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Abstract

The saturated hydraulic conductivity is one of the key parameters in the modelling of over-
land �ow water �uxes. In this study, this parameter is de�ned as a stochastic parameter,
idealized as a piecewise constant random �eld with uniform distribution. This paper aims at
investigating the e�ects of the spatial and temporal scales in uncertainty propagation within
overland �ow models, and at identifying the localization of the most in�uential saturated
hydraulic conductivity using sensitivity analysis. The results show that the in�uence of
saturated hydraulic conductivity depends on the soil saturation and its spatial localization.
For instance, in case of low saturated soils, the most in�uent parameter is the one located
downslope, whereas in case of high saturated soils, the most in�uent one is either the most
in�ltrating or the intermediate one. The results indicate where e�orts should be concentrate
when collecting input parameters to reduce modelling uncertainties.

1. Introduction

Water �uxes are a fundamental part of natural ecosystems and are essential to support
human activities. Many research e�orts are therefore devoted to the development and ap-
plication of physically-based models able to improve our understanding and modelling of
these �uxes. One of the main obstacles to the application of such models is the di�culty
to describe the spatial and temporal (non-linear) variability of the input parameters [24].
Indeed, the performance of models directly depends on the validity of the input parameters.
Even if the technological progress in sensor development regularly improves the resolution
at which we are able to measure the di�erent natural and anthropogenic factors [3, 13], we
are still far from being able to capture all their spatial and temporal variability. In recent
years, many e�orts have been undertaken to evaluate the rainfall input through the develop-
ment and implementation of rainfall radars [30]. Furthermore, several plant growth models,
such as the Soil Vegetation Atmosphere Transfer scheme (SVAT) [6], permit to determine
operationally input parameters related to vegetation with a reasonable accuracy. It is more
di�cult to estimate the soil parameters, principally because of their heterogeneity and their
high variability in space and time. For rainfall-runo� prediction models, numerous studies
show that the saturated hydraulic conductivity, which is deduced from soil properties, is the
most in�uent input parameter [11, 31].

The saturated hydraulic conductivity, herein denoted by Ks, provides a quantitative
measure of the soil ability to transmit water. Indeed, Ks is one of the key parameters in the
in�ltration process and in water transfer through the unsaturated and saturated parts of
the soil. The parameter Ks yields the maximum value of the in�ltration rate, which is ob-
tained for a saturated state of the soil, and in�uences predominantly the in�ltration capacity
[11]. Di�erent methodologies have been elaborated to measure directly saturated hydraulic
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conductivities. However, the obtained values for Ks depend on the chosen methodology
and most importantly, the spatial representativity of these measurements remains rather
limited [43]. In most model applications, values for Ks are estimated through the appli-
cation of pedo-transfer functions (PTF) using basic soil properties [8, 9, 37]. By testing
di�erent PTF's to predict Ks, it was concluded [35] that predicting Ks using a PTF is not
always accurate owing to the inherent variability of Ks. Furthermore, using a set of data
to compare di�erent measurement and estimation methods, a high variability of Ks (more
than 79%) has been observed [4]. To overcome this lack of accuracy, a possible approach
consists in calibrating parameters, but the resulting values are often valid only for the used
con�guration and moderate variations thereof.

An alternative approach already suggested in [36] consists in considering Ks as a stochas-
tic parameter instead of being estimated by deterministic approaches. It is today well admit-
ted that probabilistic modelling provides e�cient means to quantify parameter uncertainty.
Uncertainty Analysis (UA) considers the uncertain parameters of a model as random ob-
jects, and the objective is to compute or characterize the induced variability in the model
solution or in quantities of interest. For highly uncertain data within non-linear models,
as in hydrology applications, so-called global UA methods, which study the e�ects of all
the input parameters simultaneously, are needed. One essential step in UA is the de�ni-
tion of a random model for the uncertain parameters. Random models with di�erent levels
of complexity can be considered. For instance, a relatively simple approach is the Gen-
eralized Likelihood Uncertainty Estimation (GLUE) procedure [5] which is a Monte Carlo
(MC) method generating a high number of parameter sets to compare the predicted model
responses with observed responses and to accept or not some simulations through some
chosen likelihood measure. Being a Bayesian approach, this likelihood measure can be up-
dated for each new set of observed responses. Numerous studies are based on a Bayesian
framework [23, 25, 26, 34]. Bayesian statistics mean that input parameters are considered
as probabilistic variables having a joint posterior probability density function (pdf). Di�er-
ent methods exist for sampling posterior pdf's. The Monte Carlo Markov Chain (MCMC)
sampler is often used in hydrology models, the earliest general (and most popular) method
being the Metropolis�Hastings algorithm [21, 29]. In hydrology, various recent studies have
aimed at improving MCMC samplers: the Shu�ed Complex Evolution (SCE) Metropolis
algorithm (SCEM) [39], which is a modi�ed version of the SCE global optimization algo-
rithm [14], or the Di�erential Evolution Adaptive Metropolis algorithm (DREAM) [40]. In
contrast with Bayesian statistics, an alternative approach providing a complete probabilis-
tic description considers the unknown parameters as random variables described by a �xed
pdf. This approach, which is more adapted to problems where little data is available, is
undertaken in the present work. Once the probabilistic framework is settled, it remains to
characterize the model output variability in terms of input variability. To this purpose, we
rely on MC methods since such methods provide an e�ective and robust methodology to
generate a sample set of model solutions by sampling input parameters. We mention an-
other recent methodology based on stochastic spectral methods [18]. The advantage is that
a more complete probabilistic description of model output is achieved, but the methodology
becomes computationally demanding when the input parameters are described by a large
number of random variables.

In the present paper, we focus on the impact of the variability in the saturated hydraulic
conductivity Ks on overland �ows produced by various rainfall events in various geometries.
A general probabilistic description of the saturated hydraulic conductivity is to model it as a
random �eld. Although very rich, this type of model needs a substantial amount of informa-
tion for its description, and is, therefore, not well adapted to the present setting. Moreover,
extracting simple information in view of practical hydrology purposes from complex proba-
bilistic models is an intricate issue. For these reasons, we rely on simpler probabilistic models
where the saturated hydraulic conductivity is idealized as a piecewise constant random �eld
over distinct portions of the simulation domain which are speci�ed a priori. Each spatial
subdomain is characterized by a unique Random Variable (RV) yielding the corresponding
saturated hydraulic conductivity in the subdomain. Speci�cally, the random conductivity
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�eld Ks(x, θ), where θ is a random event, is written as

Ks(x, θ) =
∑
i

1Ωi
(x)Ks,i(θ), (1)

where 1Ωi
is the indicator function of the i-th spatial subdomain and {Ks,i(θ)} is a set of

(positive) real-valued random variables. In addition, the saturated hydraulic conductivity
within a subdomain is assumed to be statistically independent from the others. As a result,
the uncertain hydraulic conductivity �eld is modelled using a �nite set of independent ran-
dom variables, whose cardinality is equal to the number of subdomains considered in the
simulation, and the joint probability density function (pdf) of the random variables Ks,i

factorizes in the form

p({Ks,i}) =
∏
i

pi(Ks,i). (2)

This idealization of the actual conductivity �eld is motivated by the physical reality. If
one thinks of subdomains as homogeneous agricultural plots (or parcels of vegetation), the
variability of Ks inside the parcel is usually negligible compared to the variability from a
parcel to another because of the homogenization created by agricultural practices. Moreover,
the present model can be subsequently re�ned by introducing inner variability within the
parcels if additional information on soil properties within parcels is available.

The objective of this work is twofold. Firstly we consider test cases involving di�erent
spatial and temporal scales so as to investigate the e�ect of these scales in uncertainty prop-
agation within overland �ow models. Indeed, one salient result discussed hereafter is that
the most in�uential input parameter on model output variability depends on the spatial
and temporal scales of the processes of interest. Secondly, with an eye toward practical
hydrology issues, we use sensitivity analysis tools as a means to identify the most in�uential
input parameters. This information can be, for instance, valuable to decide on where to
concentrate additional measurement e�orts to improve �eld knowledge. Moreover, within a
given test case, we consider various possibilities for the spatial organization of the parcels so
as to study the e�ect of this organization on model output variability. One interesting re-
sult in this direction, relevant to landscape management issues, is the comparison presented
hereafter between three grass strips distributed evenly within a �eld and a single grass strip
located near the �eld outlet. Finally, we observe that the present work is not dedicated to
a speci�c �eld study, but the purpose is instead rather general and aims at assessing the
possibilities o�ered by the present methodology to improve our understanding of variability
in overland �ows due to in�ltration. For this reason, we focus on a simple two-dimensional
setting where the �ow is described by a one-dimensional shallow-water �ow model includ-
ing friction and in�ltration, the latter being described by the Green�Ampt model. More
elaborate �ow models can be considered. We also mention a di�erent approach [41, 42] to
compute pdf's of in�ltration rates and in�ltration depths.

This paper is organized as follows. Section 2 brie�y describes the rainfall-runo� model
and the numerical method used in the deterministic overland �ow simulations once values
for the random input parameters are speci�ed. Section 3 introduces the stochastic approach
and the statistic tools used to propagate and analyze the uncertainties in model output.
Section 4 presents the two test cases designed to evaluate the impact of uncertainties in Ks

and of the spatial localization of these uncertainties on overland �ow. Results are discussed
in Section 5. Finally, conclusions are drawn in Section 6.

2. The setting

In this section, we present the physical model and its numerical resolution.

2.1. Physical model

We are concerned with overland �ows where the water depth is much smaller than the
characteristic horizontal size of the �eld of study (see Figure 1). Such �ows can be de-

3



z 

x

R(x,t)

u(x)

I(x) h(x)
z(x)

Figure 1: Geometric con�guration and basic notation.

scribed by the 2D shallow water (SW) equations which are obtained from the 3D incom-
pressible free-surface Navier�Stokes equations by averaging on the vertical direction under
some simplifying assumptions, in particular hydrostatic pressure and negligible vertical ve-
locity [17, 33, 38]. Neglecting also the �ow transverse to the main slope direction, we obtain
the 1D SW equations which express mass and momentum conservation as follows:

∂th+ ∂x(hu) = R− I, (3)

∂t (hu) + ∂x
(
hu2 + 1

2gh
2
)

= −gh (∂xz + Sf) , (4)

where h [L] is the water depth, u [L/T] the depth-averaged velocity, z [L] the ground surface
elevation, and g [L/T2] the gravitational constant (where L and T denote length and time
units, respectively). The source term R− I [L/T] corresponds to the di�erence between the
rainfall rate R and the in�ltration rate I. The quantity Sf [L/L] accounts for friction e�ects.
The value of Sf depends on the properties of the soil surface and can be estimated from
calibration or published values. Darcy�Weisbach's formula is often used [12, 15, 16, 38]:

Sf = f
|u|
8gh

u, (5)

where f is the possibly time and space-dependent Darcy�Weisbach's roughness coe�cient
and |u| the module of the velocity u.

We use the Green�Ampt model [19] to predict cumulative in�ltration through dry or
wet soils. Herein, we consider the formulation developed in [28] for rainfall-runo� predictive
models. This formulation postulates, at any point x in space, a well-de�ned wetting front
propagating vertically and separating a fully saturated zone from a zone at the initial soil
moisture. At any point on the surface, the in�ltration capacity Ic(t) [L/T] at time t is
calculated as follows (the dependency on the space variable is omitted for simplicity):

Ic(t) = Ks

(
1 + (θs − θi)

hf + h(t)

I∗(t)

)
, (6)

where I∗(t) [L] is the cumulative in�ltration up to time t, Ks [L/T] the saturated hydraulic
conductivity, hf [L] the wetting front capillary pressure head, and θi and θs the initial and
saturated water content. Over the time interval [t, t + δt], the model assumes that if the
water depth h(t) is smaller than Ic(t) × δt, all the water volume is in�ltrated; otherwise,
the in�ltrated volume is equal to the in�ltration capacity and the remaining water streams.
Hence, the in�ltration rate I over the time interval [t, t+ δt] is equal to min(Ic(t), h(t)/δt).
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2.2. Numerical resolution

A well-balanced �nite volume method is used to discretize the SW equations, which we
rewrite in the general form ∂tU + ∂xF (U) = S(U), where U is the vector of conservative
variables, F the �ux vector, and S the source term. Speci�cally,

U =

(
h
hu

)
, F (U) =

(
hu

hu2 + 1
2gh

2

)
, S(U) =

(
R− I

−gh(∂xz + Sf)

)
.

The domain is divided into cells (indexed by i) of the form Ci = [xi−1/2, xi+1/2] and of
length ∆x > 0 taken constant for simplicity. The Green�Ampt model is applied locally in
each mesh cell. To obtain a second-order scheme, the variables need to be reconstructed at
cell interfaces. We denote by Ui+1/2± the conservative variables computed at either side of
the interface xi+1/2 using an ENO-type (Essentially Non Oscillatory) reconstruction [20].
Moreover, the ground surface elevation z is described as a piecewise constant function, and
cell-interface values zi+1/2± are also reconstructed. This yields the following scheme written
here in space semi-discrete form:

∆x
d

dt
Ui(t) + Fi+1/2 − Fi−1/2 = ∆x

(
Ri − Ii
−ghiSf,i

)
+ ∆x

(
0
Ss,i

)
,

where the subscript i refers to the value in the cell Ci and the �uxes Fi±1/2 are computed
using the HLL �ux (see e.g., [7]). The source term Ss,i accounts for the term −gh∂xz in
the source term S. To evaluate the �uxes Fi±1/2 and the source term Ss,i, an hydrostatic
reconstruction scheme is applied, as described in [1, 2, 7, 27]. Speci�cally, we set

hi+1/2L = max
(
0, hi+1/2− + zi+1/2− −max(zi+1/2−, zi+1/2 +)

)
,

hi−1/2R = max
(
0, hi−1/2 + + zi−1/2 + −max(zi−1/2−, zi−1/2 +)

)
,

Ui+1/2L =
(
hi+1/2L, hi+1/2Lui+1/2−

)t
,

Ui−1/2R =
(
hi−1/2R, hi−1/2Rui−1/2 +

)t
.

Then, the HLL �ux is evaluated using (Ui+1/2L, Ui+1/2R), and the source term Ss,i is eval-
uated as

Ss,i =
1

∆x

g

2

((
h2
i+1/2L − h

2
i+1/2−

)
+
(
h2
i−1/2 + − h

2
i−1/2R

)
+
(
hi−1/2 + − hi+1/2−

) (
zi+1/2− − zi−1/2 +

))
.

Finally, for time discretization, we use a second-order explicit Runge�Kutta method
based on the Heun scheme, except for the friction term Sf which is treated semi-implicitly
at each stage of the Heun scheme [10]. This leads to a second-order accurate overland �ow
model with in�ltration that we now use to study uncertainty propagation.

3. Stochastic model and statistic tools

In this section, we describe the stochastic model and the statistic tools used to analyze
the results.

3.1. Stochastic model

We are interested in uncertainty propagation stemming from the uncertain parameter Ks

in the SW equations. As discussed in the introduction, we consider a simple approach where
we subdivide the physical domain into p (with typically p = 2 or 3 in our numerical results)
subdomains and assign to each subdomain a single uncertain parameter Ks which is a RV
with known pdf. The uncertain input parameters of the model are then regrouped into a
single vector-valued RV such thatX = (X1, . . . , Xp) = (Ks,1, . . . ,Ks,p). We assume that the
RV'sXi are independent, but can have di�erent pdf's denoted by pXi

. We consider a uniform
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distribution for all the subdomains because of the relatively low range of values taken by
Ks within each subdomain (however, high contrasts are considered between subdomains).
In the present setting, the pdf pXi

depends on its corresponding subdomain i only through
the minimal and maximal bounds on Ks,i. Moreover, since the RV's Xi are assumed to be
independent, the pdf of X factorizes into the form

pX(x1, · · · , xp) =

p∏
i=1

pXi
(xi). (7)

The uncertain output quantities of the model are the peak runo� rate and the runo�
coe�cient for a speci�c rainfall event. Let Y denote any of these output quantities. Once
a realization of X, say x, is known, a realization of Y , say y(x), is obtained by solving
numerically the corresponding deterministic problem described in Section 2.

3.2. Moments and pdf

Assuming that Y has �nite second-moment, the expectation and the variance of Y are
de�ned as

E[Y ] =

∫
y(x)pX(x)dx and V (Y ) =

∫ (
y(x)− E[Y ]

)2

pX(x)dx,

so that V (Y ) = E[Y 2]−E[Y ]2. We are interested in evaluating various statistical quantities
related to the model output Y . To this purpose, we use Monte Carlo (MC) simulations. Let
X = {x(1), . . . ,x(M)} be a sample set of the input stochastic parameters, where M is the
sample set dimension and x(m), 1 ≤ m ≤M , are realizations of X. Let Y = {y(1), . . . , y(M)}
be the corresponding sample set of the model output such that, for each 1 ≤ m ≤ M ,
y(m) = y(x(m)) is the model response to the vector of input parameters x(m). The empirical
estimators for the expectation and the variance are

Ê[Y ] =
1

M

M∑
m=1

y(m) and V̂ (Y ) =
1

M

M∑
m=1

(
y(m) − Ê[Y ]

)2

. (8)

To estimate the pdf of a random variable, we use the kernel density estimator, also called
Parzen�Rozenblatt method, which is a generalization of the histogram method. The pdf of
Y is estimated as

p̂η(y) =
1

Mη

M∑
m=1

G

(
y − y(m)

η

)
,

where G is a speci�c pdf used as kernel and η is a smoothing parameter. The most commonly
used kernel is the Gaussian function G(x) = (2π)−1/2 exp (− 1

2x
2). Thus, the pdf at a point y

is estimated by the number of observations close to y and counterbalanced by the distance of
these observations to y. The kernel distribution function allocates more important weights
to observations near the point y and weaker weights to distant observations. The parameter
η �xes the kernel function width and, therefore, controls the smoothness of the estimated
pdf p̂η. The smaller the parameter, the more accurate the estimation of the pdf; however,
too small values for η can generate spurious data artifacts if the sample set is not su�ciently
large. An illustration is presented in Section 4.2.

3.3. Sensitivity analysis

Sensitivity Analysis (SA) allows one to assess the relative contribution of each uncertain
input parameter to model output variability and, in particular, to identify key parameters
by establishing a hierarchy within the input parameters according to their in�uence on the
output variability. Variance-based global SA methods based on Sobol indices [32] determine
which part of the response variance results from the variance of each input or group of
inputs. The sensitivity of the response Y to the input parameter Xi can be quanti�ed by
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the �rst-order sensitivity index Si de�ned as

Si =
Vi

V (Y )
, Vi = E

[
E[Y |Xi]

2
]
− E[Y ]2,

where E [Y |Xi] is the conditional expectation of Y given the value of Xi (see (9) below for
its de�nition). More generally, higher-order sensitivity indices quantify the sensitivity of the
model response to interactions among input parameters. Let i denote a non-empty subset
of indices such that i ⊆ {1, . . . , p} and let ∼i = {1, . . . , p} \ i. The sensitivity index Si is
de�ned as

Si =
Vi

V (Y )
, Vi = V (E [Y |Xi])−

∑
∅6=j(i

Vj ,

where V (E [Y |Xi]) is the variance of the conditional expectation of Y given the value of
Xi. This conditional expectation is de�ned as

E [Y |Xi] =

∫
y(x)pX∼i

(x∼i)dx∼i, (9)

where pX∼i
and dx∼i are, respectively, the density and the probability measure of x∼i (con-

ventionally, E [Y |Xi] = Y if i = {1, . . . , p} and ∼i is empty). Observing that E [E[Y |Xi]] =
E[Y ], we obtain

V (E[Y |Xi]) = E
[
E[Y |Xi]

2
]
− E[Y ]2.

Furthermore, the law of total variance states that
∑
∅6=i⊆{1,...,p} Vi = V (Y ), so that∑

∅6=i⊆{1,...,p}

Si = 1.

Following Homma and Saltelli [22], it is convenient to consider for a single index i ∈
{1, . . . , p}, the total sensitivity index ST,i which evaluates the total sensitivity of the model
response Y to the input parameter Xi, including Xi alone and all interactions with the other
input parameters Xj , j 6= i. Computing this index instead of the high-order sensitivity
indices allows one to reduce computational costs by avoiding tedious calculations. The total
sensitivity index ST,i is evaluated as follows:

ST,i = 1− V∼i
V (Y )

, V∼i = E
[
E[Y |X∼i]2

]
− E[Y ]2,

where V∼i is the variance of the conditional expectation of Y given all the parameters
except Xi. The interpretation of the indices Si and ST,i is the following: Xi is an in�uential
parameter if Si is important, whereas Xi is not an in�uential parameter if ST,i is small.
Moreover, Si close to ST,i means that interactions between Xi and the other parameters are
negligible.

MC simulations are used to estimate the �rst-order sensitivity indices Si and the total
sensitivity indices ST,i. To this purpose, we estimate the quantities Vi and V∼i. To save

computational costs when evaluating these variances [32], the expectations E
[
E[Y |Xi]

2
]

and E
[
E[Y |X∼i]2

]
are computed as a unique integral by making use of two independent

M-samples of input variables, X and X ∗, in such a way that

V̂i =
1

M

M∑
m=1

Y
(
x(m)

)
× Y

(
x

(m)
i ,x

∗(m)
∼i

)
− Ê[Y ]2,

V̂∼i =
1

M

M∑
m=1

Y
(
x(m)

)
× Y

(
x
∗(m)
i ,x

(m)
∼i

)
− Ê[Y ]2.
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Finally, the �rst-order sensitivity index Si and the total sensitivity index ST,i are estimated
as

Ŝi =
V̂i

V̂ (Y )
, ŜT,i = 1− V̂∼i

V̂ (Y )
.

In practice, the computational procedure requires two samples of input parameters, each
of dimension M , and M × (2p + 1) deterministic model evaluations to calculate all the
�rst-order and total sensitivity indices.

4. Test cases

The section presents the test cases and a brief performance evaluation of the methodology.

4.1. Presentation

To evaluate how uncertainties on the values of Ks and its spatial localization can impact
the surface runo� during various types of rainfall events, we focus on two output quantities:
the peak runo� rate at the outlet, Qmax, and the runo� coe�cient, RC, de�ned as the total
volume of runo� divided by the total volume of rainfall.

A one-dimensional �at slope of length L with an inclination gradient ∂xz = 2% is con-
sidered. Uniform friction coe�cient and in�ltration parameters (except Ks) are chosen with
values

f = 0.25, θs − θi = 0.3, hf = 0.023.

A constant rainfall intensity R(t) [L/T] is imposed during a time TR [T] and stopped af-
terwards. The simulation time is denoted by T [T]. Two con�gurations are studied for the
spatial distribution of the uncertainty parameter Ks. For each spatial con�guration, two
rainfall events are simulated, a short rainfall event (SRE) and a long rainfall event (LRE).
The values of the rainfall intensity R, the rainfall duration TR, and the simulation time T
are speci�ed in Tables 1 and 3 for the two spatial con�gurations described below.

For the �rst spatial con�guration, named �Three-�eld�, we consider a 4.8 m long domain
divided into three subdomains, each one with its own saturated hydraulic conductivity Ks,i,
i ∈ {1, 2, 3}, which is a RV independent of Ks,j , j 6= i. Each Ks,i has a uniform distribution
Ks,i ∼ U [Kmin

s,i ,K
max
s,i ], where Kmin

s,i and Kmax
s,i are the minimal and maximal values which

can be taken by Ks,i in its corresponding subdomain. To assign these minimal and maximal
values, we consider three choices, each representing realistic values for a given soil type. We
refer to these choices using an index −, o, or + indicating respectively low, intermediate or
high values for Ks. The corresponding values are listed in Table 2. Then, we consider the
six possible spatial localizations of soil types: + o −, + − o, o + −, o − +, − + o, and
− o +. For instance, + o − means that Ks,+ is located upslope, Ks,o is located midslope,
and Ks,− is located downslope, see Figure 2(a). Figure 2(b) presents the hydrographs for
the case where Ks,+, Ks,o, and Ks,− are all equal to their respective mean values (Table
2), and the impermeable con�guration. The signi�cant di�erences observed emphasize the
importance of in�ltration processes.

For the second spatial con�guration, named �Grass strip(s)�, we consider a 318 m long
domain in which grass strips (GS) of total width equal to 6 m are added. Two spatial
localizations of the GS are considered, as represented in Figure 3: either three narrow, 2 m
wide GS are equally spaced or one large, 6 m wide GS is located at the outlet. We assign
a saturated hydraulic conductivity to the GS and another one to the remaining part of the
soil surface called the �eld. Both Ks are independent RV's with uniform distribution. The
values taken by Ks on the GS are higher than those on the �eld (see Table 4).

4.2. Performance evaluation

Before discussing our results in the next session, we verify the numerical procedure on
the �Three-�eld� test case with SRE and the spatial localization + − o for Ks. Figure 4(a)
presents the convergence of the �rst-order and total sensitivity indices as a function of the
sample set dimensionM . For both order indices (�rst and total), the convergence is obtained
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Figure 2: �Three-�eld� test case with the spatial localization + − o: (a) initial con�guration ; (b) rainfall
hydrograph for the impermeable con�guration and the case where Ks,+, Ks,o, and Ks,− all take their
respective mean value.

Event R (m.s−1) TR (s) T (s)

SRE 1.66·10−5 125 250

LRE 1.66·10−5 1,250 2,500

Table 1: �Three-�eld� test case, data for
the two rainfall events: rainfall intensity R,
rainfall duration TR, and total simulation
time T .

− o +

Kmin
s 2.78·10−7 2.78·10−6 1.10·10−5

Kmax
s 1.10·10−6 5.50·10−6 1.66·10−5

Table 2: �Three-�eld� test case: minimal and maximal val-
ues of Ks (m.s−1) for the soil types.

quickly around M = 1000. Figure 4(b) presents the MC estimate of the expectation and
standard deviation of Qmax with ±3 bootstrap standard error bounds plotted against the
sample set dimension M . A sample set dimension equal to 100,000 appears to be su�cient
to achieve convergence, and in agreement with the previous convergence of the sensitivity
indices. This value for M is used in what follows. Figure 4(c) illustrates the in�uence of the
bandwidth η on the pdf estimation. An under-smoothed pdf is obtained with a small value
(η = 0.01) whereas an over-smoothed pdf is obtained with a large value (η = 0.5). The
value η = 0.05 yields a su�ciently smoothed pdf without spurious oscillations. This value
for η is used in what follows.

3 narrow GS 1 large GS

2% 2%

field field

R(t) R(t)

3 GS configuration 1 GS configuration

field
field

Figure 3: �Grass strip(s)� test case: initial con�guration.
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Event R (m.s−1) TR (s) T (s)

SRE 8.33·10−6 3,600 5,000

LRE 1.11·10−5 8,500 9,500

Table 3: �Grass strip(s)� test case, data for the
two rainfall events: rainfall intensity R, rainfall
duration TR, and total simulation time T .

�eld GS

Kmin
s 3.57·10−6 2.22·10−5

Kmax
s 6.35·10−6 3.33·10−5

Table 4: �Grass strip(s)� test case: minimal and
maximal values of Ks (m.s−1).
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Figure 4: Numerical veri�cation for the �Three-�eld� test case with the spatial localization + − o: (a)
convergence of the �rst-order and total sensitivity indices for Qmax as a function of sample dimension M ;
(b) convergence of the MC estimate of Qmax expectation and standard deviation with ±3 standard error
as a function of sample dimension M ; (c) probability density estimation of Qmax, using the kernel density
estimator for di�erent bandwidth values η.

5. Results and discussion

This study focuses on the e�ects of the uncertainties in Ks and of the spatial localization
of the soil types on the peak runo� rate at the outlet, Qmax, and the runo� coe�cient, RC.
The two test cases �Three-�eld� and �Grass-strip(s)�, detailed in Section 4, are investigated.
In particular, the di�erent statistic estimators (moments, pdf's, and sensitivity indices) are
calculated for the two rainfall events SRE and LRE, with a sample dimension equal to
100,000 and a uniform distribution for all RV's.

5.1. Three-�eld test case

Figures 5 and 6 present the 100,000 couples (Qmax,RC) for the six possible spatial
localizations of soil types and for SRE and LRE, respectively. An important point is that
there is an important correlation between the two outputs Qmax and RC for each spatial
localization. Indeed, all the correlation coe�cients are greater than 0.9. Concerning SRE
(Figure 5), the simulations even tend to line up in a curve. We observe that Qmax = 0
when Ks,+ is downslope due to a complete in�ltration of the rain and the upslope runo�.

10



The cloud of points for the spatial localization + − o contains the one for − + o which
corresponds to the weakest discharges. The con�gurations where Ks,− is located downslope
are similar whatever the positions of Ks,+ and Ks,o because the values of Ks,+ and Ks,o

are su�ciently important to in�ltrate all the rain. Therefore, the clouds of points for SRE
depend on the Ks located downslope. Concerning LRE (Figure 6), Qmax and RC increase
since the rainfall duration is longer. As a result, the in�uence of Ks,+ is more pronounced
for LRE and contributes more to the discharge at the outlet, whereas the in�uence of Ks,−
decreases. Therefore, the clouds of points for LRE depend essentially on the position of
Ks,+ within the domain. Figures 5 and 6 stress the importance of the spatial distribution
of the soil types since the outputs are in�uenced by the Ks located downslope for SRE and
by the localization of Ks,+ for LRE. To better understand why this di�erence is observed
by changing the rainfall duration, we focus on the in�ltration process over the domain.

Figure 5: �Three-�eld� test case and Short Rainfall Event: peak runo� rates Qmax and runo� coe�cients
RC for the six possible spatial localizations of soil types.

Equation (6) implies that the ratio Ic/Ks tends to 1 when the in�ltrated water volume
tends to in�nity (corresponding to a saturated soil). To study the e�ect of increasing the
rainfall duration on soil saturation, Figure 7 presents the con�dence interval (i.e. minimal
and maximal values for the 100,000 model responses) of the ratio Ic/Ks at �nal time, as a
function of spatial position, in grey for SRE and in black for LRE. As expected, the soil is
more saturated for LRE and the ratio is closer to 1. Besides, the variability of the con�dence
interval is in general the highest for the subdomain where Ks,− is located and the weakest
for the subdomain where Ks,+ is located. The variability decreases as a function of soil
saturation since the more saturated the soil, the smaller the variability, except for some
limit cases where there is no runo� on the concerned subdomain.

Table 5 presents the mean µ, the standard deviation σ, the coe�cient of variation cov =
σ/µ, the median P50, and the 90th percentile P90 related to Qmax (white lines) and RC (grey
lines). On the whole, there is more dispersion on the estimated values for SRE. For instance,
cov varies between 10% when Ks,− is located downslope and reaches 42% (for + − o) and
217% (for − + o) when Ks,o is located downslope. Besides, the values are higher for SRE
than for LRE. The increase of the rainfall duration leads to a decrease in the dispersion
values, therefore dispersion depends on the state of soil saturation (as the variability of the
ratio Ic/Ks observed previously in Figure 7). Furthermore, for SRE, the distribution is
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Figure 6: �Three-�eld� test case and Long Rainfall Event: peak runo� rates Qmax and runo� coe�cients
RC for the six possible spatial localizations of soil types.
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Figure 7: �Three-�eld� test case: con�dence interval of the ratio Ic/Ks at �nal time as a function of spatial
position and for the six possible localizations of soil types; Short Rain�al Event (in grey) and Long Rainfall
Event (in black).

not uniform when Ks,o is downslope since the median and the mean are di�erent. Finally,
similar conclusions can be drawn from the statistical values associated with RC. Moreover,
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we observe that for both SRE and LRE, cov takes higher values for RC than for Qmax.

Short Rainfall Event Long Rainfall Event

Ks,− downslope Ks,o downslope Ks,+ upslope Ks,+ midslope Ks,+ downslope

+ o − o + − + − o − + o + o − + − o o + − − + o o − + − o +

µ 1.8·10−5 1.8·10−5 1.5·10−5 2.6·10−7 4.0·10−5 4.0·10−5 3.8·10−5 3.9·10−5 3.9·10−5 3.9·10−5

2.8·10−4 2.8·10−4 8.7·10−5 5.9·10−7 8.2·10−3 8.1·10−3 6.9·10−3 6.2·10−3 6.2·10−3 6.2·10−3

σ 1.8·10−6 1.8·10−6 6.1·10−6 5.6·10−7 1.8·10−6 1.8·10−6 3.4·10−6 3.3·10−6 3.3·10−6 3.3·10−6

6.3·10−5 6.3·10−5 6.1·10−5 1.5·10−6 5.2·10−4 5.4·10−4 6.6·10−4 8.2·10−4 8.3·10−4 8.3·10−4

cov 10% 10% 42% 217% 5% 5% 9% 9% 9% 8%

22% 22% 70% 250% 6% 7% 10% 13% 13% 13%

P50 1.8·10−5 1.8·10−5 1.5·10−5
0 4.0·10−5 4.0·10−5 3.8·10−5 3.9·10−5 3.9·10−5 3.9·10−5

2.8·10−4 2.8·10−4 7.8·10−5
0 8.2·10−3 8.1·10−3 6.8·10−3 6.2·10−3 6.1·10−3 6.2·10−3

P90 2.1·10−5 2.1·10−5 2.2·10−5 1.1·10−5 4.2·10−5 4.2·10−5 4.3·10−5 4.3·10−5 4.3·10−5 4.3·10−5

3.8·10−4 3.8·10−4 1.8·10−4 2.3·10−6 8.9·10−3 8.8·10−3 7.8·10−3 7.4·10−3 7.3·10−3 7.3·10−3

Table 5: �Three-�eld� test case: mean µ = Ê[Qmax], standard deviation σ =

√
V̂ (Qmax), coe�cient of

variation cov = σ/µ, median P50, and 90th percentile P90 for the peak runo� rate Qmax (white lines) and
the runo� coe�cient RC (grey lines).
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Figure 8: �Three-�eld� test case: probability density function of the peak runo� rate Qmax estimated with
a bandwidth η = 0.05; linear scale (top) and logarithmic scale (bottom); (a) Short Rainfall Event (SRE);
(b) Long Rainfall Event (LRE).

Figures 8(a) and 8(b) present the pdf's of Qmax estimated by the Parzen�Rozenblatt
method and plotted by groups in function of the Ks which in�uences the most the discharge
at the outlet. A �rst important point is that the pdf shape shows that the process studied
is not Gaussian. Concerning SRE, the spatial localizations of soil types yielding clouds of
points that are correlated and uniformly distributed in Figure 5 (the ones where Ks,− is
downslope), generate a spread pdf looking like a rectangular function. The pdf resulting
from the con�guration − + o has a marked peak owing to the numerous null discharges
observed. This marked peak does not have the expected form on the left part because it is
di�cult to approximate accurately such a pdf (resembling a Dirac function) by a Gaussian
kernel. Concerning LRE, the six curves on Figure 8(b) are very close and have the form of
a �at bell on top and are almost symmetrical with respect to zero (i.e, with respect to the
mean because the samples are standardized). So, contrary to SRE, the spatial distribution
of Ks does not in�uence the distribution of Qmax for LRE. The estimated pdf's for RC lead
to the same conclusions. We can conclude that the dispersions calculated in Table 5 for SRE
are con�rmed by the non-uniform distribution obtained in the pdf curves.

Figures 9(a) and 9(b) present the �rst-order sensitivity indices estimated for the 100,000
standardized samples and for the two rainfall events. The sensitivity indices related to Ks,+,
Ks,o, and Ks,− are respectively denoted by S+, So, and S−. Concerning SRE (Figure 9(a)),
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Figure 9: �Three-�eld� test case: sensitivity indices of the peak runo� rate Qmax; (a) Short Rainfall Event
(SRE); (b) Long Rainfall Event (LRE).

the highest index corresponds to the parameter Ks located downslope, thus corroborating
the previous conclusions on the most in�uent Ks. For instance, in Figure 5, for the spatial
localizations where Ks,− is located downslope, the clouds of points are similar. Switching
Ks,o and Ks,+ does not impact the outlet discharge, meaning that only Ks,− in�uences this
quantity, and indeed the indices S− are equal to 1. Concerning LRE, since the rainfall
duration is longer, more runo� is generated in the most in�ltrating subdomain because
of the decreasing of the in�ltration capacity. In Figure 9(b), the most in�uent parameter
is either Ks,+ (with S+ ≈ 72%) or Ks,o (with So ≈ 70%) when Ks,+ is located upslope.
Moreover, Ks,− is not very in�uent, and contrary to Figure 5, the three parameters Ks are
not negligible in the sensitivity analysis. Moreover, the total sensitivity indices are equal to
the corresponding �rst-order index, that is, ST,i ≈ Si. These equalities mean that there is no
signi�cant interaction between the input parameters. Concerning the runo� coe�cient RC,
the sensitivity analysis leads to the same conclusions. In practice, in case of soils with low
levels of saturation (for SRE), it is important to focus the measurements on the parameter
closer to the outlet. For more saturated soils (e.g., for LRE), the measurements should focus
on the most in�ltrating parts of the domain.

To study the e�ect of the length L of the domain, we have also tested the case where
L = 48 m with LRE. It is interesting to notice that the length of the domain does not a�ect
the results. The clouds of points and the pdf's have the same shape, and the most in�uent
sensitivity index is the same, i.e, Ks,o in cases where Ks,+ is located upslope or Ks,+ in
other cases. The only signi�cant di�erence is that the sensitivity index for Ks,+ vanishes
when Ks,+ is located upslope. This result can be explained by the fact that longer domains
lead to an augmentation of the distance between the upslope subdomain and the outlet.

5.2. Grass strip(s) test case

Figure 10 presents the couples (Qmax,RC) corresponding to the 100,000 model responses
for the four con�gurations (1 or 3 GS; SRE or LRE). In each con�guration, the clouds of
points are well correlated and, as previously, the values of Qmax and RC are higher for
LRE than for SRE. Concerning Qmax, for both SRE and LRE, the values are contained
approximately in the same intervals whatever the spatial localization of the GS. Concerning
RC, its values are slightly higher for the spatial con�guration with 1 GS, and this e�ect is
more signi�cant for SRE. We conclude that the spatial localization of the GS has very little
in�uence on the variability of the runo�, and almost none on that of the �ow at the outlet.

Figure 11 presents the con�dence interval (for the 100,000 model responses) of the ratio
Ic/Ks at �nal time, as a function of spatial position. As expected, because of the duration
of the rainfall events, the ratios are closer to 1 for LRE. Besides, compared to Figure 7,
the values taken by the ratio are very close to 1, meaning that the soil is almost saturated.
For each rainfall event, the values taken by Ic/Ks for the two spatial con�gurations (1 GS
and 3 GS) are very close. Furthermore, we observe that for SRE, the variability of the
ratio Ic/Ks is between 2 and 4 times higher for the GS than for the �eld. Conversely, for
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Figure 10: �Grass strip(s)� test case with Short and Long Rainfall Events (resp. SRE and LRE): peak runo�
rates Qmax and runo� coe�cients RC for the two con�gurations (one large grass strip downslope (1 GS), or
three narrow grass strips (3 GS)).

LRE, the variability is approximately 3 times more important for the �eld than for the
GS. An interesting result concerning SRE is that the e�ect of having 3 GS instead of 1 GS
downslope, is to somehow homogenize the level of variability of Ic/Ks along the �eld.

Statistical values (µ, σ, cov,P50, and P90), not presented here, con�rm that the spatial
con�gurations with 1 GS and 3 GS are similar regarding Qmax for LRE, and very close
for SRE. Concerning LRE, in agreement with the almost essentially �at shape of the pdf's
(Figure 12), we report the same values for the model outputs with the mean values of the
parameters, the mean estimation, and the median. Concerning SRE, highly marked peaks
are observed with signi�cantly di�erent values (4.2 for 1 GS versus 3.1 for 3 GS). These peaks
explain the di�erence between the mean and the median. Moreover, the mean values of the
model outputs di�er from the model outputs with the mean parameters. This underlines
the importance of non-linear processes. The statistical values and the estimated pdf's for
RC lead to the same conclusions.

Figures 13 and 14 present the three statistic estimators µ, P50, and P90 for the peak
runo� rate maxtQ(x, t) as a function of spatial position, and the two deterministic values
of this quantity (taking Ks = Kmin

s and Kmax
s ). The curves for P50 almost coincide with

those for maxtQ(x, t) calculated with the value Ks = Kmean
s . Contrary to LRE where

equality is obtained, the median is inferior to the mean for SRE. Both for the 1 GS and 3
GS con�gurations, the distribution is not uniform in space. Moreover, for both SRE and
LRE, RC is slightly higher with the 3 GS con�guration. Although the runo� volumes are
comparable for 1 GS and 3 GS, the spatial distribution of maximal discharges varies. Indeed,
both in Figures 13 and 14, the discharges along the spatial domain are weaker for 3 GS,
owing to the presence of the three GS which slow down the �ow. Moreover, this e�ect is
more signi�cant for the SRE because of the saturation of the soil. Therefore, for processes
like soil erosion, which are in�uenced by the maximal discharge, the main result of Figure 13
is that the 3 GS con�guration reduces (especially for SRE) the occurrence of high values for
maxtQ. Moreover a relevant information obtained with the stochastic approach is that, for
SRE, (resp. LRE) the 90th percentile is 33% (resp. 11%) lower with the 3 GS con�guration
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than with the 1 GS con�guration.
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Figure 13: �Grass strip(s)� test case: statistical estimations of the peak runo� rate maxtQ(x, t) as a function

of spatial position (mean µ = Ê[maxtQ(x, t)]), median P50, and 90th percentile P90), and some deterministic
values of this quantity (taking Ks = Kmin

s or Kmax
s ) for the Short Rainfall Event.

Concerning the sensitivity analysis, for the four con�gurations (1 GS or 3 GS; SRE or
LRE), the �rst-order sensitivity indices related to the �eld (in the range 92% to 96%) are
much higher than those related to the GS. This shows that only the Ks of the �eld is an
in�uent parameter, owing to the very important in�ltration capacity of the GS.

To study the e�ect of the values for Ks, we have also tested the �Grass strip(s)� test case
with less in�ltrating GS. The obtained results corroborate the previous observations. There
is no signi�cant di�erence in terms of runo� and discharge at the outlet, but the presence of
three GS slows down the �ow and diminishes the occurrence of extreme values for the �ow
rates.

6. Conclusion

In this work, we have studied the impact of the variability in soil properties on overland
�ows caused by rainfall events. We have considered the soil saturated hydraulic conductivity
Ks as the most uncertain input parameter in the framework of the Green�Ampt in�ltration
model. To model uncertainties, the �ow domain has been split into subdomains re�ecting
the spatial organization of the landscape (e.g., agricultural �elds, grass strips), and the satu-
rated hydraulic conductivity has been described by statistically independent and uniformly
distributed random variables, with one random variable assigned to each subdomain. Con-
cerning output quantities, we have focused on the discharges at the outlet (peak runo� rate
and runo� coe�cient). Two test cases, named �Three-�eld� and �Grass strip(s)�, have been
investigated.

The �Three-�eld� test case aims at understanding the role of spatial organization in un-
certainty propagation. The conclusions depend on the level of soil saturation. For long
rainfall events leading to highly saturated soils, the variability of model outputs remains
moderate. Moreover, the most in�uent input parameter is the Ks taking the highest values,
except when the most in�ltrating subdomain is located upslope, in which case the most

17



0 100 200 3000

0.5

1

1.5

2

x 10-3

x (m)

m
ax

t Q
(x

,t)
  (

m
².s

-1
)

 

 

0 100 200 3000

0.5

1

1.5

2

x 10-3

x (m)

m
ax

t Q
(x

,t)
  (

m
².s

-1
)

 

 

μ
P50
P90

Ks
min

Ks
max

Figure 14: �Grass strip(s)� test case: statistical estimations of the peak runo� rate maxtQ(x, t) as a function

of spatial position (mean µ = Ê[maxtQ(x, t)]), median P50, and 90th percentile P90), and some deterministic
values of this quantity (taking Ks = Kmin

s or Kmax
s ) for the Long Rainfall Event.

in�uent input parameter is the Ks taking intermediate values. For short rainfall events with
moderately saturated soils, the most in�uent input parameter, regardless of its value, is the
Ks located downslope, that is, the closest to the outlet. Moreover, since the variability of
model responses is high, a practical conclusion in this situation is that additional measure-
ments near the outlet should be the most e�ective to help reduce output uncertainties.

The �Grass strip(s)� test case aims at comparing, in view of possible land management
issues, runo� uncertainties obtained with two possible spatial localizations of grass strips
within a �eld, namely three narrow, equally-spaced grass strips versus one large grass strip
located at the �eld outlet. The �rst conclusion is that the duration of the rainfall event
substantially impacts the shape of the probability density function (pdf) of the model out-
puts. Speci�cally, highly peaked pdf's are obtained for short rainfall events (and moderately
saturated soils), while relatively �at pdf's are obtained for long rainfall events (and highly
saturated soils). The second conclusion is that the localization of the grass strips does not
impact the variability of the model outputs. However, one important di�erence concerns
the spatial distribution of maximal discharges since the con�guration with three grass strips
leads to less probable extreme values, as re�ected by the lower values taking by the 90th
percentile for the con�guration with three grass strips. This observation is relevant in view
of assessing erosion risks, since the detachment of soil particles is very sensitive to the peak
discharge.

To sum up, the present methodology can be used as a tool to determine where addi-
tional e�orts should be concentrated when collecting input parameters to reduce output
uncertainties, and also as a tool to assess risks due to extreme values, keeping in mind that
quantitative results depend on the probabilistic model selected for the input parameters.
Possible further applications can target soil erosion based on sediment transport models and
groundwater contamination based on pollutant transport models.

[1] E. Audusse. Modélisation hyperbolique et analyse numérique pour les écoulements en eaux peu pro-

fondes. PhD thesis, Université Pierre et Marie Curie - Paris VI, 2004.

18



[2] E. Audusse, F. Bouchut, M.O. Bristeau, R. Klein, and B. Perthame. A fast and stable well-balanced
scheme with hydrostatic reconstruction for shallow water �ows. SIAM J. Sci. Comput., 25(6):2050�
2065, 2004.

[3] N. Baghdadi, O. Cerdan, M. Zribi, V. Auzet, F. Darboux, M. El Hajj, and R. Bou Keir. Opera-
tional performance of current synthetic aperture radar sensors in mapping soil surface characteristics:
application to hydrological and erosion modelling. Hydrological Processes, 22:9�20, 2008.

[4] G. Baroni, A. Facchi, C. Gandol�, B. Ortuani, D. Horeschi, and J.C. van Dam. Uncertainty in the
determination of soil hydraulic parameters and its in�uence on the performance of two hydrological
models of di�erent comple. Hydrology and Earth System Sciences, 14:251�270, 2010.

[5] K. Beven and A. Binley. The future of distributed models: Model calibration and uncertainty prediction.
Hydrological Processes, 6(3):279�298, 1992.

[6] E Boegh, M Thorsen, M.B Butts, S Hansen, J.S Christiansen, P Abrahamsen, C.B Hasager, N.O
Jensen, P van der Keur, J.C Refsgaard, K Schelde, H Soegaard, and A Thomsen. Incorporating remote
sensing data in physically based distributed agro-hydrological modelling. Journal of Hydrology, 287(1-
4):279�299, 2004.

[7] F. Bouchut. Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and

Well-Balanced Schemes for Sources. Birkhäuser Basel, 2004.
[8] J. Bouma. Using soil survey data for quantitative land evaluation. Advances in Soil Science, pages

177�213, 1989.
[9] J. Bouma and H.A.J. van Lanen. Transfer functions and threshold values: from soil characteristics to

land qualities. pages 106�110, 1987.
[10] M.O. Bristeau and B. Coussin. Boundary Conditions for the Shallow Water Equations solved by Kinetic

Schemes. Research Report RR-4282, INRIA, 2001. Projet M3N.
[11] O. Cerdan, N. Baghdadi, J.P. Denux, J.F. Desprats, M. Gay, C. Albergel, I. Dubus, F. Dupros, N. Holah,

and M. El Hajj. Apibar : Appui à la prévision des innondations cas des bassins rapides du sud de la
france. Rapport Final BRGM/RP-54218-FR, BRGM, 2006.

[12] V.T Chow. Open Channel Hydraulics. McGraw-Hill College, 1959.
[13] J.F. Desprats, D. Raclot, M. Rousseau, O. Cerdan, M. Garcin, Y. Le Bissonnais, A. Ben Slimane,

J. Fouche, and D. Monfort-Climent. Mapping linear erosion features using high and very high resolution
satellite imagery. Land Degradation and Development, 2011.

[14] Q. Duan, S. Sorooshian, and V. Gupta. E�ective and e�cient global optimization for conceptual
rainfall-runo� models. Water Resources Research, 28(4):1015�1031, 1992.

[15] M. Esteves, X. Faucher, S. Galle, and M. Vauclin. Overland �ow and in�ltration modelling for small
plots during unsteady rain: numerical results versus observed values. Journal of Hydrology, 228(3-
4):265�282, 2000.

[16] F.R. Fiedler and J.A. Ramirez. A numerical method for simulating discontinuous shallow �ow over an
in�ltrating surface. International Journal for Numerical Methods in Fluids, 32:219�239, 2000.

[17] J.F. Gerbeau and B. Perthame. Derivation of Viscous Saint-Venant System for Laminar Shallow Water;
Numerical Validation. Research Report RR-4084, INRIA, 2000. Projet M3N.

[18] R. Ghanem and P. Spanos. Stochastic �nite elements: a spectral approach. Dover, 2003.
[19] W.H. Green and G. Ampt. Studies on soil physics: 1, �ow of air and water through soils. Journal of

Agricultural Science, 4:1�24, 1911.
[20] A. Harten and S. Osher. Uniformly high-order accurate nonoscillatory schemes. I. SIAM J. Numer.

Anal., 24(2):279�309, 1987.
[21] W.K. Hastings. Monte carlo samping methods using markov chains and their applications. Biometrika,

pages 97�109, 1970.
[22] T. Homma and A. Saltelli. Importance measures in global sensitivity analysis of nonlinear models.

Reliability Engineering & System Safety, 52(1):1�17, 1996.
[23] D. Huard and A. Mailhot. Calibration of hydrological model gr2m using bayesian uncertainty analysis.

Water Resources Research, 44:1�19, 2008.
[24] R.K. Jhorar, J.C. van Dam, W.G.M Bastiaanssen, and R.A. Feddes. Calibration of e�ective soil

hydraulic parameters of heterogeneous soil pro�les. Journal of Hydrology, 285:233�247, 2004.
[25] G Kuczera and E Parent. Monte carlo assessment of parameter uncertainty in conceptual catchment

models: the metropolis algorithm. Journal of Hydrology, 211(1-4):69�85, 1998.
[26] E. Laloy and C. L. Bielders. Modelling intercrop management impact on runo� and erosion in a

continuous maize cropping system: Part i. model description, global sensitivity analysis and bayesian
estimation of parameter identi�ability. European Journal of Soil Science, 60:1005�1021(17), December
2009.

[27] F. Marche. Theoretical and Numerical Study of Shallow Water Models. Applications to Nearshore

Hydrodynamics. PhD thesis, Université de Bordeaux, France, 2005.
[28] R.G. Mein and C.L. Larson. Modeling in�ltration during a steady rain. Water Resources Research,

9(2):384�394, 1973.
[29] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equation of state

calculations by fast computing machines. Journal of Chemical Physics, 21:1087�1092, 1953.
[30] H.O. Sharif, F.L. Ogden, W.F. Krajewski, and M. Xue. Numerical simulations of radar rainfall error

propagation. Water Resour. Res, 38:10�1029, 2002.
[31] V. Sheikh, E. van Loon, R. Hessel, and V. Jetten. Sensitivity of lisem predicted catchment discharge

to initial soil moisture content of soil pro�le. Journal of Hydrology, 393(3-4):174�185, 2010.
[32] I.M. Sobol. Sensitivity estimates for nonlinear mathematical models. Mathematical Modelling and

Computational Experiments, 1:407�414, 1993.

19



[33] J.J. Stoker. Water Waves: The Mathematical Theory with Applications. Wiley-Interscience, 1992.
[34] M. Thiemann, M. Trosset, H. Gupta, and S. Sorooshian. Bayesian recursive parameter estimation for

hydrologic models. Water Resources Research, 37(10):2521�2535, 2001.
[35] O. Tietje and V. Hennings. Accuracy of the saturated hydraulic conductivity prediction by pedo-transfer

functions compared to the variability within fao textural classes. Geoderma, 69(1-2):71�84, 1996.
[36] O. Tietje and O. Richter. Stochastic modeling of the unsaturated water �ow using auto-correlated

spatially variable hydraulic parameters. Modeling Geo-Biosphere Processes, 1:163�183, 1992.
[37] M.T. Van Genuchten. A closed-form equation for predicting the hydraulic conductivity of unsaturated

soils. Soil Science Society of America Journal, 44:892�898, 1980.
[38] P.L. Viollet, J.P. Chabard, P. Esposito, and D. Laurence. Mécanique des �uides appliquée. Presses de

l'Ecole Nationale des Ponts et Chaussées, 1998.
[39] J.A. Vrugt, H.V. Gupta, W. Bouten, and S. Sorooshian. A shu�ed complex evolution metropolis algo-

rithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resources

Research, 39(8), 2003.
[40] J.A. Vrugt, C.J.F. ter Braak, M.P. Clark, J.M. Hyman, and B.A. Robinson. Treatment of input uncer-

tainty in hydrologic modeling: Doing hydrology backward with markov chain monte carlo simulation.
Water Resources Research, 44, Dec 2008.

[41] P. Wang and D. M. Tartakovsky. Probabilistic predictions of in�ltration into heterogeneous media with
uncertain hydraulic parameters. Int. J. Uncert. Quant., 1(1):35�47, 2011.

[42] P. Wang and D. M. Tartakovsky. Reduced complexity models for probabilistic forecasting of in�ltration
rates. Adv. Water Resour., 34:375�382, 2011.

[43] J.H.M Wösten, Ya. A. Pachepsky, and W.J. Rawls. Pedotransfer functions: bridging the gap between
available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology, 251(3-4):123�
150, 2001.

20


