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ABSTRACT

We consider the estimation of multiple room impulse respens
from the simultaneous recording of several known sourcristiig
techniques are restricted to the case where the number fesoig
at most equal to the number of sensors. We relax this assomipti
the case where the sources are known. To this aim, we protmse s
tistical models of the filters associated with convex ldglihoods,
and we propose a convex optimization algorithm to solve the i
verse problem with the resulting penalties. We provide apamm
son between penalties via a set of experiments which shatstin
method allows to speed up the recording process with a dedro
quality tradeoff.

Index Terms— Room impulse response recording, convex op-
timization, compressed sensing

1. INTRODUCTION

We focus on the recording of multiple room impulse responigs
to now this is typically achieved by activating each loudsss
or sourcein turn, with a silent interval equal to the expected du-
ration of the impulse response in betwe&h [The total record-
ing duration is thenV(D + K — 1) where N is the number of
sources,D the chirp duration ands the impulse response length
in samples. An improvemen®] is to use time-overlapping but
time-frequency disjoint chirps, which reduces the reaoydiura-
tion down toNK + D — 1 when the system is linear. These tech-
nigues remain time-consumirgg.in the context of the calibration
of high-end 3D audio systems or the collection of binaurahném-
pulse responses involving hundreds of loudspeakers. Vistigate
here possible improvements using state-of-the-art systeansion
tools. This problem is equivalent to the estimation of thixing
filtersin the context of convolutive source separati@h [

The techniques in?] and [?] for mixing filter estimation as-

sume each source to be active alone in a certain time interval

Once this time interval has been localized, the correspaontii-
ters are estimated using a subspace metBp@f convex optimiza-
tion [?]. Alternative Convolutive Independent Component Anadysi
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from a smaller number of measurements. We show theorsticall
that white noise sources provide the most convenient sykiein-
version.

The structure of the paper is as follows. The formalizatibn o
the problem is described section 2. Section 3 correspontiseto
study of thea priori structure of the filters. The implementation of
the algorithm is detailed Section 4. The results shown irtiGe&
show the potential of the proposed method.

2. APPROACH

The problem is formalized as follows : we representAhsources
of lengthT by the matrixS € RV 7, the filters of lengthi by the
three dimensional arrap € R *N*K and theM observations
by X € RM*(T+K-1 Assuming that the loudspeaker are linear,
the convolutive matrix produet allows us to write

X=A%xS= (Z Amn*sn> . (1)
m<M

n<N

Earlier work [?] used convex optimization tools to recov&@mwhen
A is known, using a sparsity prior on the sources.

Here we adapt the method iff][to estimateA when S is
known, by estimatindimy_,o A where

A = argmin, {%Hx —AXS|E+ )\P(A)} O ©

This limit is the solution of the constrained minimizatioroplem

minP(A) st [X - AxS|3=0. 3)

We choose fofP the negative log-likelihood of a distribution sug-
gested by the statistical analysis of a large family of fiter

3. STATISTICAL ANALYSIS OF A FAMILY OF FILTERS

The statistical theory of room acousticg freats each filter as a

techniques] assume the number of sources to be at most equal t0 rangom i.i.d. signal whose amplitude envelgge) decays expo-
the number of sensors. Our work is to our knowledge the first to penially according to

get rid of these two assumptions. We propose to take advaitag
thea priori temporal structure of the filters to improve the iterative
inversion of the linear system. In addition to the sparserpritro-
duced in ] for single-source blind channel identification, we pro-
pose four new priors and a new multi-source inversion aflgori
Our approach is an example cbmpressed sensifg][?], that is

an emerging general approach to the recovery of structigedls

p(t) = o 1073/ tr (4)
wherety is the room reverberation time in samples, arascaling
factor. This theory assumes that a filtere R” follows a Gaussian
distribution. In other work?], A(t) is instead assumed to have a
constant amplitude envelope and to be sparse, as it is fohyed
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Figure 1: Comparison of the statistical models (5) to (8)raveet
of generated filters for a reverberation time26f) ms.

echoes at distinct instants. In order to evaluate the réispeémpact
of both the envelope model and the sparsity model, we congide
following distributions : Laplacian with decaying envetop

1 am)/e
Pi(t) = [A®)1/p(t) 5
(0= 3 : ®)
Gaussian with decaying envelope
L -a%w)/20° 1)
Py(t) = - =——e P (6)
V2mp(t)
Laplacian with constant envelope
1 - o
Py(t) = 5”401, (7)
Gaussian with constant envelope
1 A2 o2
Py(t) = —=——e " 1/277, ®)

2no

Figure 1 compares the average negative log-likelihoodshee
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the data fidelity term
L:A—|X—AxS|3, (10)

and the convexity and semicontinuity &f. So-called proximity
operators are employed to overcome the non-differentilod 7;.

Definition 1 For P : E — R semicontinuous and convex the prox-
imity operator associated witF is the function

. 1
proxp : X € E +— argming g {P(y) + EHX - y||§}

The general steps of FISTA are described in Algorithm 1. llese
on the computation of the gradient 6f its Lipschitz constantL,
and the proximity operator of the scaled penaify.

Algorithm 1 FISTA
1: AO ¢ RMNE [0 _
2: for k < kmax do
X - vkt
AF = ProXa (Ak 1_vear ) ))

E_ 14y/144(rk—1)2

T =
2
dek = AF 4 Tk;lfl(Ak 71&1@—1)
3: end for

The computation of the gradient dfrequires the introduction
of the adjoint of the linear operatéx — A xS. Denoting bysS,, €
RT the time reversal of,,, i.e.fort < T, S, (t) = Sp(T —t+1),

the adjoint operator is expressed usHiy:= (5’17 o S’N) as

X X*S™ = ((Sn % Xo)(t .o

A ((S * )( ))mSJM,nSN,lStSK (1)

One may then write the gradient as
VL(A)=(X—-AxS)xS™ (12)

The Lipschitz constant &7 £ is the greatest eigenvalue of the oper-
atorA — A xSxS*. We obtain this value using the power iteration

four models over a set of 10 000 filters simulated by the image algorithm as in P, Algorithm 5].

method [?] for one source and one microphone at random positions

spaced byl m, in a rectangular room of dimensiofi8 x 8 x 4 m
with tg = 250 ms. For each model, the scaling factois set in
the maximum likelihood sense. Envelope modeling appeabeto
crucial : the likelihood of model$; and P4 is much larger than
that of P, and P, for larget. Sparsity has a weaker impact : the
likelihood of P; (and to a lesser extent that Bf) is larger than that
of P, for t < 60 ms, but becomes similar far > 60 ms. These
observations lead us to propose a fifth hybrid model

Pi(t) ift<60ms
Pty = D0 TS ©)
Py(t) it>60ms
Assuming Gaussian white additive noise, maximum

a posteriori estimation of the filters is equivalent to (2) with
Pi = —log P;.

4. ALGORITHM

To solve (2), we use the FISTA (Fast Iterative Shrinkage-
Thresholding) algorithm], which exploits the differentiability of

The log-likelihood of the distributions introduced prewsby
correspond to thé, and/> norms, whose proximity operators are
well-known [?]. Denotingz™ := max(x, 0)for = € R, we obtain

pr0% g, (A = (08220 (14, 25) " a9
PrOx, , () = {1 (14
PO, () = 2 (A (6)] = ) (15)
PIOX, (A = 2240 (16)

Concerning the hybrid model (9), we use (13) or (14) depandim
the value oft.

We estimate the minima. for A € {1,107%,...,107 '},
initializing each FISTA step at the minimum obtained for gnevi-
ous value. We keep the last minimum obtainedXot 1074, and
consider it as an estimate of the linhiin_,o A, i.e. the solution
of (3). Note that thé, penalizatioriP, corresponds to the definition
of the Moore-Penrose pseudo inversion.
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Figure 2: Performance of the estimationAfwith N = 5 white
noise sources, depending on the duration of the signal.

5. EXPERIMENTAL RESULTS

The Matlab code allowing to reproduce the following expemis
is available at the following addres®g|[

5.1. Role of the condition number

First we wish to study the contribution of the penalty depegd
of the invertibility of the problem. The system is composdd o
M (T+ K —1) equations folM/ N K variables, therefore it is under-
determined if and only if the recording duration in samplatis§ies

T+K-1<T.:=NK. 17)
Note thatT. is smaller thanV K + D — 1 which is the length of the
recording required in7).

Performance does not depend on the numhbgrof micro-
phones, in fact each microphone brings an independentgirobl

The M N filters are a solution of the linear system, far< M

Xmm=S1%Am1+SoxApma+...+Sv*xAmnnN. (18)
In order to guide the choice of the source signals, we firstvsho
theoretically that the system is well conditioned if the re@s are
uncorrelated. To this aim we compute the condition humbéehef
systemi.e. the ratio of highest to lowest singular value. Note that
this is only defined for a full rank system, hence foe> T.. In the
under-determined setting, similar estimates can easilghib@ned
by exploiting the sparsity of the filterA.

The relation between the correlation of the sources anddhe c
dition number of the system is detailed in the following leenm
proved in the Appendix. Using the usual cross-correlatiorcfion
forn,n’ < N:

T—k
T (k) = Y Su(®)Su (t+k), 0<k<K -1

t=1

(19)

we introduce a measure of the maximum correlation between th
sources

r:=  max |rp. (k) (20)

n#n’ or k#0
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Figure 3: Estimation ofA for six different additive noise levels,
depending on the recording duration with= 5 sources

Lemma 1 For smallr, the condition number of18) obeys
maxy, Tnn(0) +7(NK — 1)
ming rpn(0) —r(NK —1)°

Note that for white noises; is small, and: is close tol, leading to
a well conditioned system.

1<e< (21)

5.2. Performance as a function of the recording duration

In previous work P, fig.2], we used human voice recordings, and
we observed a transitory regime fér > T. where the penalties
still had an impact due to a large condition number. In thjzgpave
want to choose the sources such that the system is well-toameil,
therefore we used white Gaussian noise, motivated by theedhe-
oretical guarantees. We observed experimentally (resattshown
here) that this choice remains experimentally valid forendeter-
mined systems.

As a measurement of the error between the estimated fitgrs
and the true filterg\, we define the following ratio in decibels

SNRY“(A) = 101log DAl
A AN - A3

When the solution is not unique, we expect to observe better
results with the proposed regularizations : we then runltaishm
for several values df.

The results shown in Figure 2 correspond to the casg ef 5
sourcesM = 2 sensors, with filters of length” = 2753 (250 ms
sampled afl1025 Hz) synthesized as in Section 2. For readabil-
ity we express all the durations in ms the following. We abtie
critical valueT. = 1250 ms beyond which the system is overde-
termined. We vary the length of the sources frém= 45 ms to
T = 1500 ms.

We observe in Figure 2 a clear jump around the critical vdlue
after which the inversion made by all regularized algorighyelds
the same solution, up to machine precision.

For T < T. we observe the clear impact of all regulariza-
tions compared to the pseudo-inverBg. The new penaltie®;
andP,, corresponding to the Laplacian and Gaussian distribsition
with decaying envelope give the best results. For a speeafFup
50% in recording duration compared t8][ we achieve a recovery
SNRY' = 25 dB.

(22)
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5.3. Robustness to noise this matrix is highly diagonally dominant. Using Gerschogis
disc theorem 7], we control its eigenvalues. Fore SpR), there

We now add Gaussian white additive noise to the mixtures, existn < N such that

X=A%xS+W. (23) K—1 K—1
For each penalt?; and each duratioff’ + K — 1 of the record- A =ran (O] < ; T () + ;0 g, " (26)

ings, six experiments were made for a signal-to-noise rafio

30, 40, 50, 60, 70 and80 dB. We observe in Figura that the noise < r(NK-1) (27)

decreases the overall performance, but has a smaller impabe

¢, re-scaled penalty; than on the common pseudo-inversipn.

Not surprisingly, the two penalties lead to the same resudedhe Mmax| _ maxny 7mn (0) + +(NK — 1)

sources are long enough for the solution to be unique. c= Ponin| = ity 7on(0) = H(NK — 1) (28)
This experiment confirms the possibility to speedup thendkco min mnn

ings even in the presence of noise. With an input SNROaB, the

estimation fidelity SN&Utis still 25 dB.

Then ifr(NK — 1) < min, r»,(0) we can conclude that

6. CONCLUSION

For the considered problem, the variaupriori introduced as con-
vex penalties provide better estimation of the filters thenpte de-
convolution using Moore-Penrose pseudo-inverse. Therbsatts
are achieved with the new proposed penalties based on a-decay
ing envelope model. This method can speed up the recorditiy, w
a reasonable quality trade-off for noisy measurements. |l&rge
numbers of sourced’ in reverberant rooms, the expected speedup
can be significant. Further experiments are needed to cottfiem
validity of the approach in such scenarii, by taking intocaat the
nonlinearity of the loudspeakers, as well as other perfogeanea-
sures. Besides, we know that source separation informedthdy t
filters provides better result8][: this opens the way to the alternate
estimation of both the sources and the filters with suitableafiies

on the filters as opposed t@][

Appendix
Denote
S.(1) 0 0
0
3, = Sn(T) Sn(1) e RTTE-DxK
0
0 - 0 S.(D)

We derive from (18) the block matrix notation
(Zn Xm)n<n = (S0 Sn)nm <n (Amn)nzn,  (24)
and the correlation of the sources (19) appears since we have
Trnt (0) o (K —1)

Y, = : ; . (25)
T (K —1) -+ Tnn (0)

Now c is the condition number of th& K x NK block matrix
R = (EZE",)"WSN, and the key is to choose the sources so that
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