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ABSTRACT

We consider the estimation of multiple room impulse responses
from the simultaneous recording of several known sources. Existing
techniques are restricted to the case where the number of sources is
at most equal to the number of sensors. We relax this assumption in
the case where the sources are known. To this aim, we propose sta-
tistical models of the filters associated with convex log-likelihoods,
and we propose a convex optimization algorithm to solve the in-
verse problem with the resulting penalties. We provide a compari-
son between penalties via a set of experiments which shows that our
method allows to speed up the recording process with a controlled
quality tradeoff.

Index Terms— Room impulse response recording, convex op-
timization, compressed sensing

1. INTRODUCTION

We focus on the recording of multiple room impulse responses. Up
to now this is typically achieved by activating each loudspeaker
or sourcein turn, with a silent interval equal to the expected du-
ration of the impulse response in between [?]. The total record-
ing duration is thenN(D + K − 1) whereN is the number of
sources,D the chirp duration andK the impulse response length
in samples. An improvement [?] is to use time-overlapping but
time-frequency disjoint chirps, which reduces the recording dura-
tion down toNK +D − 1 when the system is linear. These tech-
niques remain time-consuminge.g. in the context of the calibration
of high-end 3D audio systems or the collection of binaural room im-
pulse responses involving hundreds of loudspeakers. We investigate
here possible improvements using state-of-the-art systeminversion
tools. This problem is equivalent to the estimation of themixing
filters in the context of convolutive source separation [?].

The techniques in [?] and [?] for mixing filter estimation as-
sume each source to be active alone in a certain time interval.
Once this time interval has been localized, the corresponding fil-
ters are estimated using a subspace method [?], or convex optimiza-
tion [?]. Alternative Convolutive Independent Component Analysis
techniques [?] assume the number of sources to be at most equal to
the number of sensors. Our work is to our knowledge the first to
get rid of these two assumptions. We propose to take advantage of
thea priori temporal structure of the filters to improve the iterative
inversion of the linear system. In addition to the sparse prior intro-
duced in [?] for single-source blind channel identification, we pro-
pose four new priors and a new multi-source inversion algorithm.
Our approach is an example ofcompressed sensing[?][?], that is
an emerging general approach to the recovery of structured signals

from a smaller number of measurements. We show theoretically
that white noise sources provide the most convenient systemfor in-
version.

The structure of the paper is as follows. The formalization of
the problem is described section 2. Section 3 corresponds tothe
study of thea priori structure of the filters. The implementation of
the algorithm is detailed Section 4. The results shown in Section 5
show the potential of the proposed method.

2. APPROACH

The problem is formalized as follows : we represent theN sources
of lengthT by the matrixS ∈ R

N×T , the filters of lengthK by the
three dimensional arrayA ∈ R

M×N×K and theM observations
by X ∈ R

M×(T+K−1). Assuming that the loudspeaker are linear,
the convolutive matrix product⋆ allows us to write

X = A ⋆ S =





∑

n≤N

Amn ∗ Sn





m≤M

. (1)

Earlier work [?] used convex optimization tools to recoverS when
A is known, using a sparsity prior on the sources.

Here we adapt the method in [?] to estimateA when S is
known, by estimatinglimλ→0 Aλ where

Aλ = argminA

{

1

2
‖X−A ⋆ S‖22 + λP(A)

}

. (2)

This limit is the solution of the constrained minimization problem

min
A

P(A) s.t. ‖X −A ⋆ S‖22 = 0. (3)

We choose forP the negative log-likelihood of a distribution sug-
gested by the statistical analysis of a large family of filters.

3. STATISTICAL ANALYSIS OF A FAMILY OF FILTERS

The statistical theory of room acoustics [?] treats each filter as a
random i.i.d. signal whose amplitude envelopeρ(t) decays expo-
nentially according to

ρ(t) = σ 10−3t/tR , (4)

wheretR is the room reverberation time in samples, andσ a scaling
factor. This theory assumes that a filterA ∈ R

K follows a Gaussian
distribution. In other work [?], A(t) is instead assumed to have a
constant amplitude envelope and to be sparse, as it is formedby



2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2011, New Paltz, NY

0 50 100 150 200 250
2

3

4

5

6

7

8

t (ms)

lo
g−

lik
el

ih
ho

d

 

 
P

1

P
2

P
3

P
4

Figure 1: Comparison of the statistical models (5) to (8) over a set
of generated filters for a reverberation time of250 ms.

echoes at distinct instants. In order to evaluate the respective impact
of both the envelope model and the sparsity model, we consider the
following distributions : Laplacian with decaying envelope

P1(t) =
1

2ρ(t)
e−|A(t)|/ρ(t), (5)

Gaussian with decaying envelope

P2(t) =
1√

2πρ(t)
e−A2(t)/2ρ2(t), (6)

Laplacian with constant envelope

P3(t) =
1

2σ
e−|A(t)|/σ, (7)

Gaussian with constant envelope

P4(t) =
1√
2πσ

e−A2(t)/2σ2

. (8)

Figure 1 compares the average negative log-likelihoods of these
four models over a set of 10 000 filters simulated by the image
method [?] for one source and one microphone at random positions
spaced by1 m, in a rectangular room of dimensions10 × 8 × 4 m
with tR = 250 ms. For each model, the scaling factorσ is set in
the maximum likelihood sense. Envelope modeling appears tobe
crucial : the likelihood of modelsP3 andP4 is much larger than
that ofP1 andP2 for larget. Sparsity has a weaker impact : the
likelihood ofP1 (and to a lesser extent that ofP2) is larger than that
of P2 for t ≤ 60 ms, but becomes similar fort > 60 ms. These
observations lead us to propose a fifth hybrid model

P5(t) =

{

P1(t) if t ≤ 60 ms
P2(t) i t > 60 ms.

(9)

Assuming Gaussian white additive noise, maximum
a posteriori estimation of the filters is equivalent to (2) with
Pi = − logPi.

4. ALGORITHM

To solve (2), we use the FISTA (Fast Iterative Shrinkage-
Thresholding) algorithm [?], which exploits the differentiability of

the data fidelity term

L : A 7→ ‖X−A ⋆ S‖22, (10)

and the convexity and semicontinuity ofPi. So-called proximity
operators are employed to overcome the non-differentiability of Pi.

Definition 1 For P : E → R semicontinuous and convex the prox-
imity operator associated withP is the function

proxP : x ∈ E 7→ argminy∈E

{

P(y) +
1

2
‖x − y‖22

}

The general steps of FISTA are described in Algorithm 1. It relies
on the computation of the gradient ofL, its Lipschitz constantL,
and the proximity operator of the scaled penaltyαP .

Algorithm 1 FISTA

1: A0 ∈ R
MNK , τ 0 = 1

2: for k ≤ kmax do
Ãk = proxλ

L
P

(

Ak−1 − ∇L(Ak−1)
L

)

τk =
1+

√
1+4(τk−1)2

2

Ak = Ãk + τk−1−1
τk

(Ãk − Ãk−1)
3: end for

The computation of the gradient ofL requires the introduction
of the adjoint of the linear operatorA 7→ A⋆S. Denoting byS̃n ∈
R

T the time reversal ofSn, i.e. for t ≤ T , S̃n(t) = Sn(T − t+1),

the adjoint operator is expressed usingS∗ :=
(

S̃1, . . . , S̃N

)

as

X 7→ X ⋆ S∗ :=
(

(S̃n ∗Xm)(t)
)

m≤M,n≤N,1≤t≤K
. (11)

One may then write the gradient as

∇L(A) = (X−A ⋆ S) ⋆ S∗. (12)

The Lipschitz constant of∇L is the greatest eigenvalue of the oper-
atorA 7→ A⋆S⋆S∗. We obtain this value using the power iteration
algorithm as in [?, Algorithm 5].

The log-likelihood of the distributions introduced previously
correspond to theℓ1 andℓ2 norms, whose proximity operators are
well-known [?]. Denotingx+ := max(x, 0)for x ∈ R, we obtain

proxαP1
(A)m,n,t =

ρ(t)Amn(t)

|ρ(t)Amn(t)|

(

|Amn(t)| −
α

ρ(t)

)+

(13)

proxαP2
(A)m,n,t =

Amn(t)

1 + α/ρ2
(14)

proxαP3
(A)m,n,t =

Amn(t)

|Amn(t)|
(|Amn(t)| − α)+ (15)

proxαP4
(A)m,n,t =

Amn(t)

1 + α
. (16)

Concerning the hybrid model (9), we use (13) or (14) depending on
the value oft.

We estimate the minimaAλ for λ ∈ {1, 10−1, . . . , 10−14},
initializing each FISTA step at the minimum obtained for theprevi-
ous value. We keep the last minimum obtained forλ = 10−14, and
consider it as an estimate of the limitlimλ→0 Aλ, i.e. the solution
of (3). Note that theℓ2 penalizationP4 corresponds to the definition
of the Moore-Penrose pseudo inversion.
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Figure 2: Performance of the estimation ofA with N = 5 white
noise sources, depending on the duration of the signal.

5. EXPERIMENTAL RESULTS

The Matlab code allowing to reproduce the following experiments
is available at the following address [?].

5.1. Role of the condition number

First we wish to study the contribution of the penalty depending
of the invertibility of the problem. The system is composed of
M(T+K−1) equations forMNK variables, therefore it is under-
determined if and only if the recording duration in samples satisfies

T +K − 1 < Tc := NK. (17)

Note thatTc is smaller thanNK+D−1 which is the length of the
recording required in [?].

Performance does not depend on the numberM of micro-
phones, in fact each microphone brings an independent problem.

TheMN filters are a solution of the linear system, form ≤ M

Xm = S1 ⋆ Am1 + S2 ⋆ Am2 + . . .+ SN ⋆ AmN . (18)

In order to guide the choice of the source signals, we first show
theoretically that the system is well conditioned if the sources are
uncorrelated. To this aim we compute the condition number ofthe
systemi.e. the ratio of highest to lowest singular value. Note that
this is only defined for a full rank system, hence forT ≥ Tc. In the
under-determined setting, similar estimates can easily beobtained
by exploiting the sparsity of the filtersA.

The relation between the correlation of the sources and the con-
dition number of the system is detailed in the following lemma
proved in the Appendix. Using the usual cross-correlation function
for n, n′ ≤ N :

rnn′(k) =

T−k
∑

t=1

Sn(t)Sn′(t+ k), 0 ≤ k ≤ K − 1. (19)

we introduce a measure of the maximum correlation between the
sources

r := max
n6=n′ or k 6=0

|rnn′ (k)|, (20)
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Figure 3: Estimation ofA for six different additive noise levels,
depending on the recording duration withN = 5 sources

Lemma 1 For smallr, the condition number of(18) obeys

1 ≤ c ≤ maxn rnn(0) + r(NK − 1)

minn rnn(0)− r(NK − 1)
. (21)

Note that for white noises,r is small, andc is close to1, leading to
a well conditioned system.

5.2. Performance as a function of the recording duration

In previous work [?, fig.2], we used human voice recordings, and
we observed a transitory regime forT > Tc where the penalties
still had an impact due to a large condition number. In this paper we
want to choose the sources such that the system is well-conditioned,
therefore we used white Gaussian noise, motivated by the above the-
oretical guarantees. We observed experimentally (resultsnot shown
here) that this choice remains experimentally valid for underdeter-
mined systems.

As a measurement of the error between the estimated filtersAλ

and the true filtersA, we define the following ratio in decibels

SNRout
A (Aλ) = 10 log10

‖A‖22
‖Aλ −A‖22

. (22)

When the solution is not unique, we expect to observe better
results with the proposed regularizations : we then run the algorithm
for several values ofT .

The results shown in Figure 2 correspond to the case ofN = 5
sources,M = 2 sensors, with filters of lengthK = 2753 (250 ms
sampled at11025 Hz) synthesized as in Section 2. For readabil-
ity we express all the durations in ms the following. We obtain the
critical valueTc = 1250 ms beyond which the system is overde-
termined. We vary the length of the sources fromT = 45 ms to
T = 1500 ms.

We observe in Figure 2 a clear jump around the critical valueTc

after which the inversion made by all regularized algorithms yields
the same solution, up to machine precision.

For T < Tc we observe the clear impact of all regulariza-
tions compared to the pseudo-inverseP4. The new penaltiesP1

andP2, corresponding to the Laplacian and Gaussian distributions
with decaying envelope give the best results. For a speed-upof
50% in recording duration compared to [?], we achieve a recovery
SNRout

A = 25 dB.
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5.3. Robustness to noise

We now add Gaussian white additive noise to the mixtures,

X = A ⋆ S+W. (23)

For each penaltyPi and each durationT + K − 1 of the record-
ings, six experiments were made for a signal-to-noise ratioof
30, 40, 50, 60, 70 and80 dB. We observe in Figure3 that the noise
decreases the overall performance, but has a smaller impacton the
ℓ1 re-scaled penaltyP1 than on the common pseudo-inversionP4.
Not surprisingly, the two penalties lead to the same result once the
sources are long enough for the solution to be unique.

This experiment confirms the possibility to speedup the record-
ings even in the presence of noise. With an input SNR of50 dB, the
estimation fidelity SNRout

A is still 25 dB.

6. CONCLUSION

For the considered problem, the variousa priori introduced as con-
vex penalties provide better estimation of the filters than simple de-
convolution using Moore-Penrose pseudo-inverse. The bestresults
are achieved with the new proposed penalties based on a decay-
ing envelope model. This method can speed up the recording, with
a reasonable quality trade-off for noisy measurements. Forlarge
numbers of sourcesN in reverberant rooms, the expected speedup
can be significant. Further experiments are needed to confirmthe
validity of the approach in such scenarii, by taking into account the
nonlinearity of the loudspeakers, as well as other performance mea-
sures. Besides, we know that source separation informed by the
filters provides better results [?] : this opens the way to the alternate
estimation of both the sources and the filters with suitable penalties
on the filters as opposed to [?].

Appendix
Denote

Σn :=



























Sn(1) 0 · · · 0
...

. . .
. . .

...
0

Sn(T ) Sn(1)

0
. . .

...
. . .

...
0 · · · 0 Sn(T )



























∈ R
(T+K−1)×K .

We derive from (18) the block matrix notation

(ΣT
nXm)n≤N = (ΣT

nΣn′)n,n′≤N (Amn)n≤N , (24)

and the correlation of the sources (19) appears since we have

ΣT
nΣn′ =







rnn′(0) · · · rn′n(K − 1)
...

. . .
...

rnn′(K − 1) · · · rnn′(0)






. (25)

Now c is the condition number of theNK × NK block matrix
R = (ΣT

nΣn′ )n,n′≤N , and the key is to choose the sources so that

This work was supported by the EU FET-Open project FP7-ICT-
225913-SMALL and the ANR project 08-EMER-006 ECHANGE.

this matrix is highly diagonally dominant. Using Gerschogorin’s
disc theorem [?], we control its eigenvalues. Forλ ∈ Sp(R), there
existn ≤ N such that

|λ− rnn(0)| ≤
K−1
∑

k=1

rnn(k) +

K−1
∑

k=0

∑

n6=n′

r (26)

≤ r(NK − 1) (27)

Then ifr(NK − 1) < minn rnn(0) we can conclude that

c =
|λmax|
|λmin|

≤ maxn rnn(0) + r(NK − 1)

minn rnn(0)− r(NK − 1)
. (28)


