this will be investigated from a theoretical point of view. To
this purpose, we consider the model selection problem where the goal is to select a candidate
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from all possible tree classifiers. The strategy consists in choosing the candidate minimizing
a penalized criterion that depends on parameters p and n, and on the margin assumption
made on the conditional distribution of the label. In this model selection context, we exhibit
a penalization function where the variable selection process is explicitly taken into account,
and provide performance guarantees for the candidate tree classifier through an upper bound
of its risk. The impact of variable selection is then studied from a practical point of view. A
simulation study is performed which shows that the proposed penalization function is the one
that is implicitly used in the pruning step of the CART algorithm.

The paper is organized as follows. Section 2 presents the framework of binary classification
and describes tree classifiers. The main theoretical contribution and the simulation study are
presented in Section 3. Some discussion is developed in Section 4, and finally Section 5 gives
the proofs of the results presented in Section 3.

2 Context

2.1 Classification framework

The considered classification framework is the following. Suppose one observes a sample
{(X1, Y1), . . . , (Xn, Yn)} of n independent copies of the random variable (X,Y ), where the
explanatory variable X takes values in a measurable space X of dimension p > 2, and is
associated with a label Y taking values in {0, 1}. Suppose moreover that each coordinate of
X is ordered. A classifier is then any function f mapping X into {0, 1}.
The quality of a classifier is measured by its misclassification rate

Pf := P(f(X) 6= Y ) , (2)

where P denotes the joint distribution of (X,Y ). If the joint distribution of (X,Y ) were
known, the problem of finding an optimal classifier minimizing the misclassification rate would
be easily solved by considering the Bayes classifier f∗ defined for every x ∈ X by

f∗(x) = 1lη(x)>1/2 , (3)

where η(x) is the conditional expectation of Y given X = x, that is

η(x) = P [Y = 1 | X = x] . (4)

As P is unknown, the goal is to construct from sample {(X1, Y1), . . . , (Xn, Yn)} a classifier f̃
that is as close as possible to f∗ in the following sense: since f∗ minimizes the misclassification
rate, f̃ will be chosen in such a way that its misclassification rate is as close as possible to the
misclassification rate of f∗, i.e. in such a way that the loss

l(f∗, f̃) = P(f̃(X) 6= Y )− P(f∗(X) 6= Y ) (5)

is as small as possible.
Many strategies or classification algorithms have been proposed to build f̃ (see Hastie et al.
[2001], Boucheron et al. [2005] for an overview). The quality of a strategy is measured by its
risk

E[l(f∗, f̃)] ,

where the expectation is taken with respect to the sample distribution. In the model selection
framework, two strategies are usually considered:

3



• Empirical Risk Minimization: f̃ is chosen as the minimizer of

Pnf :=
1

n

n∑

i=1

1l{f(Xi) 6=Yi} , (6)

over all classifiers f belonging to a single class of classifiers,

• Structural Risk Minimization: f̃ is chosen as the minimizer of the penalized empirical
risk over a collection of classes.

2.2 Margin assumptions

It is now well known that without any assumption on the joint distribution P, the minimax
convergence rate of the risk bound is of order O(1/

√
n). It has also been shown that, under

the overoptimistic zero-error assumption (that is Y = η(X) almost surely, where η is defined
by (4)), this minimax convergence rate is of order O(1/n) (see Vapnik [1998], Lugosi [2002]
for example).

These two extreme cases can be modulated by so-called margin assumptions that make
the link between the “global” pessimistic case (without any assumption on P) and the zero-
error case (Koltchinskii [2006a,b], Mammen and Tsybakov [1999], Massart and Nédélec [2006],
Massart [2007], Tsybakov [2004], Tsybakov and van de Geer [2005]).

In this paper, we consider the margin assumption proposed in Mammen and Tsybakov [1999]:

MA(1) There exist some constants C > 0 and κ > 1 such that, for all t > 0,

P (|2η(X)− 1| 6 t) 6 C t
1

κ−1 , (7)

Note that by taking t = h ∈]0, 1[ and κ = 1, we obtain the more intuitive assumption proposed
in Massart and Nédélec [2006] (see also the slightly weaker condition proposed in Kohler and
Krzyżak [2007]):

MA(2) There exists h ∈]0; 1[ such that

P (|2η(X)− 1| 6 h) = 0. (8)

2.3 Tree classifiers, classes of tree classifiers

A tree T is a structure that can be represented as a hierarchy whose elements are called nodes.
For binary trees, each node has either 0 or 2 children (called Left and Right). The initial
node is called the root of the tree and a node with no child is called a leaf. The size of tree T
is defined as the number of its leaves and noted |T | in the following. In this paper, we define
a tree Tcℓ by two elements:

• its configuration c, i.e. the hierarchy between the nodes: for instance, in Figure 1, we
know that node 6 is the Left child node of node 3, and so on,

• the ordered list ℓ of variables that appear at each node, i.e. the kth variable in the list
appears in node k.

A tree classifier f based on tree Tcℓ associates
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Figure 1: Tree configuration example: for each node, the parent and child nodes are known.

Figure 2: Two tree classifiers that belong to the same class.

• at each internal node a condition of the form ”Xjk > sk”, where jk is the index of the
variable associated with node k and sk is a threshold,

• at each terminal node a label (here 0 or 1).

Therefore, an observation x ∈ X will be classified as follows: starting at the root, observation
x will move from a node of f to another using the following rule: at node k, if ”xjk > sk” then
x moves to Right, otherwise it moves to Left. At the end of the process, x will be classified
according to the label of the leaf it reaches.
To summarize, a tree classifier associated with tree Tcℓ splits X into |Tcℓ| regions each as-
sociated with a label, and two classifiers associated with the same tree Tcℓ differ in that
the thresholds (for internal nodes) and labels (for leaves) are not the same. An example
of two such tree classifiers is given in Figure 2. In the following, we will consider classes
Ccℓ = {f /f based on Tcℓ} of classifiers based on a same tree Tcℓ.
Finally, we define

f cℓ ∈ arg min
f∈Ccℓ

Pf, (9)

where Pf is defined by (2).
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3 Results

3.1 Risk bounds

We first consider a single class Ccℓ of tree classifiers and its associated empirical risk minimizer

f̂cℓ ∈ arg min
f∈Ccℓ

Pnf,

where Pnf is defined by (6).

Proposition 1. Assume that margin assumption MA(1) is verified. For all tcℓ > 0 and
α > 0, there exist positive constants K1, K2, K depending on α and κ such that, with
probability at least 1− e−tcℓ,

l(f∗, f̂cℓ) 6 (1 + α)l(f∗, f cℓ) +K1

( |Tcℓ| log(2n)
n

) κ

2κ−1

+K2

(
tcℓ
n

) κ

2κ−1

+K
tcℓ
n

. (10)

Moreover, we obtain the following upper bound

E
[
l(f∗, f̂cℓ)

]
6 (1 + α)l(f∗, f cℓ) +K1

( |Tcℓ| log(2n)
n

) κ

2κ−1

+ Cn−
κ

2κ−1 . (11)

The obtained bound is in keeping with classical results already given in Mammen and
Tsybakov [1999]. In particular, if the Bayes classifier belongs to class Ccℓ, the rate of conver-

gence for the risk associated with estimator f̂cℓ is of order (log(2n)/n)
κ

2κ−1 .

In practice, since no information is available about how to choose class Ccℓ, one needs to
consider the collection M of all possible configurations and variable lists. In each class Ccℓ, a
candidate f̂cℓ is chosen by empirical risk minimization, then the final classifier f̃ is selected
among all class candidates by minimization of a penalized criterion:

ĉℓ = argmin
c,ℓ

(
Pnf̂cℓ + pen(c, ℓ)

)
,

f̃ = f̂
ĉℓ

.

The following result provides insight about how the penalty should be chosen to ensure good
performance for f̃ .

Proposition 2. Assume that margin assumption MA(1) is verified. If

f̃ = argmin
{f̂cℓ , (c,ℓ)∈M}

(
Pnf̂cℓ + pen(c, ℓ)

)
, (12)

where

pen(c, ℓ) = C1
κ

( |Tcℓ| log(2n)
n

) κ

2κ−1

+ C2
κ

( |Tcℓ| log(p)
n

) κ

2κ−1

+ C3
κ

( |Tcℓ| log(p)
n

)
(13)

with constants C1
κ, C

2
κ, C

3
κ depending on κ appearing in the margin condition, then there exist

positive constants C ′
1, C

′
2 and Σ such that with probability at least 1− 3Σe−x

l(f∗, f̃) 6 C ′
1inf
c,l

{
inf

f∈Ccℓ
l(f∗, f) + pen(c, ℓ)

}
+ C ′

2

((x
n

) κ

2κ−1

+
x

n

)
.
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Moreover, we obtain the following upper bound:

E[l(f∗, f̃)] 6 C ′
1 inf
(c,ℓ)∈M

{
inf

f∈Ccℓ
l(f∗, f) + pen(c, ℓ)

}
+
C ′′
2 × Σ

n
κ

2κ−1

. (14)

The proofs of Propositions 1 and 2 are given in Section 5.

Several comments can be made about the result of Proposition 2:

Strong margin assumption In the particular case of margin assumption MA(2) given
by equation (8), penalty (13) becomes (taking κ = 1):

pen(c, ℓ) =
C1
h log(2n) + C2

h log(p)

n
|Tcℓ|

= αn|Tcℓ|.

This corresponds exactly to the penalty proposed in Breiman et al. [1984] for the CART
algorithm (see equation (1)). A similar result was obtained in Gey and Nedelec [2005] in the
regression framework, and in the binary classification context in Gey [2010], with the difference
that the risk bounds were obtained conditionally on the construction of the maximal tree.
Consequently, in this previous result the embedded variable selection process of the algorithm
was not taken into account.

Variable selection Compared with previous results obtained for CART, equation (13)
exhibits a penalty where the number of variables p explicitly appears. Moreover, the penalty
term can be upper bounded by

pen(c, ℓ) 6 C1
κ

( |Tcℓ| log(2n)
n

) κ

2κ−1

+ log(p)

(
C2
κ

( |Tcℓ|
n

) κ

2κ−1

+ C3
κ

|Tcℓ|
n

)
,

advocating for a penalty that should be linear with respect to log(p). This linear relationship
is investigated in Section 3.2.

Oracle-type inequality Vapnik’s bounds for binary classification without any margin
assumption give the following penalty form (see Devroye et al. [1996] for instance)

penV (c, ℓ) = C1
V

√
|Tcℓ| log(n)

n
+ C2

V

|Tcℓ|
n

.

This implies that, for classes associated with trees of large size, pen(c, ℓ) given in (13) becomes
larger than penV (c, ℓ). Therefore, to obtain an oracle-type inequality, pen(c, ℓ) can be replaced
by min {penV (c, ℓ), pen(c, ℓ)}.

3.2 Illustration on simulated data

3.2.1 Practical determination of f̃

The application of the strategy described in Proposition 2 necessitates finding the empirical
risk minimizer in each class Ccℓ, and then comparing all the candidates f̂cℓ using the penalized
criterion given by (12). From a computational point of view, the exhaustive comparison
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among all classes is an NP-hard problem. Therefore we need heuristic algorithms to obtain a

sequence of near-optimal penalized risk minimizers
(
f̂k

)
k>1

such that

f̂k ≈ argmin
{f̂cℓ, |Tcℓ|=k}

Pnf̂cℓ .

The CART algorithm, when applied with the empirical risk as an impurity measure at each
node (see Hastie et al. [2001]), may be understood as a forward heuristic algorithm to build the
sequence of optimal tree classifiers. In particular, the subtree classifier f̂k of size k extracted
from the maximal tree can be interpreted as the (approximate) optimizer of the empirical risk
over all the possible trees of size k.

This new understanding of the CART algorithm as a heuristic approach to obtain the se-
quence of subtree minimizers is important, because it points out that these subtree classifiers
f̂k should be penalized as if the exhaustive search were performed, i.e. using penalty given
by (13).

In most applications, when dealing with the construction of a tree classifier, experimenters
use a growing-pruning strategy where criterion (1) is used, and the unknown parameter αn

is chosen by hold-out or Q-fold cross-validation. This estimated value can be compared with
its theoretical counterpart given in (13). To this end, we perform a simulation study and
compare the αn obtained by cross-validation to its theoretical form

C1
h log(2n) + C2

h log(p)

n

obtained under the strong margin assumption MA(2).

3.2.2 Simulations

We consider four simulation designs:

Design 1 Variables X1, ..., Xp are independently generated with distribution N (0, 1). The
label is generated as follows: If X1 > 0 and X2 > 0 then Y = 1 with probability q, otherwise
Y = 1 with probability 1 − q. Therefore only variables X1 and X2 are informative. In this
design, the Bayes classifier can be represented as a tree with 3 leaves, hence it belongs to the
considered collection of classes. Moreover, variables are independent, and margin assumption
MA(2) is satisfied.

Design 2 First the labels are generated according to a Bernoulli distribution with param-
eter 1/2. Then variable X1 is generated such that X1|Y = 0 and X1|Y = 1 are normally
distributed with means 0 and 1, respectively, and variance σ2. Variables X2, ..., Xp are in-
dependent with distribution N (0, 1) and are non-informative. As for design 1, the Bayes
classifier can be represented as a tree and variables are independent, but it is easy to show
that margin assumption MA(2) is not satisfied.

Design 3 Labels are simulated as in design 2. Then variables X1 and X2 are generated
such that, for j = 1, 2, Xj |Y = 0 and Xj |Y = 1 are normally distributed with means 0 and 1,
respectively, and variance σ2. The last p− 2 variables are independent and non-informative.
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Here the Bayes classifier no longer belongs to the collection of tree classes, and margin as-
sumption MA(2) is not satisfied.

Design 4 Three independent variables X1, X2, X3 are generated with distribution N (0, 1).
Each additional variable Xj is then simulated as a noisy copy of (X1 +X2 +X3)/

√
3. The

label is generated as follows: If (X1)2+(X2)2+(X3)2 > 2.5 then Y = 1, else Y = 0. Here, all
the variables are correlated (with a strong correlation between the extra variables), the Bayes
classifier cannot be represented as a tree, and margin assumption MA(2) is not satisfied.

For designs 1 to 3, 400 samples are generated, and 1000 for design 4. On each of them, a
tree classifier is selected using the growing/pruning strategy, where parameter αn is selected
by 10-fold cross-validation. Different values of parameters n (n = 50, 100, 200) and noise
(q = 0.1, 0.2, 0.3 in design 1, σ2 = 0.5, 1, 2 in designs 2 and 3, and σ2 = 0.2 in design 4) are
used. The number of variables considered to build the classifiers grows from p = 30 to p = 103.

Figure 3 displays the average value (on 400 simulations) of αn versus the log-number
of variables for the different designs. Parameter αn decreases with respect to n, and the
relationship between the selected αn and log p is linear. These behaviors are observed whatever
the level of noise (not shown) and whatever the design. This confirms that variable selection
is taken into account by the pruning procedure of the CART algorithm through the choice
of αn. This also suggests that the penalty function proposed in (13) is relevant regarding its
dependency on log p.

9



Figure 3: Average value of αn with respect to log p, for n = 50 (+), n = 100 (x) and n = 200
(*). Data are simulated from design 1 with q = 0.3 (Top Left), design 2 (Top Right), design
3 (Bottom Left) with σ2 = 2. For design 4 (Bottom Right) the average αn is obtained over
1000 samples, for n = 100.

4 Discussion

How can the risk bound presented in section 3 be related to previous results? In Gey [2010]
and Nobel [2002], the collection of models includes classes C0, ..., CK−1, CK of tree classifiers
built on the maximal tree TK , and its subtrees T0 4 ... 4 TK−1. Hence the collection itself
depends on the data at hand, since TK is obtained from the training set. Thus the conditional
risk bounds provided in previous articles only guarantee that the risk of the candidate is at
most of the order of the risk of class Ck∗ corresponding to the best subtree Tk∗ . While this
exactly describes the process of the CART algorithm, the guarantee may be poor if the best
subtree of the collection is far from the best tree among all possible trees. Conversely, the
approach presented here guarantees that the risk bound for the selected tree classifier is com-
parable to the risk of the class corresponding to the optimal tree (among all possible trees),
but this theoretical candidate may not correspond to the practical candidate identified by the
algorithm used (which could be other than CART). In the two cases, the pertinence of the
result relies on the quality of the algorithm itself.

The theoretical form of the penalty term (13) derived in Proposition 2 is of much practical
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interest. First, it shows that sequential selection algorithms, such as stepwise or backward
variable selection methods, can be easily studied in the model selection framework where
the selection is supposed to be exhaustive. In the particular case of tree classification, the
simulation study confirms that the penalty derived under the hypothesis of exhaustive vari-
able selection is the one that is used in practice by the CART algorithm, that proceeds as a
forward variable selection process. Second, it provides an interesting insight into the CART
variable selection process. Indeed, the definition of the classes comes from the fact that a
single variable may appear at different nodes, a specificity that changes the classical way of
taking into account variable selection in the penalty term (see Remark in Section 5.1).

In Koltchinskii [2006a], Koltchinskii provides a synthesis of oracle inequalities in classifi-
cation. In particular, the author considers margin assumptions more general than the margin
assumption MA(1) given in Mammen and Tsybakov [1999]. The in-probability upper bounds
for the loss l(f∗, f̃) given in Propositions 1 and 2 can be straightforwardly generalized using
Koltchinskii’s margin definition. This would lead to improved in-probability upper bounds
for the loss l(f∗, f̃), similar to the one given in Theorem 6 of Koltchinskii [2006a]. However,
unlike hypothesis MA(1) considered here, it would not permit one to obtain explicit rates of
convergence for the risk. Importantly, using a more general margin assumption would provide
no improvement concerning the embedded selection aspect that we investigated here. From
this aspect the results obtained are tight, as illustrated by the simulation study.

5 Proofs

5.1 Preliminary results

We provide two lemmas regarding the Vapnik entropy and the cardinality of tree class collec-
tions.
We note Hcℓ the Vapnik-Chervonenkis log-entropy of class Ccℓ.

Lemma 1. For a tree class Ccℓ, one has

E(Hcℓ) 6 |Tcℓ| log(2n)

This is obtained from lemma (2) in Gey and Nedelec [2005]. For a tree with |Tcℓ| leaves, there
are |Tcℓ|−1 nodes for which the thresholds have to be estimated, leading to at most n ways to
split the training sample. The possible number of splittings is bounded by n|Tcℓ|−1. A given
splitting shatters the sample into |Tcℓ| subsamples, and each of these subsamples receive label
0 or 1. There are 2|Tcℓ| ways to label the subsamples, hence

Hcℓ < log
(
n|Tcℓ|−1 × 2|Tcℓ|

)

< |Tcℓ| log(2n) .

Taking the expectation leads to the result.

Lemma 2. The number of classes of trees of size k is

pk−1N(k), with N(k) =
1

k

(
2k − 2

k − 1

)
.
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First note that counting the number of classes amounts to counting the number of trees. A
tree Tcℓ is defined by a configuration c combined with a variable list ℓ. The total number of
tree configurations of size k is given by the Catalan number N(k). The total number of lists

of k − 1 variables is pk−1, because at each node we have to choose between the p available
variables. Combined with the total number of tree configurations, this leads to the proposed
lemma.

Remark In contrast with the classical variable selection framework, in trees the variable list
is ordered (the first variable of the list is associated with the first node) and a variable may be
associated with several nodes. Therefore the classical

(
p

k−1

)
term that appears in penalties in

Birgé and Massart [2001] or Mary-Huard et al. [2007] (i.e. the number of samplings without
replacements and unordered sample) is replaced with pk−1 (i.e. the number of sampling with
replacements and ordered sample).

5.2 Proof of Proposition 1

A classical way to bound l(f∗, f̂cℓ) is to use the following decomposition:

l(f∗, f̂cℓ) = l(f∗, f cℓ) + Pf̂cℓ − Pf cℓ,

and then to upper bound the variance term Pf̂cℓ − Pf cℓ. This last step can be done using
Theorem 2 from Koltchinskii [2006a], which can be restated for our purpose as follows:

Theorem 5.2.1 (Koltchinskii, 2006). If there exists a nondecreasing strictly concave function
ψcℓ : R+ → R+ such that with probability at least 1− e−tcℓ

sup
f,g∈Ccℓ(δ)

|(Pn − P)(f − g)| 6 ψcℓ(δ) ,

and if ψ♯
cℓ is defined as

ψ♯
cℓ(ε) = inf{δ > 0 s.t. sup

σ≥δ

ψ(σ)

σ
6 ε} ,

then for all δ ≥ ψ♯
cℓ(1/q)

P
[
Pf̂cℓ − Pf cℓ > δ

]
6 e−tcℓ .

In order to use Theorem 5.2.1, we need to provide an explicit expression for ψcℓ. To
proceed, we start from the following probabilistic upper bound given in Koltchinskii [2006a]
and derived from Talagrand’s inequality for bounded processes (see Bousquet [2002] for more
details):

sup
f,g∈Ccℓ(δ)

|(Pn − P)(f − g)| 6 2

(
E

[
sup

f,g∈Ccℓ(δ)
|(Pn − P)(f − g)|

]
+D(Ccℓ(δ))

√
tcℓ
n

+
tcℓ
n

)
(15)

with probability larger than 1− e−tcℓ , where

Ccℓ(δ) = {f ∈ Ccℓ s.t. Pf − Pf cℓ 6 δ}

12



and

D(Ccℓ(δ)) = sup
f,g∈Ccℓ(δ)

√
E((f − g)2)

= sup
f,g∈Ccℓ(δ)

d(f, g)

This last term can be upper-bounded in expression (15) using the margin assumption MA(1)
described by (7):

d2(f, f∗) 6 Cκl(f
∗, f)

1

κ

where Cκ = (κ− 1)
1

κC
κ−1

κ

κ

κ− 1
. Hence

d(f, g) 6 2
√
Cκ

(
l(f∗, f cℓ)

1

2κ + δ
1

2κ

)

⇒ D(Ccℓ(δ)) 6 2
√
Cκ

(
l(f∗, f cℓ)

1

2κ + δ
1

2κ

)
= D . (16)

Now because

E

[
sup

f,g∈Ccℓ(δ)
|(Pn − P)(f − g)|

]
6 E

[
sup

d(f,g)6D
|(Pn − P)(f − g)|

]

we can use the result of Massart [2000] (p295) to obtain

E

[
sup

f,g∈Ccℓ(δ)
|(Pn − P)(f − g)|

]
6 24D

√
E[Hcℓ]

n
, (17)

where Hcℓ is the Vapnik-Chervonenkis log-entropy of Ccℓ. Combining (16) and (17), then
using lemma 5 of Tsybakov and van de Geer [2005], we obtain for all α ∈]0, 1[

sup
f,g∈Ccℓ(δ)

|(Pn − P)(f − g)| 6 2

[
2
√
Cκ

(
24

√
E[Hcℓ]

n
+

√
tcℓ
n

)(
l(f∗, f cℓ)

1

2κ + δ
1

2κ

)
+
tcℓ
n

]

6 4
√
Cκ

(
24

√
E[Hcℓ]

n
+

√
tcℓ
n

)
δ

1

2κ

+2
tcℓ
n

+ αl(f∗, f cℓ) + βκ,α

(
E[Hcℓ]

n

) κ

2κ−1

+
βκ,α
24

(
tcℓ
n

) κ

2κ−1

.

In the present framework, we then have

ψcℓ(δ) = 4
√
Cκ

(
24

√
E[Hcℓ]

n
+

√
tcℓ
n

)
δ

1

2κ + 2
tcℓ
n

+ αl(f∗, f cℓ) + βκ,α

(
E[Hcℓ]

n

) κ

2κ−1

+
βκ,α
24

(
tcℓ
n

) κ

2κ−1

= ψ1(δ) + ψ2(δ) +K

where

ψ1(δ) = 96
√
Cκ

√
E[Hcℓ]

n
δ

1

2κ

ψ2(δ) = 4
√
Cκ

√
tcℓ
n
δ

1

2κ

and K = 2
tcℓ
n

+ αl(f∗, f cℓ) + βκ,α

(
E[Hcℓ]

n

) κ

2κ−1

+
βκ,α
24

(
tcℓ
n

) κ

2κ−1

13



Moreover, ψ♯
cℓ(ε) 6 ψ♯

1(ε/3) + ψ♯
1(ε/3) +

3K
ε , and ψ♯

1 and ψ♯
2 can be determined using the

following characterization (available for all strictly concave functions ψ):

∀ε > 0, ψ
(
ψ♯(ε)

)
= ψ♯(ε)ε .

Solving this last equation for the particular form of functions ψ1 and ψ2, we obtain

ψ♯
cℓ(ε) 6

(
288

√
Cκ

√
E[Hcℓ]

ε
√
n

) 2κ

2κ−1

+

(
12
√
Cκ

√
tcℓ

ε
√
n

) 2κ

2κ−1

+

(
2
tcℓ
n

+ αl(f∗, f cℓ) + βκ,α

(
E[Hcℓ]

n

) κ

2κ−1

+
βκ,α
24

(
tcℓ
n

) κ

2κ−1

)
3

ε

Taking ε = 1/q one has with probability larger than 1− e−tcℓ

Pf̂cℓ − Pf cℓ 6

((
q288

√
Cκ

) 2κ

2κ−1

+ 3qβκ,α

)(
E[Hcℓ]

n

) κ

2κ−1

+

((
q12
√
Cκ

) 2κ

2κ−1

+
3qβκ,α
24

)(
tcℓ
n

) κ

2κ−1

+6q
tcℓ
n

+ 3qαl(f∗, f cℓ) .

Using Lemma 1 and rescaling α properly, this leads to

l(f∗, f̂cℓ) 6 (1 + α)l(f∗, f cℓ) +K1
α,κ,q

( |Tcℓ| log(2n)
n

) κ

2κ−1

+K2
α,κ,q

(
tcℓ
n

) κ

2κ−1

+Kq
tcℓ
n

. (18)

Renaming K1
α,κ,q = K1, K2

α,κ,q = K2 and Kq = K leads to the first expression in Proposition
1. The risk bound follows by integration.

5.3 Proof of Proposition 2

We first choose the weights tcℓ = xcℓ + x associated with classes Ccℓ such that xcℓ and x are
positive and

∑

c,l

e−xcℓ = Σ < +∞ .

The exact form of the weights will be chosen later. Furthermore, we will use lemma 4 of
Koltchinskii [2006a], reformulated here for our purpose:

Lemma 5.3.1 (Koltchinskii, 2006). Consider a class Ccℓ. For all tcℓ > 0 and α ∈]0, 2/5[,
with probability at least 1− 2e−tcℓ, one has

Pnf cℓ − Pnf
∗
6 (1 + α)(Pf cℓ − Pf∗) +Kα

(
tcℓ
n

) κ

2κ−1

+
tcℓ
n

(19)

and

Pf cℓ − Pf∗ 6

(
1− 5

2
α

)−1
(
Pnf̂cℓ − Pnf

∗ +
3

2
K1

( |Tcℓ| log(2n)
n

) κ

2κ−1

+ 3K2

(
tcℓ
n

) κ

2κ−1

+ 3K
tcℓ
n

)
(20)

with the same notations as above.
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We start the proof from the result obtained in Proposition 1. Combining equation (10)
of Proposition 1 and a classical union bound argument, one has with probability larger than
1− Σe−x

l(f∗, f̃) 6 (1 + α)l(f∗, f
ĉℓ
) +K1

( |T
ĉℓ
| log(2n)
n

) κ

2κ−1

+K2

(
x
ĉℓ
+ x

n

) κ

2κ−1

+K
x
ĉℓ
+ x

n
,

where α ∈]0, 2/5[. We now use equation (20) from Lemma 5.3.1 to obtain with probability
larger than 1− 3Σe−x

l(f∗, f̃) 6
(1 + α)

1− 5α
2

(
Pnf̂ĉℓ − Pnf

∗ +
5K1

2

( |T
ĉℓ
| log(2n)
n

) κ

2κ−1

+ 4K2

(
x
ĉℓ
+ x

n

) κ

2κ−1

+ 4K
x
ĉℓ
+ x

n

)

6
(1 + α)

1− 5α
2

(
Pnf̂ĉℓ − Pnf

∗ +
5K1

2

( |T
ĉℓ
| log(2n)
n

) κ

2κ−1

+ 4K2
(x

ĉℓ

n

) κ

2κ−1

+ 4K
x
ĉℓ

n

)

+
(1 + α)

1− 5α
2

(
4K2

(x
n

) κ

2κ−1

+ 4K
x

n

)

In the context of variable selection, one has to choose the weights such that

∑

c,l

e−xcℓ < +∞ ⇒
∑

k

∑

Ccℓ s.t. |Tcℓ|=k

e−xcℓ < +∞ .

Giving equal weights xk to classes of same complexity k (i.e. classes Ccℓ and Cc′ℓ′ such that
|Tcℓ| = |Tc′ℓ′ | = k), one obtains from Lemma 2:

∑

k

∑

Ccℓ s.t. |Tcℓ|=k

e−xcℓ =
∑

k

pk−1 1

k

(
2k − 2

k − 1

)
e−xk

6
∑

k

(4p)k

k
e−xk .

The choice xcℓ = x|Tcℓ| = λ|Tcℓ| log(p) with λ > 3 ensures that the sum is finite. Hence,

l(f∗, f̃) 6
(1 + α)

1− 5α
2

(
Pnf̂ĉℓ − Pnf

∗ +
5K1

2

( |T
ĉℓ
| log(2n)
n

) κ

2κ−1

+ 4K2

(
λ|T

ĉℓ
| log(p)
n

) κ

2κ−1

+4K
λ|T

ĉℓ
| log(p)
n

)
+

(1 + α)

1− 5α
2

(
4K2

(x
n

) κ

2κ−1

+ 4K
x

n

)

6
(1 + α)

1− 5α
2

(
Pnf̂ĉℓ − Pnf

∗ + C1
κ

( |T
ĉℓ
| log(2n)
n

) κ

2κ−1

+ C2
κ

( |T
ĉℓ
| log(p)
n

) κ

2κ−1

+ C3
κ

( |T
ĉℓ
| log(p)
n

))

+
(1 + α)

1− 5α
2

(
4K2

(x
n

) κ

2κ−1

+ 4K
x

n

)
,

for a proper choice of constants C1
κ, C

2
κ, and C

3
κ. This leads to

l(f∗, f̃) 6
(1 + α)

1− 5α
2

inf
c,l

(
Pnf̂cℓ − Pnf

∗ + pen(c, ℓ)
)
+

(1 + α)

1− 5α
2

(
4K2

(x
n

) κ

2κ−1

+ 4K
x

n

)
.
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Since Pnf̂cℓ − Pnf
∗ 6 Pnf cℓ − Pnf

∗ ( by definition of f̂cℓ), this last expression can be upper
bounded (with probability larger than 1− 3Σe−x) thanks to equation (19) of Lemma 5.3.1:

l(f∗, f̃) 6
(1 + α)2

1− 5α
2

inf
c,l

(
Pf cℓ − Pf∗ +Kα

(xcℓ
n

) κ

2κ−1

+
(xcℓ
n

)
+Kα

(x
n

) κ

2κ−1

+
(x
n

)
+ pen(c, ℓ)

)

+
(1 + α)

1− 5α
2

(
4K2

(x
n

) κ

2κ−1

+ 4K
x

n

)

6
2(1 + α)2

1− 5α
2

inf
c,l

(
Pf cℓ − Pf∗ + pen(c, ℓ)

)
+

2(1 + α)2

1− 5α
2

(
4K2

(x
n

) κ

2κ−1

+ 4K
x

n

)

6 C ′
1inf
c,l

(
Pf cℓ − Pf∗ + pen(c, ℓ)

)
+ C ′

2

((x
n

) κ

2κ−1

+
x

n

)
.

The last inequality corresponds to the first equation of Proposition 2. The risk bound follows
by integration.
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