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Shear deformable bars of doubly symmetrical cross section under nonlinear nonuniform torsional vibrations-application to torsional postbuckling configurations and primary resonance excitations

INTRODUCTION

When arbitrary torsional boundary conditions are applied either at the edges or at any other interior point of a bar due to construction requirements, this bar under the action of general twisting loading is leaded to nonuniform torsion. In this case, apart from the well known primary (St. Venant) shear stress distribution, normal and secondary (warping) shear stresses arise formulating the warping moment (bimoment) and secondary twisting moment (bishear), respectively [START_REF] Sapountzakis | Warping shear stresses in nonuniform torsion by BEM[END_REF][START_REF] Simo | A Geometrically-exact rod model incorporating shear and torsion-warping deformation[END_REF]. Warping shear stresses can be estimated by formulating a boundary value problem with respect to a secondary warping function [START_REF] Sapountzakis | Warping shear stresses in nonuniform torsion by BEM[END_REF][START_REF] Sapountzakis | Warping shear stresses in nonlinear nonuniform torsional vibrations of bars by BEM[END_REF][START_REF] Schulz | Generalized Warping Torsion Formulation[END_REF] or by studying the equilibrium equations of a small segment of an elementary slice of the bar [START_REF] Vlasov | Thin-walled elastic beams, Israel Program for Scientific Translations[END_REF]. However, the aforementioned techniques do not achieve to include the warping shear stresses in the global equilibrium of the bar and to perform an accurate analysis of bars of closed shaped cross sections [START_REF] Murín | An effective finite element for torsion of constant crosssections including warping with secondary torsion moment deformation effect[END_REF], that is to account for the secondary twisting moment deformation effect (STMDE). This effect generally necessitates the use of an independent warping parameter in the kinematical components of the bar (along with the angle of twist), increasing the difficulty of the problem at hand. Besides, since weight saving is of paramount importance in many engineering fields, frequently used thin-walled open sections have low torsional stiffness and their torsional deformations can be of such magnitudes that it is not adequate to treat the angles of cross section rotation as small. In these cases, the study of nonlinear effects on these members becomes essential, where this non-linearity results from retaining the nonlinear terms in the strain-displacement relations (finite displacement -small strain theory). When finite twist rotation angles are considered, the nonuniform torsional dynamic analysis of bars becomes much more complicated, leading to the formulation of coupled and nonlinear torsional and axial equations of motion. When the twist rotation angles of a member are small, a wide range of linear analysis tools, such as modal analysis, can be used and some analytical results are possible. As these rotation angles become larger, the induced geometrical nonlinearities result in effects that are not observed in linear systems. In such situations the possibility of an analytical solution method is significantly reduced and is restricted to special cases of boundary conditions or loading.

During the past few years, the linear static and linear free vibration analysis of shear deformable bars undergoing twisting or general deformations have been thoroughly studied [START_REF] Murín | An effective finite element for torsion of constant crosssections including warping with secondary torsion moment deformation effect[END_REF][START_REF] Sapountzakis | Secondary torsional moment deformation effect by BEM[END_REF][START_REF] El Fatmi | Non-uniform warping including the effects of torsion and shear forces. Part I: A general beam theory[END_REF][START_REF] El Fatmi | Non-uniform warping including the effects of torsion and shear forces. Part II: Analytical and numerical applications[END_REF][START_REF] Kim | Exact dynamic/static stiffness matrices of non-symmetric thinwalled beams considering coupled shear deformation effects[END_REF][START_REF] Back | A shear-flexible element with warping for thin-walled open beams[END_REF][START_REF] Chen | A C0 finite element formulation for thin-walled beams[END_REF][START_REF] Hu | A finite element model for static and dynamic analysis of thin-walled beams with asymmetric cross-sections[END_REF][START_REF] Saadé | Non-uniform torsional behavior and stability of thin-walled elastic beams with arbitrary cross sections[END_REF][START_REF] Gendy | Generalized thin-walled beam models for flexural-torsional analysis[END_REF][START_REF] Laudiero | Shear strain effects in flexure and torsion of thin-walled beams with open or closed cross-section[END_REF][START_REF] Laudiero | The shear strain influence on the dynamics of thinwalled beams[END_REF][START_REF] Prokic | Dynamic analysis of thin-walled closed-section beams[END_REF][START_REF] Kollár | Flexural-torsional vibration of open section composite beams with shear deformation[END_REF][START_REF] Park | A finite element analysis of discontinuous thinwalled beams considering nonuniform shear warping deformation[END_REF] and theoretical statements and/or numerical comparisons between beam theories ignoring or taking into account the STMDE have been presented [6-7, 9-10, 19]. However, this is not the case for vibration analysis of bars taking into account both shear effects and geometrical nonlinearities. Cortinez and Piovan [START_REF] Cortinez | Vibration and buckling of composite thin-walled beams with shear deformability[END_REF] and Machado and Cortinez [START_REF] Machado | Free vibration of thin-walled composite beams with static initial stresses and deformations[END_REF] performed buckling and vibration analysis of composite beams of open and closed cross sections with orthotropic laminates, Minghini et al. [START_REF] Minghini | Vibration analysis with second-order effects of pultruded FRP frames using locking-free elements[END_REF] analyzed pultruded FRP beams and frames by developing lockingfree elements while Vo and Lee [START_REF] Vo | Flexural-torsional coupled vibration and buckling of thin-walled open section composite beams using shear-deformable beam theory[END_REF] performed buckling and vibration analysis of composite beams of open cross sections with arbitrary lay ups. However, in the aforementioned contributions the analyzed cross sections are thin-walled ones, forced vibrations are not investigated and geometrical nonlinearities are considered only for static initial stresses and deformations.

During the past few years, the nonlinear nonuniform torsional dynamic analysis of bars has received a good amount of attention in the literature. Apart from research efforts that neglect torsional warping (Da Silva in [START_REF] Da Silva | Non-linear flexural-flexural-torsional-extensional dynamics of beams--I. Formulation[END_REF][START_REF] Da Silva | Non-linear flexural-flexural-torsional-extensional dynamics of beams--II. Response analysis[END_REF], Pai and Nayfeh in [START_REF] Pai | Three-dimensional nonlinear vibrations of composite beams -I. Equations of motion[END_REF][START_REF] Pai | Three-dimensional nonlinear vibrations of composite beams -II. flapwise excitations[END_REF][START_REF] Pai | Three-dimensional nonlinear vibrations of composite beams -III. Chordwise excitations[END_REF]), Di Egidio et al. in [START_REF] Di Egidio | A non-linear model for the dynamics of open cross-section thin-walled beams--Part I: formulation[END_REF][START_REF] Di Egidio | A non-linear model for the dynamics of open cross-section thin-walled beams--Part II: forced motion[END_REF] presented a FEM solution to the nonlinear flexuraltorsional vibrations of thin-walled open beams taking into account in-plane and out-ofplane warpings and neglecting warping inertia. In these papers, the torsionalextensional coupling is taken into account but the inextensionality assumption leads to the fact that the axial boundary conditions are not general. Moreover, Simo and Vu-Quoc in [START_REF] Simo | A Geometrically-exact rod model incorporating shear and torsion-warping deformation[END_REF] presented a FEM solution to a fully nonlinear (small or large strains, hyperelastic material) three dimensional rod model based on a geometrically exact description of the kinematics of deformation. Pai and Nayfeh in [START_REF] Pai | A fully nonlinear theory of curved and twisted composite rotor blades accounting for warpings and three-dimensional stress effects[END_REF] studied a geometrically exact nonlinear curved beam model for solid composite rotor blades using the concept of local engineering stress and strain measures and taking into account the in-plane and out-of-plane warpings. In the last two research efforts, the outof-plane buckling of a framed structure and a helical spring have been analyzed respectively, thus the extensional-torsional coupling is not discussed. Recently, Avramov et. al. [START_REF] Avramov | Analysis of flexural-flexural-torsional nonlinear vibrations of twisted rotating beams with cross-sectional deplanation[END_REF] analyzed flexural-flexural-torsional free vibrations of twisted rotating beams employing nonlinear normal modes. Rozmarynowski and Szymczak [START_REF] Rozmarynowski | Non-linear free torsional vibrations of thinwalled beams with bisymmetric cross-section[END_REF] and Sapountzakis and Tsipiras [START_REF] Sapountzakis | Nonlinear nonuniform torsional vibrations of bars by the boundary element method[END_REF] focus to the problem of nonlinear torsional vibrations. Nevertheless, dynamic analysis of bars at a torsional post-buckled state, as this is presented for the static case in [START_REF] Szymczak | Buckling and initial post-buckling behavior of thin-walled I columns[END_REF], is not performed. Although free or forced vibrations of bars at flexural postbuckling configurations are well studied both numerically and experimentally [START_REF] Emam | Nonlinear Responses of Buckled Beams to Subharmonic-Resonance Excitations[END_REF][START_REF] Emam | On the Nonlinear Dynamics of a Buckled Beam Subjected to a Primary-Resonance Excitation[END_REF][START_REF] Nayfeh | Exact solution and stability of postbuckling configurations of beams[END_REF][START_REF] Emam | Postbuckling and free vibrations of composite beams[END_REF], however this is not the case for buckled bars at a torsional post-buckled state. To the authors' knowledge, only Mohri et. al. [START_REF] Mohri | Vibration analysis of buckled thin-walled beams with open sections[END_REF] proposed a FEM solution to the linear free vibration analysis of pre-and post-buckled open thin-walled cross section beams subjected to special boundary conditions, neglecting warping inertia. In all of these research efforts the angle of twist per unit length is considered as a warping parameter with the exception of the aforementioned research effort of Simo and Vu-Quoc [START_REF] Simo | A Geometrically-exact rod model incorporating shear and torsion-warping deformation[END_REF] who employed an independent one.

In this paper a boundary element method is developed for the nonuniform torsional vibration problem of bars of arbitrary doubly symmetric constant cross section, taking into account the effects of geometrical nonlinearity (finite displacement -small strain theory) and secondary twisting moment deformation. The bar is subjected to arbitrarily distributed or concentrated conservative dynamic twisting and warping moments along its length, while its edges are subjected to the most general axial and torsional (twisting and warping) boundary conditions. The resulting coupling effect between twisting and axial displacement components is also considered and a constant along the bar compressive axial load is induced so as to investigate the dynamic response at the (torsional) post-buckled state. The bar is assumed to be adequately laterally supported so that it does not exhibit any flexural or flexural -torsional behaviour. A coupled nonlinear initial boundary value problem with respect to the variable along the bar angle of twist and to an independent warping parameter is formulated. The resulting equations are further combined to yield a single partial differential equation with respect to the angle of twist. The problem is numerically solved employing the Analog Equation Method [START_REF] Katsikadelis | The analog equation method. A boundary-only integral equation method for nonlinear static and dynamic problems in general bodies[END_REF], a BEM based method, leading to a system of nonlinear Differential -Algebraic Equations (DAE). The essential features and novel aspects of the present formulation compared with previous ones are summarized as follows.

i. The cross section is an arbitrarily shaped doubly symmetric thin or thick walled one. The formulation does not stand on the assumptions of a thin-walled structure and therefore the cross section's torsional and warping rigidities are evaluated "exactly" in a numerical sense.

ii. The beam is supported by the most general boundary conditions including elastic support or restraint.

iii. The trigonometric terms of the cross sectional twisting rotations appearing in the displacement field are retained without employing any simplifying approximations.

iv. The present investigation focuses to torsional vibrations and provides a unified framework for the theoretical statement and numerical comparison between shear deformable and shear undeformable bars undergoing linear or nonlinear, free of forced vibrations. v. Nonlinear free vibrations at torsional postbuckling configurations and primary resonance excitations are numerically examined (in the second part of this contribution) revealing several aspects of nontrivial nonlinear phenomena. vi. The adopted numerical procedure can efficiently analyze torsional vibrations of bars at postbuckling configurations without employing any assumptions on the form of the modeshapes of deformation.

vii. The proposed method employs a BEM approach (requiring boundary discretization exclusively for the cross sectional analysis) resulting in line or parabolic elements instead of area elements of the FEM solutions (requiring the whole cross section to be discretized into triangular or quadrilateral area elements), while a small number of line elements are required to achieve high accuracy.

STATEMENT OF THE PROBLEM

Displacements, strains, stresses

Let us consider a prismatic bar of length l (Fig. 1), of constant arbitrary doubly symmetric cross-section of area A . The homogeneous isotropic and linearly elastic material of the beam cross-section, with modulus of elasticity E , shear modulus G and mass density ρ occupies the two dimensional multiply connected region Ω of the y,z plane and is bounded by the ( ) 

j j 1,

( )

w w m m x,t = moments acting in the x direction (Fig. 1b). The bar is assumed to be adequately laterally supported so that it does not exhibit any flexural or flexural -torsional behaviour Under the aforementioned loading, the displacement field of the bar accounting for large twisting rotations is assumed to be given as

( ) ( ) ( ) ( ) P m x S u x, y,z,t u x,t x,t y,z η φ = + (1a) ( ) ( ) ( ) ( ) x x v x, y,z,t z sin x,t y 1 cos x,t θ θ = - - - (1b) ( ) ( ) ( ) ( ) x x w x,y,z,t y sin x,t z 1 cos x,t θ θ = - - (1c) 
where u , v , w are the axial and transverse bar displacement components with respect to the Syz system of axes [43];

( )

x x,t θ is the angle of twist; P S φ is the primary warping function with respect to the shear center S [1]; ( )

x x,t η and ( ) m u x,t denote an independent warping parameter [START_REF] El Fatmi | Non-uniform warping including the effects of torsion and shear forces. Part I: A general beam theory[END_REF] and an "average" axial displacement of the bar's cross section, respectively, that will be later discussed. By dropping the displacement and rotation components related to flexure of the displacement field adopted in [START_REF] Simo | A Geometrically-exact rod model incorporating shear and torsion-warping deformation[END_REF][START_REF] Machado | Lateral buckling of thin-walled composite bisymmetric beams with prebuckling and shear deformation[END_REF],

eqns (1) are precisely recovered. Moreover, by neglecting the time variation of the defined quantities, adopting the approximations of the linear theory of torsion

( x x sinθ θ ≈ ,
x cos 1 θ ≈ ) and having in mind that only bisymmetrical cross sections of bars under axial and torsional loading conditions are considered, the displacement field of the linear nonuniform warping beam theory can be obtained [START_REF] El Fatmi | Non-uniform warping including the effects of torsion and shear forces. Part I: A general beam theory[END_REF].

Substituting eqns (1) in the three-dimensional nonlinear strain-displacement relations, the non vanishing strain resultants are obtained, after neglecting the nonlinear terms of the axial displacement component [45][START_REF] Rothert | Nichtlineare Stabstatik[END_REF][START_REF] Brush | Buckling of bars, plates and shells[END_REF], as

( ) ( ) 2 P 2 2 xx m x S x 1 u y z 2 ε ηφ θ ′ ′ ′ = + + + (2a) P S xy x x z y φ γ η θ ∂ ′ = - ∂ P S xz x x y z φ γ η θ ∂ ′ = + ∂ (2b,c)
where the second-order geometrically nonlinear term in the right hand side of eqn (2a) is often described as the "Wagner strain" [START_REF] Trahair | Nonlinear Elastic Nonuniform Torsion[END_REF]. From eqns (2b,c) it is observed that shear strains are linear. However, if flexural effects were considered, both the normal and shear strains would be enriched with a series of nonlinear terms [START_REF] Machado | Lateral buckling of thin-walled composite bisymmetric beams with prebuckling and shear deformation[END_REF].

Considering strains to be small, employing the second Piola -Kirchhoff stress tensor, the Hooke's stress-strain law [START_REF] Vlasov | Thin-walled elastic beams, Israel Program for Scientific Translations[END_REF][START_REF] Armenakas | Advanced Mechanics of Materials and Applied Elasticity[END_REF] and eqns (2), the work contributing stress components are given as where

( ) ( ) 2 P 2 2 xx m x S x 1 S E u y z 2 η φ θ ⎡ ⎤ ′ ′ ′ = + + + ⎢ ⎥ ⎣ ⎦ (3a) 
P P S xy x S G z y φ θ ⎛ ⎞ ∂ ′ = - ⎜ ⎟ ⎜ ⎟ ∂ ⎝ ⎠ P P S xz x S G y z φ θ ⎛ ⎞ ∂ ′ = + ⎜ ⎟ ⎜ ⎟ ∂ ⎝ ⎠ (4a,b) ( ) P S S xy x x S G y φ η θ ∂ ′ = - ∂ ( ) P S S xz x x S G z φ η θ ∂ ′ = - ∂ (5a,b)
denote the well known primary (St. Venant) shear stress distribution accounting for uniform torsion [START_REF] Sapountzakis | Torsional vibrations of composite bars by BEM[END_REF] and the secondary (warping) shear stress distribution accounting for nonuniform torsion, respectively. 

Primary warping function

∂ ∂ ∂ + + - = ∂ ∂ ∂ in Ω , ( ) x 0,l ∀ ∈ (7) 
it is easily concluded that this equation can not be satisfied. The same conclusion also holds for the associated boundary condition of this equation, as this is thoroughly discussed in [START_REF] El Fatmi | Non-uniform warping including the effects of torsion and shear forces. Part I: A general beam theory[END_REF] for the linear static case. Observing eqns (5a,b), it comes up that adopting the displacement field given in eqns (1), warping shear stresses follow the distribution of the derivatives of P S φ . Moreover, a warping shear stress distribution including a secondary warping function S S φ is proved not to violate both the aforementioned equation of motion [START_REF] Sapountzakis | Secondary torsional moment deformation effect by BEM[END_REF] and the associated boundary condition, as

proposed in [START_REF] Sapountzakis | Warping shear stresses in nonlinear nonuniform torsional vibrations of bars by BEM[END_REF]. Therefore, employing eqns [START_REF] Vlasov | Thin-walled elastic beams, Israel Program for Scientific Translations[END_REF] to obtain accurate values of warping shear stresses is of doubtful validity, especially near the boundary of the cross section.

Nevertheless, the present formulation depending on an independent warping parameter shear stresses in global equilibrium, which has not been achieved in previous research efforts [START_REF] Sapountzakis | Warping shear stresses in nonlinear nonuniform torsional vibrations of bars by BEM[END_REF] for the case of closed shaped cross sections.

Equations of motion

In order to establish the equations of motion, the principle of virtual work under a Total Lagrangian formulation is employed as this is accomplished in [START_REF] Sapountzakis | Nonlinear nonuniform torsional vibrations of bars by the boundary element method[END_REF]. Performing the decomposition of shear strains into primary and secondary parts, as it is described for shear stresses in eqns (3b-c, 4, 5), the contribution of shear stresses in the virtual work of internal forces can be written as 

Carrying out suitable integration by parts and exploiting both eqns (6a) and (6b), it is easily proven that the underlined terms in the above equation vanish. The remaining terms can be written more conveniently as ( )

l P S 1 t x t x x x 0 I M M d x δθ δη δθ = ⎡ ⎤ ′ ′ = - - ⎣ ⎦ ∫ where P t M , S t
M are the primary and secondary twisting moments, respectively [START_REF] Sapountzakis | Warping shear stresses in nonuniform torsion by BEM[END_REF], defined here as d

P P P P P S S t x y x z M S z S y y z Ω φ φ Ω ⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ∂ ∂ = -+ + ⎢ ⎥ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ∂ ∂ ⎢ ⎥ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦ ∫ (9a) 
d P P S S S S S t x y x z M S S y z Ω φ φ Ω ⎛ ⎞ ∂ ∂ = - + ⎜ ⎟ ⎜ ⎟ ∂ ∂ ⎝ ⎠ ∫ (9b)
Substituting eqns (4-5) into eqns (9), the above stress resultants are given (with respect to the kinematical components) as

P t t x M GI θ ′ = , ( ) S S t t x x M GI η θ ′ = - - where t I , S t I
are the primary (St. Venant) [START_REF] Sapountzakis | Solution of non-uniform torsion of bars by an integral equation method[END_REF] and secondary [START_REF] Murín | An effective finite element for torsion of constant crosssections including warping with secondary torsion moment deformation effect[END_REF] torsion constants, respectively given as

2 2 d P P S S t I y z y z z y Ω φ φ Ω ⎛ ⎞ ∂ ∂ = + + - ⎜ ⎟ ⎜ ⎟ ∂ ∂ ⎝ ⎠ ∫ d P P S S S t I A y z z y θ Ω φ φ Ω ⎛ ⎞ ∂ ∂ = - + ⎜ ⎟ ⎜ ⎟ ∂ ∂ ⎝ ⎠ ∫ (10a,b)
with A θ defined as the "effective shear area due to the restrained torsional warping" [START_REF] Kim | Exact dynamic/static stiffness matrices of non-symmetric thinwalled beams considering coupled shear deformation effects[END_REF]. The required algebra to reach the above expressions starting from those of eqns ( 9) is presented in Appendix A. Kim & Kim in [10] propose an expression to evaluate A θ of thin-walled cross sections within the context of the stress resultants defined in this paper, while Rubin [START_REF] Rubin | Wölbkrafttorsion von Durchlaufträgern mit konstantem Querschnitt unter Berücksichtigung sekundärer Schubverformungen[END_REF] presents expressions to evaluate the secondary torsion constant S t I of thin-walled cross sections. Numerical evaluation of A θ of arbitrarily shaped cross sections is proposed in the recent developments of Kraus [START_REF] Kraus | Computerorientierte Bestimmung der Schubkorrekturfaktoren gewalzter I-Profile[END_REF] employing the FEM and of Sapountzakis and Mokos [START_REF] Sapountzakis | Secondary torsional moment deformation effect by BEM[END_REF] employing the BEM, within the context of linear static torsional loading conditions. Throughout the present work it is assumed (unless otherwise mentioned) that A 1 θ = , which evidently leads to the relation

S t P t
I I I =with P I denoting the polar moment of inertia. It is worth here mentioning that the above relations absolutely conform to the geometrically exact beam theory of Simo and Vu-Quok [START_REF] Simo | A Geometrically-exact rod model incorporating shear and torsion-warping deformation[END_REF] and the nonuniform warping beam theory of El Fatmi [START_REF] El Fatmi | Non-uniform warping including the effects of torsion and shear forces. Part I: A general beam theory[END_REF].

It is also convenient to define the axial stress resultant N and the warping moment w M arising from normal stresses as in [START_REF] Sapountzakis | Nonlinear nonuniform torsional vibrations of bars by the boundary element method[END_REF]. Substituting the stress components given in eqns (3), the strain ones given in eqns (2) and the displacement ones given in eqns (1) to the principle of virtual work, the governing partial differential equations of motion of the bar are obtained after some algebra as ( )

m m P x x Au EAu EI n x,t ρ θ θ ′′ ′ ′′ - - = (11a) ( ) ( ) ( ) 2 S S P x t t x t x PP x x P m x P m x t 3 I G I I GI EI EI u EI u m x,t 2 ρ θ θ η θ θ θ θ ′′ ′ ′ ′′ ′ ′′ ′′ ′ - + + - - - = (11b) ( ) ( ) S S x S x t x x w C EC GI m x,t ρ η η η θ ′′ ′ - + - =- (11c) 
subjected to the initial conditions ( ( )

x 0,l ∈ ) ( ) ( ) m m 0 u x,0 u x = ( ) ( ) m m 0 u x,0 u x = (12a,b) ( ) ( ) x x 0 x,0 x θ θ = ( ) ( ) x x 0 x,0 x θ θ = (12c,d) ( ) ( ) x x 0 x,0 x η η = ( ) ( ) x x 0 x,0 x η η = (12e,f)
together with the boundary conditions at the bar ends x 0,l =

1 2 m 3 N u α α α + = 1 t 2 x 3 M β β θ β + = 1 w 2 x 3 M β β η β + = (13a,b,c)
where N , t M , w M are the axial force, twisting and warping moments at the bar ends, respectively given as

( ) 2 m P x 1 N EAu EI 2 θ ′ ′ = + (14a) ( ) ( ) 3 S S t t t x t x P m x P P x 1 M G I I GI EI u EI 2 θ η θ θ ′ ′ ′ ′ = + - + + w S x M EC η′ = - (14b,c) while i α , i β , i β = ( i 1,2,3
) are time dependent functions specified at the boundary of the bar. The geometric constants PP I , S C appearing in eqns [START_REF] Back | A shear-flexible element with warping for thin-walled open beams[END_REF][START_REF] Saadé | Non-uniform torsional behavior and stability of thin-walled elastic beams with arbitrary cross sections[END_REF] are given in [START_REF] Sapountzakis | Nonlinear nonuniform torsional vibrations of bars by the boundary element method[END_REF],

while the externally applied loads are related to the components of the traction vector with respect to the undeformed surface of the bar x t , y t , z t as ( )

d x n x,t t Ω Ω = ∫ (15a) ( ) ( ) ( ) d t y x x z x x m x,t t zcos ysin t ycos z sin Ω θ θ θ θ Ω = - - + - ∫ (15b) ( ) d P w xS m x,t t Ω φ Ω = -∫ (15c) 
The boundary conditions ( 13) are the most general boundary conditions for the problem at hand, including also the elastic support. It is worth here noting that the terms of the boundary conditions of eqns ( 13) are nonlinear by virtue of eqns ( 14), while linear viscous damping could also be included in eqns [START_REF] Back | A shear-flexible element with warping for thin-walled open beams[END_REF] without any special difficulty.

Moreover, from eqns [START_REF] Back | A shear-flexible element with warping for thin-walled open beams[END_REF] it is concluded that all of the inertia terms are linear.

However, if flexural effects were considered, nonlinear inertia terms would arise in the governing equations as well [START_REF] Machado | Lateral buckling of thin-walled composite bisymmetric beams with prebuckling and shear deformation[END_REF].

It is worth here noting that all the relations established so far are completely analogous to those of the Timoshenko beam theory, modeling the shear -bending loading conditions of bars. The analogy of all the kinematical and stress components with the ones of the Timoshenko beam theory is thoroughly presented in [START_REF] Murín | An effective finite element for torsion of constant crosssections including warping with secondary torsion moment deformation effect[END_REF] for the linear static case.

The established initial boundary value problem is a coupled and nonlinear one. A significant reduction on the set of differential equations can be achieved by neglecting the axial inertia term m Au ρ of eqn (11a), a common assumption among dynamic beam formulations. Ignoring this term, two partial differential equations with respect to two unknown displacement components ( ( )

x x,t θ , ( ) x x,t η
) can be obtained. These equations can be further combined by performing similar algebraic manipulations as the ones described in [START_REF] Sapountzakis | Flexural-torsional buckling analysis of composite beams by BEM including shear deformation effect[END_REF][START_REF] Sapountzakis | Shear deformation effect in flexuraltorsional vibrations of beams by BEM[END_REF][START_REF] Sapountzakis | Nonlinear dynamic analysis of Timoshenko beams by BEM. Part I: Theory and numerical implementation[END_REF][START_REF] Prokic | On fivefold coupled vibrations of Timoshenko thin-walled beams[END_REF] so as to formulate a single partial differential equation with respect to ( )

x x,t θ . This equation can then be directly compared with the corresponding one presented in [START_REF] Sapountzakis | Nonlinear nonuniform torsional vibrations of bars by the boundary element method[END_REF] that does not account for secondary twisting moment deformation effect (STMDE). In what follows, these procedures are described in detail for the case of constant along the bar axial load which is of great practical interest, especially in torsional postbuckling analysis of bars.

Reduced initial boundary value problem for constant along the bar axial load

For the case of constant along the bar axial load, the axial boundary conditions (13a) are written as

( ) m u 0,t 0 = ( ) ( ) N l,t N l,t = (16a,b)
Employing the aforementioned simplifications, eqn (11a) gives

P m x x I u A θ θ ′′ ′ ′ ′ = - , ( )
x 0,l ∀ ∈ which after subsequent integration and utilization of eqns ( 16) yields 

( ) 2 P m x I 1 N u 2 A EA θ ′ ′ = - + , [ ] x 0,l ∀ ∈ . Substituting
I 3 I GI GI N GI EI m x,t A 2 ρ θ θ η θ θ ⎛ ⎞ ′′ ′ ′ ′′ - + + + - = ⎜ ⎟ ⎝ ⎠ (17) 
along with the governing eqn (11c), the pertinent initial conditions (12c,d,e,f) and boundary conditions (13b, c). It is worth here noting that eqns (14a,c) hold, whereas eqn (14b) is modified as

( ) 3 S S P t t t x t x n x I 1 M GI GI N GI EI A 2 θ η θ ⎛ ⎞ ′ ′ = + + - + ⎜ ⎟ ⎝ ⎠ (18) 
where n I is a nonnegative geometric cross sectional property related to the geometrical nonlinearity expressed as

2 P n PP I I I A = - .
The equations of motion ( 17), (11c) can be further combined by performing similar algebraic manipulations with those presented in [START_REF] Sapountzakis | Flexural-torsional buckling analysis of composite beams by BEM including shear deformation effect[END_REF][START_REF] Sapountzakis | Shear deformation effect in flexuraltorsional vibrations of beams by BEM[END_REF][START_REF] Sapountzakis | Nonlinear dynamic analysis of Timoshenko beams by BEM. Part I: Theory and numerical implementation[END_REF] 

I I 1 3 3 E C N G I N E I A 2 GI A EC EI κ θ θ θ ⎛ ⎞ ⎡ ′′ ′ ′′ ′ ′′ ′ ′ ′ ′′ - + + - + + ⎜ ⎟ ⎢ ⎜ ⎟ ⎣ ⎝ ⎠ ⎛ ⎞ ⎛ ⎞ ⎤ ′ ′ ′′′′ ′′ ′ ′′ + + + - + - + ⎜ ⎟ ⎜ ⎟ ⎥ ⎜ ⎟ ⎦ ⎝ ⎠ ⎝ ⎠ ′′ ′ ′′ ′ + + ( ) 2 S S x x x t w t t S S t t C EC 3 m m m m 2 GI GI ρ θ θ θ ⎡ ⎤ ′′ ′ ′′′′ ′ ′′ + = + + - ⎢ ⎥ ⎣ ⎦ (19) 
after neglecting the higher order term ( ) 

S S P t x C I GI ρ ρ θ ⎡ ⎤ ⎣ ⎦ . Eqn. ( 19 
)
I 1 3 N 3 2 GI GI A GI GI η θ θ θθ θ θ κ ⎛ ⎞ ⎡ ⎤ ′ ′′′ ′ ′′ ′ ′′′ = + + + + ⎜ ⎟ ⎢ ⎥ ⎜ ⎟ ⎣ ⎦ ⎝ ⎠ (20a) ( ) ( ) ( ) 3 P P t t x S x n x S t 2 2 n S x x x x S t I I 1 1 M GI N EC N EI A 2 GI A EI 3 -EC 3 2 GI θ θ θ κ θ θ θ θ ⎛ ⎞ ⎛ ⎞ ′ ′′′ ′ = + - + + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎡ ⎤ ′ ′′ ′ ′′′ + ⎢ ⎥ ⎣ ⎦ (20b) ( ) 2 n P w S x S x x S S t t EI I 1 3 M EC N EC 2 GI A GI θ θ θ κ ⎛ ⎞ ⎡ ⎤ ′′ ′ ′′ = + + ⎜ ⎟ ⎢ ⎥ ⎜ ⎟ ⎣ ⎦ ⎝ ⎠ (20c) 
In the above equations κ is an auxiliary geometric constant related to the secondary twisting moment deformation effect given as ( )

S S t t t I I I κ = + .
Comparing the formulated reduced initial boundary value problem and the one presented in [START_REF] Sapountzakis | Nonlinear nonuniform torsional vibrations of bars by the boundary element method[END_REF] where the STMDE is not taken into account, it is concluded that this effect alters the expressions of warping inertia, warping stiffness and external loading and induces higher order nonlinear inertia and stiffness terms in the governing partial differential equation. Some nonlinear stiffness terms are also induced in the kinematical and stress components at the bar ends. If the STMDE is neglected, the displacement field (eqns (1)) must be updated by substituting x x η θ ′ = (and all the subsequent equations accordingly) as well as eqns [START_REF] Kollár | Flexural-torsional vibration of open section composite beams with shear deformation[END_REF][START_REF] Park | A finite element analysis of discontinuous thinwalled beams considering nonuniform shear warping deformation[END_REF] by substituting 1 κ = and dropping all the terms related to S t I .

INTEGRAL REPRESENTATIONS -NUMERICAL SOLUTION

For the angle of twist x θ

According to the precedent analysis, the nonlinear nonuniform torsional vibration problem of shear deformable bars reduces to establishing the displacement component ( )

x x,t θ having continuous partial derivatives up to the fourth order with respect to x and up to the second order with respect to t , satisfying the nonlinear initial boundary value problem described by the partial differential equation ( 19), the initial conditions (12c,d) along the bar and the boundary conditions (13b,c) at the bar ends x 0,l = . This problem is solved using the Analog Equation Method [START_REF] Katsikadelis | The analog equation method. A boundary-only integral equation method for nonlinear static and dynamic problems in general bodies[END_REF]. Employing this method as this is presented in [START_REF] Sapountzakis | Nonlinear nonuniform torsional vibrations of bars by the boundary element method[END_REF] and applying eqn [START_REF] Kollár | Flexural-torsional vibration of open section composite beams with shear deformation[END_REF] to L collocation points, L semidiscretized nonlinear equations of motion are formulated as

{ } { } ( ) ( ) , , , , , , = nl nl 1 2 1 2 3 + + + M d K d m H H d d k H H H d f ( 21 
)
where d is a L 8 + generalized unknown vector, nl m , nl k are nonlinear generalized mass vector and stiffness vector respectively and , , M K f are generalized mass matrix, stiffness matrix and force vector respectively, given as ( ) t m x,t , respectively at the collocation points by using appropriate finite differences [START_REF] Sapountzakis | Nonuniform torsion of bars of variable cross section[END_REF]. Eqns [START_REF] Cortinez | Vibration and buckling of composite thin-walled beams with shear deformability[END_REF] along with 8 algebraic equations constitute a system of simultaneous L 8 + Differential -Algebraic equations (DAE). The details of the derivation as well as the solution algorithm of this system of equations can be retrieved in [START_REF] Sapountzakis | Nonlinear nonuniform torsional vibrations of bars by the boundary element method[END_REF]. simply supported according to its torsional boundary conditions, while the left end is immovable and the right end is subjected to a compressive axial load according to its axial boundary conditions.

{ } { } { } ( ) { } ( ){ } ( ){ } ( ) { } ( ){ } ( ){ } ( ) { } ( ){ } 2 nl n S 1 2 1 2 1 i i i i i S i t 2 1 1 2 1 1 i i i i i EI C 3 6 GI 3 3 ρ ⎡ ⎡ ⎤ = - + ⎣ ⎦ ⎢ ⎣ ⎤ ⎡ ⎤ + + ⎣ ⎦ ⎥ ⎦ m H d H d H d H d H d H d H d H d H d H d (22a) { } { } { } ( ) { } { } ( ){ } ( ) { } ( ) { } { } 2 3 nl S n 1 2 n 2 i i i S i t 2 1 2 3 1 i i i i i EC 3 EI EI 3 2 GI 3 9 2 ⎡ ⎡ ⎤ ⎡ ⎤ = - + ⎣ ⎦ ⎣ ⎦ ⎢ ⎣ ⎤ ⎡ ⎤ + + ⎥ ⎣ ⎦ ⎦ k H d H d H d H d H d H d H d d (22b) 
P P P 0 S 2 S S t t EI I 1 I C N GI GI A ρ ρ κ ⎡ ⎤ ⎛ ⎞ = - + + ⎢ ⎥ ⎜ ⎟ ⎜ ⎟ ⎢ ⎥ ⎝ ⎠ ⎣ ⎦ M H H ( 22c 
) P P t 2 S S t I I 1 GI N EC N A GI A κ ⎡ ⎤ ⎛ ⎞ ⎛ ⎞ = - + + + ⎢ ⎥ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎢ ⎥ ⎝ ⎠ ⎣ ⎦ K H I 0 (22d) S S S S t t C E C GI GI ρ ⎧ ⎫ ⎪ ⎪ ′ ′ ′ = + + - ⎨ ⎬ ⎪ ⎪ ⎩ ⎭ t w t t f m m m m ( 

For the primary warping function

In the first example, for comparison reasons, the axial load -torsional fundamental natural frequency relation of the aforementioned bar has been investigated.

Mohri et. al. [START_REF] Mohri | Vibration analysis of buckled thin-walled beams with open sections[END_REF], without considering the secondary twisting moment deformation effect, proposed analytical load -frequency relations by dropping the higher order warping inertia term and assuming that (i) the fundamental modeshape of vibration follows a sinusoidal form

x sin l π ⎛ ⎞ ⎜ ⎟ ⎝ ⎠
both in the pre-and postbuckling region, (ii) the bar vibrates harmonically, (iii) vibrations of small amplitude around a static equilibrium state are performed. These load ( N ) -frequency ( f ω ) relations for the pre-and postbuckling regions are given, respectively, as

2 2 f cr , N 1 N θ θ ω ω ⎛ ⎞ = - ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ 2 2 f cr , N 2 1 N θ θ ω ω ⎛ ⎞ = - ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ (23a,b)
where θ ω is the natural frequency for vanishing axial load and cr , N θ is the torsional buckling load of the bar, respectively given as [41] [START_REF] Mohri | Vibration analysis of buckled thin-walled beams with open sections[END_REF][START_REF] Mohri | Flexural-torsional post-buckling analysis of thin-walled elements with open sections[END_REF] assuming that the twisting deformation mode follows a sinusoidal form

x sin l π ⎛ ⎞ ⎜ ⎟ ⎝ ⎠
proposed the following analytical expression to evaluate ( )

0 l / 2 θ ( ) ( ) , prebuckling region 
, postbuckling region

2 0 P cr , 2 n 0 l / 2 I 8l N N EAI 3 θ θ π ⎧ ⎪ = ⎨ ± - ⎪ ⎩ (25) 
In Fig. 2, the load -frequency relations of eqns [START_REF] Minghini | Vibration analysis with second-order effects of pultruded FRP frames using locking-free elements[END_REF] θ ω relation is rather complex and differs significantly from the one of the prebuckling region. In the pre-buckled state, the increase of initial amplitude of vibration always leads to an increase of the bar's stiffness and eventually an increase of f ω (see also [START_REF] Sapountzakis | Nonlinear nonuniform torsional vibrations of bars by the boundary element method[END_REF], and [START_REF] Rozmarynowski | Non-linear free torsional vibrations of thinwalled beams with bisymmetric cross-section[END_REF] for the case of axially immovable ends and

n I 0 = ).
In Figs. 5,6 the time histories of the angle of twist ( ) In Figs. 

x0 x 0 θ = , ( ) 
x0 x 0 θ = ).
f ,lin ω is the fundamental natural frequency of the bar undergoing linear torsional vibrations, ignoring STMDE and is numerically evaluated by performing modal analysis as this is presented in [START_REF] Sapountzakis | Dynamic analysis of 3-D beam elements including warping and shear deformation effects[END_REF].

In Figs. 9, 10, the time histories of the angle of twist ( )

x l / 2,t θ at the midpoint of the bar are presented (with or without STMDE) for two cases of analysis, namely ignoring or considering geometrical nonlinearity, respectively. The linear analyses are carried out by dropping all the nonlinear terms of eqns [START_REF] Kollár | Flexural-torsional vibration of open section composite beams with shear deformation[END_REF], [START_REF] Park | A finite element analysis of discontinuous thinwalled beams considering nonuniform shear warping deformation[END_REF]. As expected, only in the linear cases (Fig. 9) deformations continue to increase with time. The beating phenomenon observed in the nonlinear response (Fig. 10) is explained from the fact that large twisting rotations increase the bar's fundamental natural frequency f ω (by increasing the stiffness of the bar), thereby causing a detuning of f ω with the frequency of the external loading ( f ,lin ω

). After the angle of twist reaches its maximum value, the amplitude of twisting deformations decreases, leading to the reversal of the previously mentioned effects. Moreover, in Fig. 11, the time histories of the primary twisting moment 

Example 4 -Linear forced vibrations, closed shaped cross section

In the last example, the (geometrically) linear response of a bar Murín and Kutiš [START_REF] Murín | An effective finite element for torsion of constant crosssections including warping with secondary torsion moment deformation effect[END_REF]. Throughout the entire numerical example the geometric constants of the bar are assumed to take the values presented in [START_REF] Murín | An effective finite element for torsion of constant crosssections including warping with secondary torsion moment deformation effect[END_REF] (

2 A 0,240m = , 4 t I 0,089824m = , S 4 t I 0,001107m = , 6 S C 0,000193m =
), while the results have been 29

obtained employing 31 nodal points (longitudinal discretization). The bar's left end is clamped, while its right end is free and subjected to zero axial load, zero warping moment and prescribed twisting moment ( ( )

N l,t 0 = , ( ) w M l,t 0 = , ( ) t t M l,t M = ).
In the beginning, for comparison purposes, the linear static loading conditions are investigated by dropping all the inertia and nonlinear terms of eqns [START_REF] Kollár | Flexural-torsional vibration of open section composite beams with shear deformation[END_REF], [START_REF] Park | A finite element analysis of discontinuous thinwalled beams considering nonuniform shear warping deformation[END_REF]. A concentrated twisting moment t M 32kNm = is applied at the bar's right end and the computed results of several kinematical and stress components taking into account or ignoring the STMDE are presented in Table 6 as compared wherever possible with those obtained from a FEM solution [START_REF] Murín | An effective finite element for torsion of constant crosssections including warping with secondary torsion moment deformation effect[END_REF]. The coincidence of the results between the proposed and the FE methods is remarked. Moreover, from the comparison of the results obtained considering or ignoring the STMDE, it is concluded that STMDE influences decisively the stress components, while it exhibits a less pronounced effect on the kinematical components. Thus, the significance of STMDE in linear static analysis of bars of closed shaped cross sections, already reported in the literature [START_REF] Murín | An effective finite element for torsion of constant crosssections including warping with secondary torsion moment deformation effect[END_REF], is verified.

Following the linear static loading conditions, the linear forced vibrations are investigated by dropping all the nonlinear terms of eqns [START_REF] Kollár | Flexural-torsional vibration of open section composite beams with shear deformation[END_REF], [START_REF] Park | A finite element analysis of discontinuous thinwalled beams considering nonuniform shear warping deformation[END_REF]. More specifically, the resonance of the examined bar is studied by applying a distributed twisting moment 6 concerning static analysis can be extended in linear dynamic analysis of bars of closed shaped cross sections.

CONCLUDING REMARKS

In this paper a boundary element method is developed for the nonuniform torsional vibration problem of simply or multiply connected cylindrical bars of arbitrary doubly symmetric cross section, taking into account the effects of geometrical nonlinearity and secondary twisting moment deformation. The displacement components are expressed so as to be valid for large twisting rotations (finite displacement -small strain theory), while the use of an independent warping parameter makes it possible to account for warping shear stresses in global equilibrium of the bar.

The main conclusions that can be drawn from this investigation are The developed procedure retains most of the advantages of a BEM solution over a FEM approach, although it requires longitudinal domain discretization.

APPENDIX A

Expression of the primary torsion constant t I : Substituting eqns (4) into eqn (9a), the primary torsion constant of eqn (10a) is obtained as

2 2 P P S S t 1 2 I z y d I I y z Ω φ φ Ω ⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ∂ ∂ ⎢ ⎥ = - + + = + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎢ ⎥ ∂ ∂ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦ ∫ (A.1)
where

P P 2 2 S S 1 I y z y z d z y Ω φ φ Ω ⎛ ⎞ ∂ ∂ = + + - ⎜ ⎟ ⎜ ⎟ ∂ ∂ ⎝ ⎠ ∫ (A.2a) P P P P S S S S 2 I z y d y y z z Ω φ φ φ φ Ω ⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ∂ ∂ ∂ ∂ = -+ + ⎢ ⎥ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ∂ ∂ ∂ ∂ ⎢ ⎥ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦ ∫ (A.2b)
Carrying suitable integration by parts with respect to y for the first term of eqn (A.2b) and with respect to z for the second term of eqn (A.2b) and exploiting both eqns (6a) and (6b), 2 I is proved to vanish. Consequently, t I is proven to be given from expression (10a).

Expression of the secondary torsion constant S t I : Substituting eqns (5) into eqn (9b), the secondary torsion constant of eqn (10b) is obtained as

2 2 P P S S S t I A d y z θ Ω φ φ Ω ⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ∂ ∂ ⎢ ⎥ = + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎢ ⎥ ∂ ∂ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦ ∫ (A.3)
Carrying suitable integration by parts with respect to y for the first term of eqn (A. Using the Gauss divergence theorem, eqn (A.5) yields the exact formula of eqn (10b).

Finally it is worth here noting that the alternative definitions of P t M , S t M as ( )

d P P P t x y x z M S z S y Ω Ω ⎡ ⎤ = -+ ⎣ ⎦ ∫ ( ) d S S S t x y x z M S z S y Ω Ω ⎡ ⎤ = -+ ⎣ ⎦ ∫ (A.6a,b)
can be easily proven to be identical to the ones presented in eqns (9a,b).

n t y z 1 Γ 2 Γ Κ Γ 1 C≡S (Ω) s ω r P q = - P α q (a)
x,u [START_REF] Minghini | Vibration analysis with second-order effects of pultruded FRP frames using locking-free elements[END_REF] [START_REF] Mohri | Vibration analysis of buckled thin-walled beams with open sections[END_REF] along with pairs of values ( f ω , N ) obtained from present study (example 1). 

u. 2 . 3

 23 The primary warping function is evaluated independently by exploiting local equilibrium considerations along the longitudinal x axis (after ignoring the inertia and the nonuniform torsion theory terms) from the solution of the following boundary value problem ∂ + ∂ ∂ is the Laplace operator and / n ∂ ∂ denotes the directional derivative normal to the boundary Γ . Since the problem at hand has Neumann type boundary condition, the evaluated warping function contains an integration constant (parallel displacement of the cross section along the bar axis),which is evaluated following the procedure presented in Sapountzakis[START_REF] Sapountzakis | Solution of non-uniform torsion of bars by an integral equation method[END_REF]. The meaning of the "average" axial displacement of the cross section of the bar can now be explained as eqn (1a) can be written as d d Warping shear stress distribution, independent warping parameter x η By substituting eqns (1a,3) on the differential equation describing local equilibrium along the longitudinal axis x[START_REF] Sapountzakis | Nonlinear nonuniform torsional vibrations of bars by the boundary element method[END_REF] 

xη

  and the angle of twist x θ , makes it possible to accurately analyze bars of either closed or open shaped cross sections. This formulation can also account for warping

  22e) In the above equations, { } i ⋅ denotes the (arbitrary) i-th row .with I and 0 being the L L × identity matrix and the L 8 × rectangular matrix with zero elements, respectively, m are vectors containing the values of the dynamic external loading at the L nodal points. The elements of ′ w m , ′′ t m can be written with respect to the values of ( ) w m x,t ,

φExample 1 -

 1 The integral representations and the numerical solution for the evaluation of the angle of twist x θ presented in the previous section assume that the warping S C and the torsion t I , S t I constants are already established. The expressions of these constants indicate that their evaluation presumes that P S φ at any interior point of the domain Ω of the cross section of the bar is known. Once P S φ is established, S C and t I constants are evaluated by converting the domain integrals into line integrals along the boundary using the corresponding relations presented in Sapountzakis and Mokos [1], while the line integral expression of On the basis of the analytical and numerical procedures presented in the previous sections, a computer program has been written and representative examples have been studied to demonstrate the validation, efficiency and the range of applications of the developed method. It is noted that the probability of the bar's exhibiting chaotic motion in its nonlinear response is not investigated within the present study. Small amplitude free vibrations, open shaped cross section In the first three examples, an open thin-walled I-shaped cross section bar ( been studied, while the numerical results have been obtained employing 21 nodal points (longitudinal discretization) and 400 boundary elements (cross section discretization). The geometric constants of the bar are computed as

2 θ

 2 results, the nonlinear initial boundary value problem (eqns[START_REF] Kollár | Flexural-torsional vibration of open section composite beams with shear deformation[END_REF], (12c,d), (13b,c)) has been solved for several values of constant axial load N to obtain the response of the bar in the time domain, taking into account or neglecting the STMDE. The fundamental natural frequency f ω is then computed by exploiting the first few full cycles of vibration. The computation is based on the Fast Fourier Transform (FFT) of the time history, while a Hanning data window is employed[START_REF] Brigham | Fast Fourier transform and its applications[END_REF].The free vibrations are initiated by dropping all the torsional loading terms and by employing the linear fundamental modeshape of the angle of twist as initial twisting rotations presented in[START_REF] Sapountzakis | Nonlinear nonuniform torsional vibrations of bars by the boundary element method[END_REF] and corresponds to the sinusoidal form assumed by Mohri et. al.[START_REF] Mohri | Vibration analysis of buckled thin-walled beams with open sections[END_REF]. In order to perform vibrations of small amplitude, the initial midpoint angle of twist amplitude corresponding to the static equilibrium state. Mohri et. al.

Example 2 - 2 θ

 22 are presented along with pairs of values ( f ω , N ) obtained from the proposed method, ignoring the STMDE. The pairs ( f ω , N ) are computed by using the values of initial midpoint angle of twist amplitude of bars undergoing small amplitude torsional vibrations is concluded. The higher discrepancies between the two sets of solutions in the postbuckling region as compared to the ones in the prebuckling region are attributed to the fact that the previously mentioned assumptions (i), (ii) are valid only in the prebuckling region. To illustrate this point better, in Figs. 3a,b the obtained time histories of the angle of twist are presented, respectively, demonstrating that only the buckled bar undergoes multifrequency vibrations. For comparison purposes, in Fig.3b the time history of ( ) x l / 2,t θ employing the nonlinear fundamental modeshape of the angle of twist as initial twisting rotations that the initiation of free vibrations with the nonlinear modeshape does not induce higher harmonics in the response of the bar. Finally, in Table 2 the obtained results of pairs of values ( f ω , N ) are presented taking into account or ignoring the STMDE and employing either the linear or the nonlinear fundamental modeshape to initiate the free vibrations, showing that in both pre-and post-buckling regions, the STMDE does not affect the fundamental natural frequency of bars of open thin-walled cross sections undergoing small amplitude vibrations. The insignificance of the STMDE for linear static loading conditions of bars of such cross sections has already been reported in the literature [6]. Nonlinear free vibrations, open shaped cross section In the second example, the effect of geometrical nonlinearity on the dynamic characteristics of the bar under examination (bar of example 1) at a post-buckled state is investigated. The nonlinear initial boundary value problem (eqns (19), (12c,d), (13b,c)) has been solved for N 5500kN to obtain the response of the bar in the time domain, taking into account or ignoring the STMDE. The free vibrations are initiated by dropping all the torsional loading terms and by considering the linear fundamental modeshape of the angle of twist as initial twisting rotations STMDE [35]. The fundamental natural frequency f ω and the position around which vibrations are performed are then computed by exploiting the first few full cycles of vibration.In Fig.4, the variation of the torsional fundamental natural frequency f ω with respect to the initial midpoint angle of twist amplitude geometrical nonlinearity has a profound effect οn both the natural frequency of the bar and the positions around which vibrations are performed. From Table3, it is observed that these positions are non constant ones and depend on the initial amplitude of vibration, while for large values of ( ) x0 l / 2 θ they coincide with the static equilibrium position of the prebuckling region. From Fig.4it is also concluded that the

  t at the bar's right end, respectively, for two cases of the initial midpoint angle of twist amplitude ( taking into account or ignoring the STMDE. From these figures it is verified that especially for the case of axial displacement's response is twice as much as the one of the twisting rotation's one. This effect has been already documented in the literature for nonlinear torsional vibrations of bars at prebuckling configurations[START_REF] Sapountzakis | Nonlinear nonuniform torsional vibrations of bars by the boundary element method[END_REF] and nonlinear flexural vibrations of bars at prebuckling configurations with axially immovable ends[START_REF] Bhashyam | Galerkin finite element method for non-linear beam vibrations[END_REF]. Apparently, this is no longer valid when vibrations at postbuckling configurations are performed around positions with Figs.5, 6, it is also observed that the STMDE does not influence the kinematical components of buckled bars of open thin-walled cross sections, undergoing large amplitude vibrations. This conclusion does not depend on the magnitude of the initial midpoint angle of twist amplitude.

(

  

  shaped cross section is studied. The cross section is of total height h 1,64m = , total width b 1,05m = , horizontal walls thickness h t 0,04m = and vertical walls thickness v t 0,05m = and is identical to the box-shaped cross section studied by

  f ,lin ω is the fundamental natural frequency of the bar undergoing linear torsional vibrations, ignoring STMDE and is numerically evaluated by performing modal analysis as this is presented in [63]. In Fig. 12 the time histories of the secondary twisting moment t at the bar's left end taking into account or ignoring (scaled quantity are presented demonstrating the decisive influence of the aforementioned effect to this stress resultant. Finally, in Fig. 13 the time histories of the warping moment ( ) w M 0,t at the bar's left end are depicted taking into account or ignoring the STMDE. From Figs. 12-13, the conclusions already drawn from Table

  a. The numerical technique presented in this investigation is well suited for computer aided analysis of cylindrical bars of arbitrarily shaped doubly symmetric cross section, supported by the most general twisting and warping boundary conditions and subjected to the combined action of arbitrarily distributed or concentrated time dependent conservative axial and torsional loading.b. The geometrical nonlinearity leads to coupling between the torsional and axial equations of motion and alters the modeshapes of vibration. Consequently, the initiation of small amplitude free vibrations of buckled bars with the linear fundamental modeshape as initial twisting rotations induces higher harmonics in the bar's response, but its fundamental natural frequency is only slightly affected. c. Large twisting rotations have a profound effect on both the positions around which vibrations are performed and the fundamental natural frequency of buckled bars undergoing large amplitude free vibrations. The computation of dynamic characteristics of buckled bars differs from the one of bars at a pre-buckled state where the increase of initial amplitude of vibration always leads to an increase of the fundamental natural frequency. d. The natural frequency of the axial displacement's response of buckled bars undergoing large amplitude free vibrations is twice as much as the one of the twisting rotation's one, when vibrations are performed around the static equilibrium position of the prebuckling configuration. e. As expected, geometrical nonlinearity bounds the (twisting) deformations of bars at a pre-buckled state subjected to primary resonance excitations. A beating phenomenon is observed in the time histories of kinematical and stress components. f. The secondary twisting moment deformation affects negligibly the kinematical and stress components of bars of open shaped thin-walled cross sections undergoing free or forced vibrations of small or large amplitude. g. The secondary twisting moment deformation affects the kinematical components of bars of closed shaped cross sections undergoing linear vibrations. Its effect is much more pronounced on stress components, concluding that it cannot be neglected in linear dynamic analysis of bars of such cross sections.

3 )

 3 and with respect to z for the second term of eqn (A.3) and exploiting eqn (8a),

Fig. 1 .

 1 Fig. 1. Prismatic bar of an arbitrarily shaped doubly symmetric constant cross section occupying region Ω (a) subjected to axial and torsional loading (b).

Fig. 2 .

 2 Fig.2. Axial load N -torsional fundamental natural frequency f ω relation of eqns

Fig. 3 .Fig. 4 .3Fig. 5 .Fig. 6 .Fig. 7 .Fig. 8 .

 345678 Fig.3. Time histories of the angle of twist at the midpoint of the bar of example 1, for a prebuckling ( N 1000kN = -) (a) and a postbuckling ( N 5000kN = -) (b) axial loading.

Fig. 9 .

 9 Fig.9. Time histories of the angle of twist at the midpoint of the bar of example 3 taking into account or ignoring secondary twisting moment deformation effect-Geometrically linear case.

Fig. 10 .Fig. 11 .Fig. 12 .Fig. 13 .

 10111213 Fig.10. Time histories of the angle of twist at the midpoint of the bar of example 3 taking into account or ignoring secondary twisting moment deformation effect -Geometrically nonlinear case.

Fig. 8 .Fig. 9 .

 89 Fig.8. Time histories of various twisting moment components at the left end of the free vibrating bar of example 2 taking into account the secondary twisting moment deformation effect for initial midpoint angle of twist amplitude ( ) x0 l / 2 2,50 rad θ

Fig. 10 .

 10 Fig.10. Time histories of the angle of twist at the midpoint of the bar of example 3 taking into account or ignoring secondary twisting moment deformation effect -Geometrically nonlinear case.

Fig. 11 .

 11 Fig.11. Time histories of various twisting moment components at the left end of the bar of example 3 taking into account the secondary twisting moment deformation effect (geometrically nonlinear analysis).

Fig. 12 .

 12 Fig.12. Time histories of the secondary twisting moment

Fig. 13 .

 13 Fig.13. Time histories of the warping moment

Primary resonance, geometrical nonlinearity, open shaped cross section

  [START_REF] Sapountzakis | Secondary torsional moment deformation effect by BEM[END_REF][START_REF] El Fatmi | Non-uniform warping including the effects of torsion and shear forces. Part I: A general beam theory[END_REF], the time histories of the primary twisting moment

	extreme values of the kinematical and stress components depicted in Figs. 5-8, obtained
	for the time interval	( ) 0,00 t 0,12 sec ≤ ≤	are presented taking into account or ignoring
	the STMDE, for	θ	( ) x0 l / 2 2,20 rad =	. From this table it is deduced that the STMDE
	influences negligibly both kinematical and stress components of buckled bars of open
	thin-walled cross sections undergoing large amplitude vibrations.
	Example 3 -In the third example, the forced vibrations of the bar under examination (bar of
	example 1) at a pre-buckled state ( N 0 = ) are investigated to determine the effects of
	geometrical nonlinearity and secondary twisting moment deformation. More
	specifically, the primary resonance of the bar is studied by applying a concentrated
	twisting moment	M	t ,ext	at its midpoint given as	M	t ,ext	( ) t M sin t0 =	(	ω	f ,lin	t	)	, where
	M	t0	=	5kNm	and	ω	f ,lin 214,23 sec =	1 -	(initial conditions	( )
														P t M (first two
	terms of eqn (20b) including the twisting moment caused by the axial load N ), the
	linear secondary twisting moment	M	S t ,lin	(third and fourth terms of eqn (20b)), the
	nonlinear twisting moment	M	t,nl	(rest nonlinear terms of eqn (20b)) and the total
	twisting moment	t M M =	P t	+	M	S t , l i n	+	M	t, n l	at the bar's left end are presented taking
	into account the STMDE for two cases of the initial midpoint angle of twist amplitude
	(	θ	( ) x0 l / 2 2,20 rad =	,	θ	( ) x0 l / 2 2,50 rad =	), respectively. Finally, in Table 4 the

  From Fig.10and from Table5it is deduced that the STMDE influences negligibly both kinematical and stress components of bars of open thinwalled cross sections undergoing forced vibrations.

										P t M (first two terms of eqn (20b)), the linear secondary twisting
	moment	M	S t ,lin	(third and fourth terms of eqn (20b)), the nonlinear twisting moment
	M	t ,nl	(rest nonlinear terms of eqn (20b)) and the total twisting moment
	t M M =	P t	+	M	S t , l i n	+	M	t, n l	at the bar's left end are presented taking into account the
	STMDE and performing geometrically nonlinear analysis. Finally, in Table 5 the
	extreme values of the kinematical and stress components depicted in Figs. 10-11,
	obtained for the time interval	( ) 0,00 t 0,30 sec ≤ ≤	are presented taking into account or
	ignoring the STMDE.

Table 1 .

 1 Axial load N , midpoint angle of twist amplitude

	θ	( ) 0 l / 2	corresponding to

Table 3 .

 3 Initial midpoint angle of twist amplitudes

						θ	( ) x0 l / 2	and positions	θ	( ) x,m l / 2
	around which vibrations are performed of the free vibrating bar of example
	2 ( N	5500kN = -	).	
		θ	( )( ) x0 l / 2 rad	θ	( )( ) x,m l / 2 rad
			1,60		1,60
			1,75		1,60
			1,85		1,58
			1,95		1,55
			2,00		1,53
			2,05		1,50
			2,15		1,41
			2,20		1,34
			2,22		1,23
			2,25		0,00
			2,35		0,00
			2,50		0,00
			3,50		0,00
			4,50		0,00

Table 4 .

 4 Extreme values of various kinematical and stress components of the free

	vibrating bar of example 2, obtained for	( ) 0,00 t 0,12 sec ≤ ≤
	(	θ	( ) x0 l / 2 2,20 rad =	).
							with STMDE	without STMDE
			max	θ	x	( )( ) l / 2 rad	2,307	2,304
			min	θ	x	( )( ) l / 2 rad	0,393	0,373
			( )( ) max u l m m	-0,019	-0,019
			( )( ) min u l m m	-0,046	-0,046
			( )( max M 0 kNm P t	)	-7,178	-6,796
			( )( ) min M 0 kNm P t	-59,927	-59,927
			max M	S t ,lin	( )( ) 0 kNm	29,277	28,775
			min M		S t ,lin	( )( 0 kNm	)	-16,208	-15,697
			max M	t ,nl	( )( 0 kNm	)	89,261	88,321
			min M	t ,nl	( )( ) 0 kNm	0,144	0,129
			( )( max M 0 kNm t	)	55,993	55,266
			( )( ) min M 0 kNm t	-27,665	-26,828

Table 5 .

 5 Extreme values of various kinematical and stress components of the bar of

	example 3, obtained for	( ) 0,00 t 0,30 sec ≤ ≤	.
							with STMDE	without STMDE
	max	θ	x	( )( ) l / 2 rad	1,378	1,376
	min	θ	x	( )( ) l / 2 rad	-1,393	-1,388
	( )( ) max M 0 kNm P t	17,407	17,359
	( )( ) min M 0 kNm P t	-17,555	-17,537
	max M	S t ,lin	( )( ) 0 kNm	12,464	12,205
	min M		S t ,lin	( )( ) 0 kNm	-12,318	-12,491
	max M	t ,nl	( )( 0 kNm	)	19,199	18,887
	min M	t ,nl	( )( ) 0 kNm	-19,690	-19,474
	( )( max M 0 kNm t	)	49,070	48,427
	( )( min M 0 kNm t	)	-49,545	-49,499

Table 6 .

 6 Kinematical and stress components for linear static loading conditions of the bar of example 4, taking into account or ignoring the secondary twisting moment deformation effect.

			with STMDE		without STMDE
		x 0 =	x l =		x 0 =	x l =
			Present		Present		
		FEM [6]	study -	FEM [6]	study -	Present study -AEM
			AEM		AEM		
	( ) M Nm P t	31610,4 31610,2	31999,5	31999,5	0	32000,1
	( ) M Nm S t	389,6	389,6	0.5	0.5	32000,0	-0,1
	( ) 2 M Nm w	-263,95 -264,14	0	0	-2397,12	0
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