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Abstract. Although the problem of computing frequent queries in re-
lational databases is known to be intractable, it has been argued in our
previous work that using functional and inclusion dependencies, com-
puting frequent conjunctive queries becomes feasible for databases op-
erating over a star schema. However, the implementation considered in
this previous work showed severe limitations for large fact tables. The
main contribution of this paper is to overcome these limitations using
appropriate auxiliary tables. We thus introduce a novel algorithm, called
Frequent Query Finder (FQF), and we report on experiments showing
that our algorithm allows for an effective and efficient computation of
frequent queries.

Keywords: Frequent Queries, Functional Dependencies, Inclusion De-
pendencies, Query Comparison, Star Schemas.

1 Introduction

The problem of discovering frequent patterns in a (relational) database
is one of a main topics in data mining. However, even when patterns
are restricted to conjunctive queries, this problem is known to be in-
tractable, because the size of the search space is exponential in the size
of the database. Nonetheless, it is argued in [9, 10] that mining all fre-
quent conjunctive queries (i.e., conjunctive queries whose answers have
a cardinality greater than or equal to a predefined threshold) becomes
tractable if the underlying database operates over a star schema, and if
constraints such as functional and inclusion dependencies, are taken into
account.

Indeed, it has been shown in [9, 10] that such dependencies allow for
comparing queries according to a pre-ordering with respect to which the
support measure is anti-monotonic (the support of a query being the
number of tuples in the answer of that query). As a consequence, a level-
wise algorithm such as Apriori ([1]) can be used, with the basic additional
feature that the considered pre-ordering induces an equivalence relation
for which two equivalent queries have the same support. Consequently,
one computation per equivalence class allows to determine the support
of all queries of this class.
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In the present paper, similarly to [10], we consider a relational database
operating over a star schema and we follow the approach of [10] for min-
ing frequent projection-selection-join queries in which joins are performed
along keys and foreign keys. In this setting, our contribution is to provide
an efficient computation of such frequent queries.

Indeed, it is shown in [10] that the number of scans of the database
in our algorithms is in O(N × |U |) (where N is the number of dimen-
sions of the underlying star schema and |U | is the number of attributes
in this schema), and that, in order to have an efficient implementation,
an appropriate indexing technique should be used to count the supports
safely. The problem to solve is finding an at most linear technique for
counting only once the duplicates occurring in the answers to projection
queries; a problem which basically requires a quadratic scan of the table.
Unfortunately, as such an indexing technique must work for all possible
attribute sets, no solution could be found. In fact, in the implementa-
tion of [10], auxiliary data are stored in main memory, so as to keep
track of the tuples computed so far for a given query. Therefore, this
technique is somehow still quadratic (since duplicates are still checked
against the auxiliary data), and more importantly, experiments result in
main memory overflow for large fact tables.

In order to cope with this important limitation, we propose a novel
efficient and scalable algorithm, called Frequent Query Finder (FQF),
for the computation of frequent queries. According to FQF, every table
r to be mined is associated with an auxiliary table AUX(r), whose role
is to associate every tuple t of r with all attribute sets S such that
t.S = t′.S for some tuple t′ occurring in r before t, with respect to the
scanning order of r. Assuming that these auxiliary tables are computed,
it turns out that counting the supports becomes linear in the size of the
table to be mined. We are thus provided with an efficient and scalable
implementation, in the sense that runtime keeps very low and that no
main memory overflow occurs, even for large datasets (up to 100,000
tuples in our experiments). We refer to Section 5 for experiments.

We also emphasize that, although the computation of an auxiliary
table AUX(r) is still quadratic in the size of r, our experiments show
that our new implementation, even when involving the computation of
the auxiliary tables, outperforms that of [10] (when the comparison is
possible). Moreover, it is also argued in the end of the paper that the
computation of the auxiliary tables can be seen as a pre-processing phase,
when mining frequent queries.

The paper is organized as follows: In Section 2, we briefly overview re-
lated work, and in Section 3, we recall from [10] the basic definitions and
properties of our approach. Then, in Section 4, we present our algorithm
FQF for mining conjunctive queries and in Section 5, we report on ex-
periments showing that our algorithms are efficient. Section 6 concludes
the paper and discusses future work.

2 Related Work

Early approaches dealing with frequent queries [2, 3, 8, 12] consider a fixed
set of “objects” to be counted when computing supports, meaning that



3

in these approaches, all queries of interest are projections over a fixed
attribute set. Moreover, apart from [4], none of these approaches consider
constraints on the data, such as functional dependencies, in order to
optimize the computation. In [4], equivalent attribute sets with respect
to functional dependencies are used for query optimization, based on
materialized views, which is not the case in our approach.

To the best of our knowledge, [5] is the first approach for mining
frequent queries in the general context where the set of objects to be
counted is not fixed. However, in [5], equivalent queries are generated,
which can not be tested efficiently (a problem that does not exist in our
approach); and moreover, data dependencies are not taken into account.

The work of [6], dealing with mining tree queries in a graph, is also
closely related to ours. Indeed, in [6], a graph is seen as a binary relation,
and frequent tree queries are expressed as SQL projection-selection-join
queries. This work is somehow generalized in [7] to the case of projection-
selection-join queries, with the restriction that a given relation cannot
occur more than once in the joins. Queries considered in [7] are more
general than ours, since (i) all possible joins in which base relations
occur at most once are considered in [7], whereas we only consider such
joins along keys and foreign keys, and (ii) selection conditions of the
form (Y = Y ′) where Y and Y ′ are relation schemas are allowed in [7],
which is not the case in our approach. However, in [7], dependencies are
not taken into account, thus resulting in redundant computations.

In our previous work [9–11], we have considered conjunctive query min-
ing in a star schema, focussing successively on projection queries ([11]),
projection-selection queries ([9]), and projection-selection-join queries
([10]). The main contribution of this previous work is to show that tak-
ing dependencies into account in query comparison results in an efficient
computation of frequent conjunctive queries. In particular, in [10], it
is shown that if the database schema is a star schema, then the prob-
lem of mining frequent projection-selection-join queries where joins are
performed along keys and foreign keys becomes tractable. However as
previously mentioned, in [10], experiments show severe limitations, and
the contribution of this paper is to propose an efficient and scalable im-
plementation that overcomes these limitations.

3 Formal Model

3.1 Queries

We first recall that a database ∆ over a star schema consists of a distin-
guished table ϕ with schema F , called the fact table, together with a set
of other tables δ1, . . . , δN with schemas D1, . . . , DN , called the dimension
tables, such that:

1. If K1, . . . ,KN are the (primary) keys of δ1, . . . , δN , respectively,
then, denoting by K the union of these keys (i.e., K = K1 . . .KN ),
K is the key of ϕ. In other words, for every i = 1, . . . , N , δi satisfies
Ki → Di and ϕ satisfies K → F . We denote by F the set of these
functional dependencies.
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2. For every i = 1, . . . , N , πKi
(ϕ) ⊆ πKi

(δi) (thus each Ki is a foreign
key in the fact table ϕ). The attribute set M = F \K is called the
measure of the star schema.

As usual, we denote by F+ the set of all functional dependencies that
can be inferred from F , using the Armstrong’s axioms, and we denote
by X+ the set of all attributes A such that X → A is in F+ ([13]).

In what follows, we consider a fixed database∆ = (δ1, . . . , δN , ϕ), along
with projection-selection-join queries with the following specificities:
– the tuple in selection condition is either the empty tuple, denoted

by ⊤ (in which case all tuples are selected), or a tuple y over Y (in
which case all tuples t such that t.Y = y are selected);

– the joins are performed along keys and foreign keys, that is, either
the join is reduced to a single table, or it involves the fact table ϕ.

Definition 1. Let ∆ = (δ1, . . . , δN , ϕ) be a database over a star schema.
The considered set of queries, denoted by Q, is the set of all queries of
the form q = πX(σy(r)), or more simply πXσy(r), such that XY ⊆ R
(R denotes the schema of r), and where:
– r is either a table in ∆ or a join of such tables containing ϕ;
– y is either the empty tuple ⊤or a tuple over relation schema Y .

For every query q in Q, the support of q in ∆, denoted by sup(q), is
the cardinality of the answer to q. Given a support threshold min-sup, a
query q is said to be frequent if sup(q) ≥ min-sup.

We illustrate our approach using the following example, borrowed from
[10], and that we shall use as a running example throughout the paper.

Example 1. Consider the database ∆ consisting of three tables and a
set of functional and inclusion dependencies, as shown in Figure 1. The
meaning of the attributes is as follows:
– Cid, Cname and Caddr stand for Customer Identifier, Customer

Name and Customer Address,
– Pid and Ptype stand for Product Identifier and Product Type,
– Qty stands for Quantity (i.e., number of products sold).

The schema of ∆ is clearly a star schema, with Sales as its fact table,
and Cust and Prod as its dimensional tables.

The queries q1 = πCidσParis(Cust) and q2 = πCidσParis beer(Cust ⋊⋉

Prod ⋊⋉ Sales) are in Q, the answers of which being {c1, c2, c3} and
{c1, c2}, respectively. Thus, if min-sup = 2, these queries are frequent.

On the other hand, πCid(Cust) and πCid(Cust ⋊⋉ Sales) are also in
Q, and are written as πCidσ⊤(Cust) and πCidσ⊤(Cust ⋊⋉ Sales), respec-
tively. Their answers are respectively {c1, c2, c3, c4} and {c1, c2}.

3.2 Query Comparison

Definition 2. Let q = πXσy(r) and q1 = πX1
σy1(r1) be queries in Q.

Then q1 is said to be more specific than q in ∆, denoted by q � q1, if one
of the following holds:
1. y1 6∈ πY1

(r1)
2. y ∈ πY (r), y1 ∈ πY1

(r1), and Y1 → X1 ∈ F+

3. All of the following hold:
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Cust Cid Cname Caddr

c1 John Paris

c2 Mary Paris

c3 Jane Paris

c4 Anne Tours

Prod P id P type

p1 milk

p2 beer

Sales Cid P id Qty

c1 p1 10

c2 p2 5

c2 p1 1

c1 p2 10

F : Cid → CnameCaddr
P id → Ptype
CidP id → Qty

I : πCid(Sales) ⊆ πCid(Cust)
πPid(Sales) ⊆ πPid(Prod)

Fig. 1. The database of the running example

(a) either r = r1 or r1 involves the fact table ϕ,
(b) y ∈ πY (r), y1 ∈ πY (r1), Y1 → X1 6∈ F+,
(c) XY1 → X1 ∈ F+ and Y1 → Y ∈ F+,
(d) yy1 ∈ πY Y1

(r ⋊⋉ r1).

Example 2. In the context of Example 1, consider again the queries
q1 = πCidσParis(Cust) and q2 = πCidσParis beer(Cust ⋊⋉ Prod ⋊⋉ Sales).
Referring to Definition 2.3, we have: (a) Cust ⋊⋉ Prod ⋊⋉ Sales in-
volves the fact table Sales, (b) Paris ∈ πCaddr(Cust), Paris beer ∈
πCaddr Ptype (Cust ⋊⋉ Prod ⋊⋉ Sales) and Caddr P type → Cid 6∈ F+, (c)
CidCaddr Ptype → Cid ∈ F+, Caddr P type → Caddr ∈ F+, and (d)
Paris beer ∈ πCaddr Ptype(Cust ⋊⋉ Prod ⋊⋉ Sales). Therefore, q1 � q2.

Consider now q′2 = πCnameσc2 beer(Cust ⋊⋉ Prod ⋊⋉ Sales). Then,
by Definition 2.2, q1 � q′2, because Paris ∈ πCaddr(Cust), c2 beer ∈
πCidPtype(Cust ⋊⋉ Prod ⋊⋉ Sales) and CidPtype → Cname ∈ F+.

For q3 = πCidCnameσ⊤(Cust ⋊⋉ Sales), as above, q3 � q2 holds. For
q′3 = πCidCnameCaddrσ⊤(Cust ⋊⋉ Prod ⋊⋉ Sales), applying again Defini-
tion 2.3, it can be seen that q3 � q′3 and q′3 � q3 hold.

For q4 = πQtyσbeer 15(Prod ⋊⋉ Sales), by Definition 2.1, we find q1 � q4,
q2 � q4 and q3 � q4, because beer 15 6∈ πPtypeQty(Prod ⋊⋉ Sales).

For q5 = πQtyσbeer 5(Prod ⋊⋉ Sales), we have q1 � q5, q2 � q5 and
q3 � q5. Indeed, by Definition 2.2, Paris ∈ πCaddr(Cust), beer 5 ∈
πPtypeQty(Prod ⋊⋉ Sales) and PtypeQty → Qty is in F+. Notice that,
by Definition 2.1, we also have q5 � q4.

It has been shown in [10] that the relation � is indeed a pre-ordering
(i.e., reflexive and transitive), with respect to which the support is anti-
monotonic, i.e., (∀q, q1 ∈ Q)(q � q1 ⇒ sup(q1) ≤ sup(q)).

Clearly, this property is required when mining patterns according to
a level-wise algorithm, such as Apriori ([1]). Moreover, the pre-ordering
� induces an equivalence relation defined as follows: two queries q and
q1 in Q are said to be equivalent, denoted by q ≡ q1, if q � q1 and q1 � q
hold. The equivalence class of a query q is denoted by [q].
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Referring back to Example 2, the queries q3 and q′3 are equivalent,
since it has been seen that q3 � q′3 and q′3 � q3 both hold.

As a consequence of the anti-monotonicity property mentioned above,
it turns out that equivalent queries have the same support. Therefore,
instead of computing the supports of individual queries, we consider only
one query per equivalence class.

The pre-ordering � is extended to the set of equivalence classes C, and
then becomes an ordering (i.e., reflexive, anti-symmetric and transitive)
over C. Moreover, a class [q] is said to be frequent if its support (i.e., the
support of all queries in [q]) is greater than or equal to min-sup.

It is easy to see that all queries q = πXσy(r) in Q such that y 6∈ πY (r)
are equivalent and have a support equal to 0, a value meant to be less
than the support threshold min-sup. Similarly, all queries q = πXσy(r)
in Q such that y ∈ πY (r) and Y → X ∈ F+ are equivalent, and have a
support equal to 1, another value meant to be less than min-sup. Thus,
these equivalence classes, respectively denoted by C0 and C1, are not
considered in the computation of frequent queries.

Equivalence classes different than C0 and C1, whose set is denoted
by C∗, have been characterized in [10]. We simply recall that, given a
query q = πXσy(r) such that [q] is in C∗, we consider the representative
q+ = πX′σy′(r′) of [q] such that:
1. X ′ = (XY )+ and Y ′ = Y +,
2. r′ = r if r is a dimension table, otherwise, r′ = J where J is the join

of all tables in ∆,
3. y′ is the tuple over Y + such that y is a subtuple of y′ and y′ ∈

πY +(r′).
In the remainder of the paper, all considered queries are assumed to
satisfy the properties above, and stand for their equivalence classes.

Example 3. In Example 1, we have J = (Cust ⋊⋉ Prod ⋊⋉ Sales).
As seen in Example 2, q3 = πCidCnameσ⊤(Cust ⋊⋉ Sales) and q′3 =
πCidCnameCaddrσ⊤(J) are equivalent. As (Cid Cname)+ = (Cid Cname
Caddr) and ∅+ = ∅, [q3] is represented by q′3. It can be seen that [q3] is
the set of all queries πXσ⊤(r) such that Cid ⊆ X ⊆ (CidCnameCaddr),
and either r = J or r = (Cust ⋊⋉ Sales).

For q = πCnamePtypeσp2(J), we have (CnamePidPtype)+ = (Cname
PidPtype), Pid+ = (PidPtype), and p2 beer ∈ πPid Ptype(J). Thus, [q]
is represented by πCnamePid Ptypeσp2 beer(J), and this class is the set of
all queries πXσy(r) such that Cname ⊆ X ⊆ (CnamePidPtype), and

− either y = p2 and r = (Cust ⋊⋉ Sales) or r = J
− or y = p2 beer and r = J .

4 Algorithms

4.1 Main Algorithm: FQF

As in [10], frequent classes in C∗ are computed by a level-wise algorithm,
called Frequent Query Finder (FQF), whose main steps are shown in
Figure 2: all dimension tables are first mined, and then the join J of all
tables in ∆ is mined. Moreover, as in [10], we define the notion of generic
class to avoid generating classes that are processed in the same way.



7

Algorithm FQF

Input: The database ∆ associated to an N -dimensional star schema and
a support threshold min-sup.
Output: The set Freq of all frequent classes.
Method:

Freq = ∅
for i = 1, . . . , N do

mine(δi, Freq(δi))
Freq = Freq ∪ Freq(δi)

compute J = δ1 ⋊⋉ . . . ⋊⋉ δN ⋊⋉ ϕ
mine(J , Freq(J))
Freq = Freq ∪ Freq(J)
return Freq

Fig. 2. The main algorithm FQF

Definition 3. Given a class q = πXσy(r) in C∗, the generic class associ-
ated to q, denoted by 〈X,Y, r〉, is the set of all classes πXσy′(r) in C∗ such
that y′ is a tuple in πY (r), i.e., 〈X,Y, r〉 = {πXσy′(r) ∈ C∗ | y′ ∈ πY (r)}.

Algorithm mine, shown in Figure 3, follows a level-wise strategy ([1]).
Namely, starting with the less specific generic class, that is r, the follow-
ing steps are iterated until no frequent classes are generated:
1. Generate and prune the set C of candidate generic classes, based on

the current set L of frequent generic classes (see [10]);
2. Compute the supports of all classes associated with the remaining

candidate generic classes in C;
3. Discard all classes whose support is less than the support threshold;
4. Assign L to the set of all generic classes that contain at least one

frequent class.
However, the steps above require more attention than in Apriori, because
(i) we are dealing with equivalence classes, instead of individual itemsets,
(ii) the ordering over C∗ is more difficult to handle than set inclusion, and
(iii) computing the supports requires to efficiently scan the database.

Consequently, the main difficulties are first, generating and pruning
generic classes, and second, computing efficiently the supports of classes
in C∗. The first point has been addressed in [10] (see Proposition 7 in
[10]), but not the second one, which is the main contribution of the
present paper, and which we address below.

4.2 Algorithm scan

When scanning a given table r, the main difficulty is that every tuple
in the answer to a query must be counted only once, whereas, due to
projection, it might occur several times when scanning r. In order to
cope with this difficulty, it is argued in [10] that indexing techniques
are required. Unfortunately, considering such indexing techniques, which
have to work for all possible attribute sets, is not realistic. In order
to cope with this problem, in [9, 10], each scan is associated with huge
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Algorithm mine

Input: A table r (either a dimension table δi or the join J) defined over R.
Output: The set Freq(r) of all frequent classes in C∗ of the form πXσy(r).
Method:

if |r| < min-sup then

//no computation since, for every q in C∗ of the form πXσy(r), |r| ≥ sup(q)
Freq(r) = ∅

else //the computation starts with the generic class 〈R, ∅, r〉
L = {〈R, ∅, r〉} ; Freq(r) = {πRσ⊤(r)}
while L 6= ∅ do

//L is the set of frequent generic classes from the previous level
C = generate(L, r)
C = prune(C,L, r)
scan(C,AUX(r), L, LFreq(r))
//L contains all frequent generic classes of the current level, and
//LFreq(r) is the corresponding set of frequent classes
Freq(r) = Freq(r) ∪ LFreq(r)

return Freq(r)

Fig. 3. Computing frequent queries on a table r

volumes of auxiliary data, resulting in main memory overflow for large
fact tables.

Instead, in the present paper, before scanning r, we build an auxiliary
table, denoted by AUX(r), as follows. Assuming that r contains n tuples
t1, . . . , tn, the first row AUX(r)[1] of AUX(r) is set to the empty set, and
for every i = 2, . . . , n, the ith element of AUX(r), denoted by AUX(r)[i],
contains all maximal (with respect to set inclusion) attribute sets S for
which there exists j < i such that tj .S = ti.S. Therefore, when consid-
ering ti during a scan of r, knowing that S is in AUX(r)[i] ensures that
for every X ⊆ S, ti.X has already been processed.

The corresponding algorithm is shown in Figure 4, where match(ti, tj)
stands for the set of all attributes A such that ti.A = tj .A. We note that
computing match(ti, tj) amounts to compare ti and tj , which does not
require using any index.

Example 4. We illustrate the construction of the auxiliary table AUX(J)
in the context of Example 1, for J = Cust ⋊⋉ Prod ⋊⋉ Sales. The tables
J and AUX(J) are shown in Figure 5.

Since match(t2, t1) = Caddr, we obtain AUX(J)[2] = Caddr. Simi-
larly, since match(t3, t1) = (PidCaddr P type) and match(t3, t2) = (Cid
Cname Caddr), AUX(J)[3] is the set of these two attribute sets.

The computation for AUX(J)[4] is similar, but althoughmatch(t4, t3) =
Caddr, this schema does not appear in AUX(J)[4]. This is so because
Caddr is a subset of (CidCnameCaddr Qty) and (PidCaddr P type)
that both belong to AUX(J)[4].

Now, given a table r and assuming that AUX(r) has been computed,
the supports of equivalence classes over r are computed through parallel
scans of r and AUX(r). The corresponding algorithm scan is shown in
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Algorithm aux

Input: A table r to be scanned containing tuples t1, . . . , tn.
Output: The table AUX(r).
Method:

AUX[1] = ∅
for each i = 2, . . . , n do

AUX(r)[i] = ∅
for each j = 1, . . . , i− 1 do

compute match(ti, tj)
if AUX(r)[i] contains no super set of match(ti, tj) then

AUX(r)[i] = AUX(r)[i] ∪match(ti, tj)
return AUX(r)

Fig. 4. Computing the auxiliary table AUX(r)

J Cid P id Cname Caddr P type Qty

t1 c1 p1 John Paris milk 10

t2 c2 p2 Mary Paris beer 5

t3 c2 p1 Mary Paris milk 1

t4 c1 p2 John Paris beer 10

AUX(J) i AUX(J)[i] (1 ≤ i ≤ 4)

1 ∅
2 Caddr
3 (PidCaddr P type), (CidCnameCaddr)
4 (CidCnameCaddr Qty), (PidCaddr P type)

Fig. 5. The table J and the associated table AUX(J) of Example 1

Figure 6. The input of Algorithm scan is a set C of candidate generic
classes of the form 〈X,Y, r〉 for which r contains the tuples t1, . . . , tn.
All frequent classes associated with all generic candidate classes in C are
computed as follows: For every i = 1, . . . , n, the following actions are
performed, for every 〈X,Y, r〉 in C:

1. If AUX(r)[i] contains a super schema of X, then ti.X has been en-
countered for some j < i. Thus ti.X has already been processed for
all classes with a projection over X. Otherwise, ti.X is encountered
for the first time, and thus, has to be processed.

2. In the latter case, ti.X has to be counted for the support of q =
πXσti.Y (r). Two cases are then possible:

(a) If AUX(r)[i] contains a super schema of Y then q has been pro-
cessed previously, and thus is already associated with 〈X,Y, r〉.
In this case, the support of q is incremented.

(b) Otherwise, q is processed for the first time, and so, is not asso-
ciated with 〈X,Y, r〉. In this case, we check if q can be pruned
(see below), and if not, its support is initialized to 1 and q is
associated with 〈X,Y, r〉.
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Algorithm scan

Input: The set C of candidate generic classes, the table AUX(r).
Output: The set L of frequent generic classes in C, and the associated frequent classes
LFreq(r).
Method:

L = ∅ ; LFreq(r) = ∅
for each 〈X,Y, r〉 ∈ C do

L(〈X,Y, r〉) = ∅
for each i = 1, . . . , n do //r contains tuples t1, . . . , tn

for each 〈X,Y, r〉 ∈ C do

if ∃ X ′ ∈ AUX(r)[i] such that X ⊆ X ′ then

//ti.X has been encountered before, and thus has been counted
nothing to do

else

if ∃ Y ′ ∈ AUX(r)[i] such that Y ⊆ Y ′ then

//πXσti.Y (r) has already been encountered, thus
//ti.X must be counted for the support of πXσti.Y (r)
sup(πXσti.Y (r)) = sup(πXσti.Y (r)) + 1

else

//πXσti.Y (r) has not been encountered before,
//thus either prune it or initialize its support
if not(pruneQuery(πXσti.Y (r))) then

sup(πXσti.Y (r)) = 1
L(〈X,Y, r〉) = L(〈X,Y, r〉) ∪ {πXσti.Y (r)}

for each 〈X,Y, r〉 ∈ C do

L(〈X,Y, r〉) = L(〈X,Y r〉)\ {πXσy(r) | sup(πXσy(r)) < min-sup}
if L(〈X,Y, r〉) 6= ∅ then

LFreq(r) = LFreq(r) ∪ L(〈X,Y, r〉)
L = L ∪ {〈X,Y, r〉}

return L and LFreq(r)

Fig. 6. Scanning the table r

Once these actions are performed, all supports of all classes that have
to be computed are known. All classes whose support is greater than or
equal to min-sup are put in LFreq(r) and the set L of frequent generic
classes is output.

In our algorithms, pruning is performed at two distinct levels: for
generic classes in Algorithm mine, and for classes in Algorithm scan. In
Algorithm mine, a generic class 〈X,Y, r〉 is pruned if at least one of its
predecessors (according to �) contains no frequent classes, which entails
that no class in 〈X,Y, r〉 can be frequent. However, if 〈X,Y, r〉 is not
pruned, it may happen that a particular class πXσy(r) of 〈X,Y, r〉 can
be pruned. This is checked in Algorithm scan as mentioned in item 2(b)
above, according to Algorithm pruneQuery shown in Figure 7.

It is important to note that Proposition 7 of [10] shows that this latter
pruning is partial, in the sense that not all predecessors of the class
πXσy(r) are tested. We opted for such a partial pruning for efficiency
reasons, as processing a complete pruning would damage performance.
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Algorithm pruneQuery

Input: A class q = πXσy(r).
Output: boolean.
Method:

if there exist A ∈ Y and a ∈ dom(A) such that
q = πXσy′(r) /∈ LFreq(r) and y = y′a then

return true;
return false;

Fig. 7. Class Pruning

Fig. 8. Runtime over the size of the fact table for FQF and the implementation of [10].

5 Experiments

We performed experiments on an Pentium Duo Core with 2Go main
memory running on Ubuntu Linux 2.6. The algorithms are implemented
in Java using JDBC to communicate with MySql. Datasets have been
generated using our own generator, adapted from the IBM data generator
(www.almaden.ibm.com).

The generated databases over star schemas are denoted by dbdDaTtMm

where d is the number of dimensions, a is the total number of attributes,
t is the number of tuples in the fact table, and m is the number of mea-
sure attributes. In all our experiments, except those reported in Figures
11 and 12, the support threshold is set to 0.6 times the number of tu-
ples in the fact table, that is 0.6× t. We also mention that all runtimes
reported below include the computation time of the construction of aux-
iliary tables. Moreover, in Figures 8 and 9, the runtimes excluding the
computation of the auxiliary tables are also shown.
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Fig. 9. Runtime over the size of the fact table.

Fig. 10. Runtime over the number of dimensions.

Figure 8 shows the runtimes of FQF compared to those presented
in [10] for db2D12TtM1, with t between 50 and 5000. Clearly, FQF
outperforms our previous implementation presented in [10]: the reduction
of runtime between the implementation in [10] and FQF is always greater
than 33%. In should also be noticed from Figure 8 that the runtime for
only mining frequent classes is very low, since less than 40 seconds.

Similarly, as shown in Figure 9, the time spent in mining the frequent
classes for the databases db2D12TtM1 with t between 10,000 and 90,000
is very low compared to that for calculating the auxiliary tables. More-
over, this runtime increases slowly with the size of the fact table. We also
emphasize that, in these experiments, we had no main memory overflow,
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contrary to what happened with the previous implementation presented
in [10], when t exceeds 5000.

Figure 10 reports on runtime over the number of dimensions, for the
databases dbdD12TtM1 where d ranges from 2 to 5 and for t equal to
2000, 5000 and 10,000. This figure clearly shows that the time spent
for mining frequent classes decreases significantly when the number of
dimensions increases. This is so because, given a number of attributes
(12 in our case), when d increases, more functional dependencies are
available, and so, less classes have to be processed. It is important to
note that, according to our previous statement that the number of scans
of the database is in O(N × |U |) (where N is the number of dimensions
and |U | the total number of attributes), one would rather expect an
increase of runtime when N increases. However, what these experiments
show is that, although the increase of the number of dimension tables
entails more scans, this is compensated by a drastic reduction of the
number of generic classes.

Figure 11 shows the runtime over the support threshold (expressed as
a ratio of the size of the fact table), for databases db5D25TtM1 with t

equal to 2000, 5000 and 10,000. Clearly, runtime decreases rapidly when
the support threshold increases.

We recall from Section 2 that the only other work aiming at mining
all frequent queries from a relational database is that in [7], and thus,
we could compare our algorithm only to the Conqueror algorithm ([7]).
This has been done using the IMDB database (http://www.imdb.com),
for various support thresholds (expressed in numbers of tuples). To do
so, we first transformed the IMDB database into a star schema having
3 dimensions, 6 attributes and no measure. In this experiment, the fact
table contains 158,441 tuples.

As shown in Figure 12, our algorithm performs better than the Con-
queror algorithm. This is so because, in [7], functional and inclusion
dependencies are not taken into account, as we do in our approach. How-
ever, we recall in this respect that selection conditions of the form Y = Y ′

(where Y and Y ′ are attribute sets) are considered in [7], which is not
the case in our approach.

We end this section by two important remarks regarding the compu-
tation of the auxiliary tables.
1. The computation of auxiliary tables can be seen as a pre-processing,

because it has to be computed only once for all runs of FQF, provided
that, meanwhile, the database has not been updated. This remark
is very important regarding runtime, because, as shown in Figures 8
and 9, assuming that auxiliary tables are available, the runtime of
FQF is very low even for large fact tables.

2. When a database table r is updated, maintaining up to date the
associated auxiliary table AUX(r) can be achieved efficiently. Indeed,
in the case of insertion of a new tuple t in r, and assuming that t
becomes the last tuple of r, a new row is added to AUX(r) and the
associated schemas are obtained through one scan of r. If a tuple
ti is deleted from r, then AUX(r)[i] must be deleted from AUX(r),
and only the rows AUX(r)[j] such that j > i and match(tj , ti) ∈
AUX(r)[j] have to be updated.
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Fig. 11. Runtime over support.

Fig. 12. FQF versus Conqueror.

6 Conclusion and Further Work

We presented new algorithms for mining frequent queries in databases
over a star schema, based on theoretical results introduced in our previ-
ous work [10]. We showed through experiments that, in this particular
case, mining frequent conjunctive queries becomes tractable. Our ap-
proach relies on the computation of auxiliary tables that can be seen as
a pre-processing phase. An important point in this respect is that, as-
suming these auxiliary tables are available, the time for mining frequent
queries becomes very low, as shown in our experiments.

Future work consists in processing further tests and optimizing our
algorithms. We also plan to generalize our approach to database schemas
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other than star schemas, and to study the possible rules that can be
obtained based on frequent queries.
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