
HAL Id: hal-00612813
https://hal.science/hal-00612813

Submitted on 1 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TIGER: Querying Large Tables through Criterion
Extension

Yoann Pitarch, Dominique Laurent, Pascal Poncelet, Nicolas Spyratos

To cite this version:
Yoann Pitarch, Dominique Laurent, Pascal Poncelet, Nicolas Spyratos. TIGER: Querying Large
Tables through Criterion Extension. Int. Conference on Soft Computing and Pattern Recognition
(SoCPaR’2010), 2010, France. 8 p. �hal-00612813�

https://hal.science/hal-00612813
https://hal.archives-ouvertes.fr

TIGER: Querying Large Tables through

Criteria Extension

Yoann Pitarch1, Dominique Laurent2, Pascal Poncelet1, Nicolas Spyratos3

(1) LIRMM - CNRS - Univ Montpellier 2, F-34392 Montpellier Cedex 5 - France

(2) ETIS - CNRS - Univ Cergy-Pontoise, F-95000 Cergy-Pontoise - France

(3) LRI - CNRS, Univ Paris 11, F-91405 Orsay - France

Abstract—Sales on the Internet have increased sig-
nificantly during the last decade, and so, it is crucial
for companies to retain customers on their web site.
Among all strategies towards this goal, providing
customers with a flexible search tool is a crucial issue.

In this paper, we propose an approach, called
TIGER, for handling such flexibility automatically.
More precisely, if the search criteria of a given query
to a relational table or a Web catalog are too restric-
tive, our approach computes a new query combining
extensions of the criteria. This new query maximizes
the quality of the answer, while being as close as
possible to the original query. Experiments show that
our approach improves the quality of queries, in the
sense explained just above.

I. INTRODUCTION

Sales on the Internet have increased significantly

during the last decade, and so, it is crucial for

companies to retain customers on their web site.

Among all strategies towards this goal, providing

customers with a flexible search tool is a crucial

issue. Additionally to provide recommendation sys-

tems ([AT05], [Bur02], [MSR04]), an important

point is to ease search when customers are browsing

a web site. To this end, the standard approach

consists in providing customers with forms in which

all search criteria are filled in.

For example, let us consider the case of a cus-

tomer looking for a car to buy. Then, once logged on

a car seller web site, several behaviors are possible.

A first option is to scan all cars on sale. Although

exhaustive, this option might not be realistic, due to

the large number of cars on sale. A second option is

focussing on the relevant cars, using criteria. Then,

it might happen that the number of cars satisfying

the criteria be so small that the user would like to

change the search criteria (the worst situation being

when no answer is given). In this case, defining less

restrictive criteria amounts to issue a new query, but

can result in the fact that the user gives up and visits

a competing web site...

In this paper, we propose an approach, called

TIGER1, for handling search criteri on flexibility

automatically. More precisely, if the search criteria

of a given query to a relational table or a Web

catalog are too restrictive, our approach computes

a new query combining extensions of the criteria,

so as to maximize the quality of the answer, while

keeping the new query as close as possible to

the original query. Experiments show that (i) our

approach can be safely embedded in a web site,

and that (ii) the quality of answers is improved.

Regarding related work, an early approach for

query relaxation can be found in [GGM92], and

in [CYC+96], the authors propose a relaxation

system called CoBase, in which relaxations must

be explicitly specified. More recently, approaches to

flexibility have been proposed, and can be classified

as automatic and interactive.

Automatic approaches ([JF03], [TC04],

[JRMG06]) are generally based on “pseudo-

relevance feedback”, and as noticed in [Rut03], the

quality of the new query is debatable because some

1TIGER means TryIng to Get Extra Responses.

terms might be irrelevant. In interactive approaches

([Fur85], [Ani03]), the user is asked to choose

between automatically generated extensions.

The remainder of the paper is organized as fol-

lows: In Section II, we introduce an example to

illustrate our approach. Basic concepts are intro-

duced in Section III and Section IV deals with

criterion and query extension. The TIGER approach

is presented in Section V and Section VI reports on

experiments. Section VII concludes the paper.

II. A CASE STUDY

We consider a user wishing to buy a car, an

example that will be used as a running example.

We assume that all cars on sale are stored in the

table called CARS, shown in Table I and defined

over attributes Id, Type, Color, Km and Price, whose

meaning is clear from the context.

We consider the following query: Give all cars of

type Clio, of withe color, with less than 5000 km,

and whose price is below 5000 euros.

As the table CARS contains no row satisfying

these criteria, it is expected that the user will en-

hance the criteria by issuing a new but more general

query. We propose an approach for an automatic

query rewriting method that generalizes a given

query Q into a new one, as close as possible to

Q, but whose answer becomes acceptable. To do

so, we assume the following user preferences:

• The user really wants the price to be less than

5000 euros (as in the original query).

• The user prefers french cars to german cars,

and then, to any other car.

• The user prefers white cars to black or gray

cars, and then, to any other color.

• The user accepts to enhance the criteria, first

on kilometers, then on the color or on the type.

Based on this knowledge and the original query, we

look for another query taking user preferences into

account and such that:

1) The criteria that cannot be changed remain

unchanged (the price in our example).

2) For all criteria that can be changed, the

change must be as limited as possible.

3) The new query returns more tuples than the

original one.

Note: The information concerning user preferences,

as well as which criteria (attributes) can change and

which cannot will actually have to be elicited from

the user or extracted from query logs. Moreover,

when preference elicitation involves the user, a user

friendly interface is indispensable. However, this

topic lies outside the scope of the present paper.

In order to generate such a query, we define a

score function that measures the “distance” between

two queries Q and Q′.

Id Type Color Km Price

1 Clio White 6000 5000

2 Polo Gray 10000 4000

3 206 Gray 7000 5000

4 Golf Black 6000 4500

5 Ibiza Yellow 7000 4000

6 Ibiza Red 4000 5000

7 Clio Red 4000 5000

8 206 Black 6000 4500

9 Polo Black 7000 5000

10 Polo White 10000 4000

11 Ibiza Red 10000 5000

12 Golf White 7000 5000

13 206 White 6000 4500

14 Polo Gray 4000 4000

15 Clio Gray 7000 4000

TABLE I
SNAPSHOT OF TABLE CARS.

III. BASIC DEFINITIONS

Let T = (A1, . . . , An) be a relational table

defined over the attribute set {A1, . . . , An}, which

we denote by A. As usual, we assume that each

attribute Ai (i = 1, . . . , n) is associated with a

domain of values, denoted by dom(Ai).

Definition 1. A criterion c is an expression of the

form c = (A ∈ a) where A is an attribute of T and

a is a subset of dom(A). If A is a numeric attribute

then a is an interval.

The semantics in T of a criterion c = (A ∈ a),
denoted by SemT (c) or by Sem(c) when T is clear

from the context, is the set of all tuples in T that

satisfy c, that is the set: {t | (t ∈ T)∧ (t.A ∈ a)}.

We note that if c = (A ∈ a) is a criterion such

that |a| = 1, then c corresponds to a selection

condition (A = α), where α is the element of a.

Definition 2. An attribute A of T is said to be

extensible if there exists an ordering <A over

dom(A). The set of all extensible attributes of T
is denoted by AE . A criterion c = (A ∈ a) is said

to be extensible if so is A.

An attribute A of T is said to be fix if A is

not extensible. The set of all fix attributes of T is

denoted by AF , and c = (A ∈ a) is fix if so is A.

Example 1. In the context of our running example,

assuming that attribute Price is fix entails that

the criterion c = (Price ∈ [0; 5000]) is fix as

well. Notice that, in this case, no ordering on

dom(Price) is considered during the processing.

On the other hand, attribute Km is considered

extensible, using the natural ordering over numbers.

Consequently, c = (Km ∈ [0; 5000]) is extensible.

Similarly, considering Type and Color as exten-

sible attributes requires the definitions of orderings

<Type and <Color over the corresponding domains.

Preferences given in Section II yield:

Ibiza <Type {Golf, Polo} <Type {Clio,
206}, and {Red, Y ellow} <Color {Black,
Gray} <Color White.

Definition 3. A query Q is a conjunction of the

form ECQ ∧ FCQ where ECQ is a non empty

conjunction of extensible criteria and FCQ is a

(possibly empty) conjunction of fix criteria.

Every attribute of T occurs at most once in the

criteria defining Q, and we denote by EQ the set of

all extensible attributes occurring in Q.

Every query Q is associated with its semantics in

T , denoted by SemT (Q) or Sem(Q) when T is

clear from the context, as follows: Sem(Q) is the

intersection of all Sem(c), for every c in Q.

Definition 4. Let c = (A ∈ a) be an extensible

criterion. An extension of c is a criterion c′ of the

form c′ = (A ∈ a′) where a ⊆ a′.
Let Q = ECQ ∧ FCQ be a query. An extension

of Q is a query Q′ = ECQ′ ∧ FCQ′ such that

FCQ = FCQ′ and every criterion of ECQ′ is an

extension of a criterion of ECQ.

Example 2. In the context of our running example,

the considered query is: Q = ECQ ∧ FCQ where

ECQ = (Type = Clio) ∧ (Km ∈ [0; 5000]) ∧

(Color = White) and FCQ = (Price ∈
[0; 5000]). Referring to Table I, Sem(Q) = ∅.

Moreover, (Km ∈ [0; 7000]) is an extension of

(Km ∈ [0; 5000]) and (Color ∈ {Black,White})
is an extension of (Color ∈ {White}).

Thus Q′ = ((Type = Clio)∧(Km ∈ [0; 7000])∧
(Color ∈ {Black,White}))∧FCQ is an extension

of Q, and Sem(Q′) is not empty.

We notice that if c′ is an extension of c, then

Sem(c) ⊆ Sem(c′). Thus, if Q′ is an extension

of Q, then Sem(Q) ⊆ Sem(Q′). The problem

addressed in this paper can be summarized as

follows: Given a query Q, find an extension Q′ of

Q such that: (i) the extended criteria in Q′ are as

close as possible to those in Q, and (ii) Sem(Q′)
is larger than Sem(Q).

IV. CRITERION AND QUERY EXTENSION

Every extensible attribute A is associated with a

function RankA such that, for all α, α′ in dom(A),
if α′ <A α, then RankA(α) < RankA(α

′).

Example 3. In the example of Section II, Km
is a numerical extensible attribute whose domain

is assumed to be discretized through the intervals

[0; 4000[, [4000; 6000[, [6000; 7000[, [7000; 10, 000[
and [10, 000;∞[. Table II (top) depicts the as-

sociated function RankKm. On the other hand,

the user preferences about colors are expressed on

dom(Color), according to the function RankColor

shown in Table II.

Regarding preferences on types, we assume an

ontology on car types, manufacturers and countries,

so that the function RankType shown in Table II

can be generated.

A. Rewriting Extensible Criteria

Definition 5. Given an extensible attribute A and

a value α in dom(A), we call α-extension of

α, denoted by ρA(α), the set ρA(α) = {α′ ∈
dom(A) | RankA(α) = RankA(α

′)}.

If a is a subset of dom(A), the a-extension of a,

denoted by ρA(a), is the set ρA(a) =
⋃

α∈a ρA(α).
The ρ-extension of c = (A ∈ a), denoted by ρ(c),

is defined by ρ(c) = (A ∈ ρA(a)).

x RankKm(x)

[0; 4000[0

[4000; 6000[1

[6000; 7000[2

[7000; 10, 000[3

[10, 000;∞[4

x RankColor(x)

White 0

{Black,Gray} 1

{Y ellow,Red} 2

x RankType(x)

{Clio, 206} 0

{Polo,Golf} 1

Ibiza 2

TABLE II
THE FONCTIONS RankKm , RankColor AND RankType

Referring back to Example 3, ρColor(Black) =
{Black,Gray}, since RankColor(Black) =
RankColor(Gray) = 1. Thus, ρ(Color ∈
{Black}) = (Color ∈ {Black, Gray}).

Notice that the set {ρA(α) | α ∈ dom(A)} is the

partition of dom(A) induced by RankA. Thus, for

all α and α′ such that RankA(α) 6= RankA(α
′),

ρA(α)∩ρA(α
′) = ∅. Moreover, Definition 5 shows

that the ρ-extension of c is an extension of c.

B. Distance between Queries

Definition 6. Let c = (A ∈ a) and c′ = (A ∈ a′)
be two criteria over A. The distance between c and

c′, denoted δ(c, c′), is defined as follows:

• If ρA(a) ∩ ρA(a
′) 6= ∅ then δ(c, c′) = 0.

• Otherwise, δ(c, c′) = min{RankA(α
′) −

RankA(α) |α ∈ A ∧ α′ ∈ a′ ∧ RankA(α) <
RankA(α

′)}.

Although the function δ defined above is not a

distance function (because δ(c, c′) = 0 with c 6= c′

is possible) we use the term “distance” because of

intuition. Moreover, Definition 6 implies that: (i)
for all c = (A ∈ a) and c′ = (A ∈ a′), δ(c, c′) =
δ(ρ(c), ρ(c′)), and (ii) δ(c, ρ(c)) = 0, for every

criterion c.
The function δ is extended from criteria to

queries as follows: let Q and Q′ be queries such

that ECQ and ECQ′ consist respectively of m ex-

tensible criteria c1, . . . , cm and c′1, . . . , c
′
m, defined

over the same attributes A1, . . . , Am, we have:

δ(Q,Q′) =
∑m

j=1 δ(cj , c
′
j).

Since user preferences may involve the attributes

themselves, we assume that the extensible attributes

of Q are partially ordered through a relation, de-

noted by ≺. We associate every extensible attribute

A with a positive number wA, called the weight of

A, and such that A ≺ A′ implies wA < wA′ .

Definition 7. Let Q = ECQ ∧ FCQ and Q′ =
ECQ′ ∧ FCQ be such that ECQ and ECQ′ con-

sist respectively of m extensible criteria c1, . . . , cm
and c′1, . . . , c

′
m, defined over the same attributes

A1, . . . , Am. The weighted distance between Q and

Q′, denoted by δw(Q,Q′), is defined by:

δw(Q,Q′) =
∑m

j=1 wAj
× δ(cj , c

′
j).

Example 4. In the context of our running ex-

ample, we recall that we consider the query Q
where ECQ = (Type ∈ {Clio}) ∧ (Color ∈
{White}) ∧ (Km ∈ [0; 5000]) and FCQ =
(Price ∈ [0; 5000]), and that Q′ = ((Type ∈
{Clio}) ∧ (Color ∈ {Black,White}) ∧ (Km ∈
[0; 7000])) ∧ FCQ is an extension of Q.

For extending Q into Q′, we consider the criteria

c1 = (Color ∈ {Black}) and c2 = (Km ∈
{7000}), for which Table II shows that ρ(c1) =
(Color ∈ {Black,Gray}) and ρ(c2) = (Km ∈
[7000; 10, 000[), and δ((Color ∈ {White}), c1) =
1 and δ((Km ∈ [0; 5000]), c2) = 2.

Therefore, denoting by Q′′ the query Q′′ =
((Type ∈ {Clio})∧ (Color ∈ {Black})∧ (Km ∈
[7000; 10, 000[))∧FCQ, δ(Q,Q′′) = 0+1+2 = 3.

As the user prefers to extend the kilometer cri-

terion over the type and the color criteria, we

have Km ≺ Type and Km ≺ Color. Assuming

wKm = 1 and wType = wColor = 3, we obtain

δw(Q,Q′′) = 3× 0 + 3× 1 + 1× 2 = 5.

V. THE TIGER APPROACH

A. Basic Properties

Let Q be a query with extensible criteria cj =
(Aj ∈ aj) (j = 1, . . . ,m), and t a tuple in T
such that t.(EQ) = (α1, . . . αm). We denote by

Q(t) the query obtained from Q by replacing every

extensible criterion cj of ECQ by (Aj ∈ ρAj
(αj)).

Moreover, we associate t with the tuple δQ(t) =
(δt1, . . . , δ

t
m) such that, for every j = 1, . . . ,m,

δtj = δ(cj , (Aj ∈ ρAj
(αj))), and we denote by

δQ(T) the set {δQ(t) | t ∈ T }. For every ν in

δQ(T), we denote by τQ(ν) the number of tuples t
in T such that δQ(t) = ν.

We notice that if t and t′ are tuples in T such that

δQ(t) = δQ(t
′) = ν, then Q(t) = Q(t′). Therefore,

we denote this query by Q(ν).

Example 5. In the context of our running example,

consider again the query Q such that FCQ =
(Price ∈ [0; 5000]) and ECQ = (Type ∈
{Clio})∧(Color ∈ {White})∧(Km ∈ [0; 5000]).

Let t3 be the tuple of T with identifier 3 in Table

I. As ρType(Clio) = {Clio, 206}, ρColor(Gray) =
{Gray,Black} and ρKm(7000) = [7000; 10, 000[,
we have Q(t3) = (Price ∈ [0; 5000]) ∧ (Type ∈
{Clio, 206})∧(Color ∈ {Gray,Black})∧(Km ∈
[7000; 10, 000[).

Moreover, it can be seen from Table II that

δQ(t3) = (0, 1, 2), and that the last tuple of T
in Table I, which we call t15, is also such that

δQ(t15) = (0, 1, 2). In fact, it can be checked that

τQ(0, 1, 2) = 2, since t3 and t15 are the only tuples

of T corresponding to (0, 1, 2).

Based on the notation just introduced, we have

the following proposition.

Proposition 1. Let Q be a query with extensible

criteria cj = (Aj ∈ aj) for j = 1, . . . ,m.

1) If ν and ν′ are distinct tuples in δQ(T), then:

Sem(Q(ν)) ∩ Sem(Q(ν′)) = ∅.

2) For every ν in δQ(T), |Sem(Q(ν))| =
τQ(ν).

Now, given a positive integer m, we consider the

following ordering ≤m over tuples in the cartesian

product Nm: for all (n1, . . . , nm) and (n′
1, . . . , n

′
m)

in N
m, (n1, . . . , nm) ≤m (n′

1, . . . , n
′
m) if for every

j = 1, . . . ,m, nj ≤ n′
j .

Given a tuple ν in δQ(T), we denote by I(ν) the

set I(ν) = {ν′ ∈ δQ(T) | ν′ ≤m ν}.

Denoting for every j = 1, . . . ,m by ρj(νj) the

ρ-extension of any αj such that RankAj
(αj) = νj ,

the ν-extension of Q is defined as follows.

Definition 8. Given a query Q such that ECQ =
((A1 ∈ a1) ∧ . . . ∧ (Am ∈ am)) and a tuple ν in

δQ(T), the ν-extension of Q, denoted by Q(ν), is

the query Q(ν) = ECQ(t) ∧ FCQ(t) such that

• FCQ(ν) = FCQ, and

• ECQ(ν) is the conjunction of the criteria cj =
(Aj ∈ aj) where, for every j = 1, . . . ,m,

aj = ρj(aj) ∪
(

⋃

ν′∈I(ν) ρj(ν
′
j)
)

.

As for every j = 1, . . . ,m, aj ⊆ ρj(aj) ⊆ aj ,

by Definition 4, Q(ν) is an extension of Q.

Example 6. In the context of our running example,

referring back to the query Q of Example 5, the

first three columns of Table III show the content

of δQ(T), and the fourth column contains the

corresponding values of τQ(ν). For example, the

seventh row means that T contains two tuples t
and t′ such that δQ(t) = δQ(t

′) = (0, 1, 2) (the

last column of Table III will be explained later). In

fact, t and t′ are the tuples called t3 and t15 in

Example 5. Consequently, Proposition 1(2) implies

that |Sem(Q(0, 1, 2)| = 2.

For ν = (0, 1, 2), Table III shows that I(ν) =
{ν1, ν2, ν}, where ν1 = (0, 0, 1) and ν2 =
(0, 1, 1). Thus, by Proposition 1(2), |Sem(Q(ν)| =
|Sem(Q(ν1))| = 2 and |Sem(Q(ν2))| = 1.

Moreover, Q(ν) = (Price ∈ [0; 5000]) ∧
(Type ∈ {Clio, 206})∧ (Color ∈ {White, Gray,
Black}) ∧ (Km ∈ [0; 10, 000[).

δType δColor δKm τQ(ν) Score

0 0 1 2 1

1 1 0 1 0,5

0 2 0 1 0,5

0 1 1 1 1,5

1 0 2 1 1

1 1 1 1 2
3

0 1 2 2 10

3

1 1 2 1 5
2

2 2 0 1 0,5

1 0 3 1 3
4

1 1 3 1 11
5

2 2 2 1 13
6

2 2 3 1 15
7

TABLE III
THE TABLE δQ(T) AND THE ASSOCIATED SCORES

The following proposition shows how to compute

the cardinality of the semantics of ν-extensions.

Proposition 2. Using the notation previously intro-

duced, for every ν in δQ(T), we have

|Sem(Q(ν))| =
∑

ν′∈I(ν) τQ(ν
′).

Referring back to Example 6 and applying Propo-

sition 2, we have |Sem(Q(ν))| = |Sem(Q(ν))| +
|Sem(Q(ν1))|+ |Sem(Q(ν2))| = 5.

B. The Score Function

Given a query Q = ECQ ∧ FCQ and assuming

that the preferences over the extensible attributes in

EQ are known, our approach works as follows:

1) Discard from T all tuples that do not sat-

isfy the fix criteria in FCQ; let TFCQ
be

the resulting table. If TFCQ
= ∅ then stop,

otherwise, proceed to the next three steps.

2) Compute the tuples in δQ(TFCQ
) along with

the corresponding numbers τQ(ν).
3) Find the “best” ν-extensions of Q, for all ν

in δQ(TFCQ
).

4) In case more than one query is returned by

the previous step, choose the ν-extensions

of Q having the least weighted distance to

Q. Although no further criterion is set if

several queries satisfy this last requirement,

we assume that only one query is returned.

The ν-extension computed according the steps

above is called the best ν-extension of Q and is

denoted by Qbest.

Regarding Step 3, we recall that the “best” ν-

extension of Q must improve the quality of the

answer to Q, i.e., have a semantics significantly

greater than that of Q, while being as “close” as

possible to Q. In order to combine these two re-

quirements, we define the following score function.

Definition 9. Let Q be a query. For every ν
in δQ(TFCQ

), the score of the ν-extension of Q,

Q(ν), denoted by ScoreQ(ν), is defined by: If

δ(Q,Q(ν)) = 0 then ScoreQ(ν) = ∞, otherwise

ScoreQ(ν) =
|Sem(Q(ν))|

δ(Q,Q(ν))/|Sem(Q(ν))| .

Clearly, in Definition 9, ScoreQ(ν) is not defined

when |Sem(Q(ν))| = 0. This happens if TFCQ
is

empty, in which case any extension of Q has also an

empty semantics. However, assuming that TFCQ
6=

∅ implies that |Sem(Q(ν))| 6= 0.

On the other hand, if δ(Q,Q(ν)) = 0 then ν =
(0, . . . , 0). Thus, by definition of Q(ν), all extended

criteria of Q(ν) are the ρ-extensions of those of Q.

Therefore, in this case, Q(ν) is the least ν-extension

of Q that we can get, and this explains why the

score is set to ∞. Notice that if ScoreQ(ν) = ∞
then Qbest = Q(ν).

It is important to note that the score function

of Definition 9 fits our requirements because the

more tuples returned by Q(ν) and the closer to

Q is Q(ν), the higher the score. Moreover, by

dividing by δ(Q,Q(ν))/|Sem(Q(ν))|, instead of

simply δ(Q,Q(ν)), allows to take explicitly into

account the number of tuples satisfied by the criteria

defining the considered ν-extension.

Regarding computational aspects, using the def-

inition of δ, Proposition 1 and Proposition 2,

ScoreQ(ν) can be written as

ScoreQ(ν) =
∑

ν′∈I(ν) τQ(ν′)

(
∑

m
j=1 νi)/τQ(ν)

.

Consequently, assuming that δQ(TFCQ
) along with

the corresponding τQ(ν) have been computed, de-

termining the scores of all ν-extensions of Q does

not require any access to the table T .

Example 7. In the context of our running example,

all scores of all ν-extensions of Q are shown in

the last column of Table III. It can be seen that the

seventh row of this table has the highest score.

This score is computed as follows: since ν =
(0, 1, 2), we have |Sem(Q(ν))| = 3 and we have

seen that |Sem(Q(ν))| = 5. Since Table III shows

that τQ(ν) = 2, we have ScoreQ(ν) =
5

3/2 = 10
3 .

As seen in Example 6, Q(ν) = (Price ∈
[0; 5000]) ∧ (Type ∈ {Clio, 206}) ∧ (Color ∈
{White,Gray,Black}) ∧ (Km ∈ [0; 10, 000[).

Since Q(ν) is the only ν-extension having the

highest score 10
3 , this query is the query Qbest

proposed to the user, and it is easy to see that its

semantics is not empty, contrary to Q.

VI. IMPLEMENTATION AND EXPERIMENTS

Our approach has been implemented in JAVA 1.6

on a MacBook computer equipped with a 2.4 GHz

Intel Core 2 Duo processor and 2 Go RAM.

The experiments reported in this section have

been run on synthetic data sets whose characteristics

are stated as EeRrTtk, meaning that the data set

consists of t × 103 tuples, and that the query

contains e extensible attributes, for which the Rank
functions have r values. Two distinct types of data

sets have been generated:

• Randomly and uniformly generated data, to

assess our approach against uncorrelated data.

• Biased generated data sets, to assess our ap-

proach in more realistic situations where most

data values are close to each other.

In the latter case, data sets are generated so as, if

(A ∈ a) is an extensible criterion, 80% of values

α over A are such that 0 ≤ δ((A ∈ ρA(α)), (A ∈
a)) ≤ M/3, where M is the maximum value of

RankA. For example, for E10R20T10k, 80% of the

generated A-values α are such that 0 ≤ δ((A ∈
ρA(α)), (A ∈ a)) ≤ 6.

The following three parameters have been first

considered in our experiments: the number of ex-

tensible attributes, the number of possible values

of the Rank functions and the number of tuples

satisfying the fix criteria. Figure 1 shows separately

the impacts on runtime of these parameters. We first

notice that the fact that the data are biased or not

does not significantly change runtime.

Regarding the impacts of the number of extensi-

ble attributes and of the number of possible Rank
values, Figures 1 (a) and (b) show that the best

extension Qbest is computed in about 4 seconds,

which is an acceptable runtime, considering that the

table TFCQ
contains 10, 000 tuples.

On the other hand, Figure 1 (c) clearly shows that

the number of tuples in TFCQ
has a significant im-

pact on runtime. This is due to the fact that when the

number of tuples in TFCQ
increases, then so does

the number of tuples in δ(TFCQ
). Consequently, the

number of queries Q(ν) to be processed for the

computation of Qbest also increases accordingly.

We note that, for 50, 000 tuples in TFCQ
, the

runtime is below 12 seconds, an acceptable increase

in runtime, considering that we have 10 extensible

attributes with 20 possible Rank values.

Then, the quality of the obtained ν-extensions

(a) Number of attributes

(b) Number of extensions

(c) Number of tuples

Fig. 1. Quantitative experiment results

has been assessed according to the number of ex-

tensible attributes and the number of Rank values.

Moreover, according to Definition 9, |Sem(Qbest)|
and δ(Q,Qbest) are the values that have to be

considered in this respect. Whereas the distance

between Q and Qbest is easy to assess, measuring

the quality of the computed ν-extension Qbest in

terms of the additional returned tuples is not trivial.

A first way could be computing the gain in tuples

of Sem(Qbest) with respect to Sem(Q). However,

e Gain δ(Q,Qbest) δ(Q,Qmax)
3 68 1 25

5 71 10 75

10 53 19 190

15 21 50 285

20 26 61 380

r Gain δ(Q,Qbest) δ(Q,Qmax)
3 63 1 20

5 65 1 40

10 50 12 90

20 23 70 190

40 19 90 390

TABLE IV
QUALITATIVE EXPERIMENT RESULTS

this gain is not relevant because, if Sem(Q) = ∅,

it is equal to 100% for any extension of Q.

We rather measure quality improvement in terms

of the difference between |Sem(Qbest)| and the

semantics of the maximal ν-extension that can be

considered, based on the content of δQ(TFCQ
).

Intuitively, denoting by Qmax this particular ν-

extension of Q, Sem(Qmax) is the largest set of

tuples that can be obtained from T by extending

the criteria in Q, based on the user preferences.

Thus, we call gain of Qbest, denoted by

Gain(Qbest) the number
|Sem(Qbest)|×100

|Sem(Qmax)|
.

We point out that, although providing the user

with the query Qmax is computationally easier than

computing Qbest, this solution is not satisfactory,

due to the large size of the semantics of Qmax.

Taking into account the distance between queries in

the score function avoids to consider such queries.

The experiments were conducted with biased data

sets EeRrT10k, where e, respectively r, ranges

from 3 to 20, respectively from 3 to 40.

The results of these experiments, displayed in

Table IV, show that for e and r less than or equal

to 10, the gain is above 50%, while for larger

values, the gain decreases significantly, but still, is

not below 20% (except for r = 40, in which case

the maximal distance is about 400).

It is important to note from Table IV that all

distances δ(Q,Qbest) are much less than the dis-

tances δ(Q,Qmax), showing that Qbest is close to

the original query Q, as compared with Qmax.

VII. CONCLUSION

In this paper, we have presented an approach for

handling extensible criteria in order to enhance the

answer to a given query. Criterion extension makes

use of user preferences, seen as partial orderings

over attribute domains, in order to compute the

“best” extension.

Based on this work, we are investigating the

following issues: (i) testing our approach against

real data, (ii) considering a static knowledge base

such as WordNet [F+98] to improve the quality of

the extended query, (iii) investigating the coupling

of our approach with recommendation systems, and

(iv) considering fuzzy criteria.

REFERENCES

[Ani03] P. Anick. Using terminological feedback for web
search refinement: a log-based study. In Proc. of

ACM SIGIR, pages 88–95, 2003.
[AT05] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of
the state-of-the-art and possible extensions. IEEE

TKDE, 17(6):734–749, 2005.
[Bur02] R. Burke. Hybrid recommender systems: Survey

and experiments. User Modeling and User-Adapted

Interaction, 12(4):331–370, 2002.
[CYC+96] W.W. Chu, H. Yang, K. Chiang, M. Minock,

G. Chow, and C. Larson. Cobase: A scalable and
extensible cooperative information system. Journal

of Intelligent Information Systems, 6(2):223–259,
1996.

[F+98] C. Fellbaum et al. WordNet: An electronic lexical

database. MIT press Cambridge, MA, 1998.
[Fur85] G. W Furnas. Experience with an adaptive indexing

scheme. In Proc. of SIGCHI, pages 131–135, 1985.
[GGM92] T. Gaasterland, P. Godfrey, and J. Minker. Relax-

ation as a platform for cooperative answering. Jour-

nal of Intelligent Information Systems, 1(3):293–
321, 1992.

[JF03] R. Jones and D. C. Fain. Query word deletion
prediction. In Proc. of ACM SIGIR, pages 435–436,
2003.

[JRMG06] R. Jones, B. Rey, O. Madani, and W. Greiner.
Generating query substitutions. In Proc. of intl conf.

on World Wide Web, pages 387–396. ACM, 2006.
[MSR04] S. E Middleton, N. R Shadbolt, and D. C De Roure.

Ontological user profiling in recommender systems.
ACM TOIS, 22(1):54–88, 2004.

[Rut03] I. Ruthven. Re-examining the potential effectiveness
of interactive query expansion. In Proc. of ACM

SIGIR, pages 213–220, 2003.
[TC04] E. Terra and C. L.A. Clarke. Scoring missing terms

in information retrieval tasks. In Proc. of ACM

CIKM, pages 50–58, 2004.

