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Interlaminar Stress Recovery for Three-Dimensional Finite Elements

C. Fagiano∗,a,1, M. M. Abdallaa, C. Kassapogloua, Z. Gürdala

aFaculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands

Abstract

An accurate evaluation of interlaminar stresses in multilayer composite laminates is crucial for

the correct prediction of the onset of delamination. In general, three dimensional finite element

models are required for acceptable accuracy, especially near free edges and stress concentrations.

Interlaminar stresses are continuous both across and along layer interfaces. Nonetheless, the con-

tinuity of interlaminar stresses is difficult to enforce in C0 interpolated elements. Nodal values of

the stresses are usually retrieved using extrapolation techniques from super-convergent points, if

known, or Gauss points inside the element. Stress fields within an element can be deduced using

either constitutive relations or variationally consistent procedures. In either case, spurious oscil-

lations in stress fields may be encountered leading to a reduced accuracy of the recovered stresses

at nodes. In this paper, an efficient interlaminar stress recovery procedure for three-dimensional

finite element formulations is presented. The proposed procedure does not rely on extrapolation

techniques from super-convergent or integration points. Interlaminar stress values are retrieved

directly at nodes and stress continuity at the inter-element boundary is automatically satisfied.

Several benchmark problems were analysed. Comparisons with finite element software and avail-

able solutions in the literature confirmed the accuracy of the procedure. Accurate interlaminar

stresses were obtained using coarser meshes compared to customary recovery procedures.
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1. Introduction

An accurate evaluation of interlaminar stresses in multilayer composite laminates is crucial for

the correct prediction of delamination initiation. Due to its importance, this subject has been

the focus of numerous researchers. Several levels of modelling can be used for the evaluation of

interlaminar stresses. The simplest approach is based on using Classical Laminated Plate Theory

(CLPT). While, CLPT assumes a state of plane stress within each lamina of a multi-directional

laminate, interlaminar stresses are most commonly obtained by integrating the three-dimensional

equilibrium equations of elasticity through the thickness [1, 2]. Nonetheless, three dimensional

stress states cannot, in general, be accurately analysed, and three dimensional theories are re-

quired for acceptable accuracy. This is especially true in regions such as free edges and regions

of stress concentration where the basic assumptions of CLPT are no longer valid. Transverse

shear stresses are directly accounted for in the First Order Shear Deformation Plate Theory and

higher order theories [2, 3]. These Equivalent Single Layer (ESL) theories have limited accuracy in

predicting interlaminar stresses because of their failure to account for both Zig-Zag effects (rapid

change of slope across layer interfaces due to through the thickness discontinuity of mechanical

properties) of the displacement fields in the thickness direction and interlaminar continuity of the

transverse stress field [4]. Thus, for accurate evaluation of interlaminar stresses, three-dimensional

elasticity is the tool of choice. This is reflected in the profusion of layerwise (LW) theories [3, 4, 5]

and efficient solid shell elements [2, 4].

Within the class of three-dimensional elements, an important issue is the accurate calculations of

stresses. Stress recovery is highly dependent on the design of the particular element and on the

formulation used in deriving the element. Mixed formulations provide more flexibility in the con-

struction of efficient elements compared to classical formulations. Although primarily motivated

by avoidance of the locking phenomena in finite element solutions, mixed formulations based on

the Reissner or Hu-Washizu functional [6, 7], with displacements, stresses and/or strains as field

variables, are so closely related to stress recovery that the formulations can also be viewed as stress

recovery methods [8]. Mixed Layer-Wise theories are exemplified by the work of Carrera [9], where

a Reissner’s mixed variational equation [10, 11] is used to derive the governing equations in terms
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of displacements and transverse stress variables [12, 13]. On the one hand assumed stress meth-

ods do not require any post-processing for the accurate recovery of stresses. On the other hand,

inverse constitutive relations which define strains in terms of stress measures are employed greatly

complicating the extension to the nonlinear case. Another shortcoming is the great added burden

of solving simultaneously for stress and displacement degrees of freedom.

A particular form of the three field Hu-Washizu variational principle has been presented by Simo

and Rifai [14], who developed a class of assumed mixed finite element methods to allow the sys-

tematic development of low order elements possessing good coarse mesh and distortion insensitive

properties. The strain approximation is split into two parts: one is the usual displacement-gradient

term, and the second is an enhanced strain part. Of particular note is the solid shell element de-

veloped by Vu-Quoc and Tan [15, 16]. For these three-dimensional enhanced strain elements, C0

interpolated displacement fields are used. Physically, interlaminar stresses are continuous both

across and along layer interfaces. Nonetheless, the continuity of interlaminar stresses is difficult to

enforce in C0 interpolated elements. Stress recovery procedures are necessary to find acceptably

accurate stress fields.

Many researches have focussed on developing reliable stress recovery procedures. Early attempts

to construct effective procedures included: the interpolation-extrapolation from super-convergent

points [17], the L2 projection [18], the stress smoothing [19, 20], and the integral stress technique

[21]. Zienkiewicz and Zhu [22, 23] made a very significant breakthrough towards an efficient post-

processing technique when they proposed the super-convergent patch recovery (SPR) procedure.

Many investigators have modified this procedure to include satisfaction of boundary conditions

[24, 25, 26]. For a more accurate prediction of the transverse stresses in laminated composites

and shells, a Modified Super-convergent Patch Recovery (MSPR) technique has been derived to

obtain accurate nodal in-plane stresses which, subsequently, are used in the integration along the

thickness of the equilibrium equations for evaluating the transverse shear and normal stresses [27].

Patch recovery procedures depend crucially on the accurate evaluation of stresses within elements.

Stress fields within an element can be deduced using either constitutive relations or variation-

ally consistent procedures. Stress fields deduced using constitutive relations can show spurious
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oscillations due to the retention of higher order (inconsistent) terms which do not contribute to

the determination of the displacements and strains, which then get reflected as extraneous stress

oscillations [28, 29]. As far as variationally consistent procedures are concerned, it is worth men-

tioning the weighted residual approach developed by De Miranda and Ubertini [30]. Nevertheless,

even variationally consistent procedure suffer from spurious oscillations in stress fields as shown by

Dakshina-Moorthy and Reddy [31].

The purpose of this paper is to present an efficient interlaminar stress recovery procedure within

three dimensional FE formulations that is able to overcome the problems usually encountered using

customary procedures, i.e. severe oscillations of stress distributions, without relying on extrapo-

lation techniques from super-convergent points. Thus, the accuracy of the recovered interlaminar

stresses is not dependent on the knowledge of superconvergent point nor is it sensitive to the stress

recover method employed to obtain element stress distributions. Moreover, the procedure attains

as much accuracy as assumed stress methods using coarser meshes and without the need to include

stress degrees of freedoms in the solution process. The proposed procedure was developed based

on equilibrium considerations, and interlaminar stresses are recovered directly at nodes. The nu-

merical formulation is presented and explained in detail in the next section. The reliability of the

approach is tested analysing several benchmark problems, and the results are reported in section

3. Conclusions and future developments are addressed in section 4.

2. Interlaminar stresses recovery procedure

The present procedure is an extension of the interlaminar stress recovery procedure developed

by Dakshina Moorthy and Reddy [31] in the context of studying delamination in multilayered com-

posites. In their approach, each ply is modelled as a separate body and the interlaminar boundary

is treated as a contact surface. The interlaminar forces are obtained using an interface model based

on the penalty method. Using these contact loads the interlaminar stresses are recovered.

The recovery procedure partitions the contact surface into a set of non-overlapping patches corre-

sponding to groups of elements. The traction distribution is interpolated over each patch in terms

of nodal values. Static equivalence between the tractions and the contact forces is used to calcu-
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late the nodal value of the tractions, hence the interlaminar stresses. The procedure was found

in practice to lead to oscillatory interlaminar stresses. Thus, a final step is the application of a

smoothing technique to obtain more physically meaningful interlaminar stresses.

The present procedure extends the procedure of Dakshina Moorthy and Reddy in two ways. First,

each ply is still modelled separately but the compatibility between the plies is enforced using La-

grange multipliers following the procedure commonly employed in domain decomposition methods.

Thus, connecting forces are obtained without resorting to a penalty formulation. Second, the trac-

tion distribution is interpolated over the complete interlaminar surface. Thus, the full distribution

of interlaminar stresses is obtained simultaneously. In the following, we give more details about

the proposed formulation.

Consider a typical interface between two plies as shown in figure 1. The system of linear equilibrium

equations and compatibility conditions can be written as,
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where K(1) and K(2) are the stiffness matrices of the two plies, u(1) and u(2) the displacement

vectors of the two plies, f (1) and f (2) the load vectors of the two plies, B(1) and B(2) are the Boolean

matrices providing the equality conditions between displacements of the two plies, and λ are

the Lagrange multipliers (interlaminar forces) introduced to enforce the compatibility constraints

between the plies. Solving the system of equations (1), the interlaminar forces between the plies

are obtained as well as displacements.

The traction distribution t over a surface element is interpolated using C0 iso-parametric shape

functions,

t = N tf (2)

where tf is the vector of the nodal traction values and N is the matrix of C0 shape functions. The

surface element connectivity is directly inherited from the solid element faces.

Displacements over a surface element are interpolating using the same C0 iso-parametric shape
5
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functions. Thus, the internal work Win done by the tractions over the element surface can be

written as,

Win =

∫

Ωf

( tf N ) T

︸ ︷︷ ︸

traction

N ∂qf
︸ ︷︷ ︸

disp.

∂Ωf = tT
f M f δqf . (3)

where qf is the vector of nodal displacements, and M f is the matrix of areas,

M f =

∫

Ωf

NT N ∂Ωf . (4)

The surface element contributions are assembled over the complete interlaminar surface in a matrix

M , and considering the static equivalence between the tractions and the connecting forces, the

following relation is obtained,

M t = λ (5)

where t is the global vector of nodal traction. The process is repeated for every interlaminar surface

of interest. The accuracy of the present approach is demonstrated in the next section.

3. Numerical Results

3.1. Simply supported plate subjected to bisinusoidal pressure load

The present procedure was validated considering a benchmark problem analysed by Pagano

[32], where three dimensional exact elasticity solutions of idealised simply supported cross-ply

[0◦/90◦/0◦], square plates under bisinusoidally distributed pressure load of intensity pz, are pro-

vided. The length and thickness of the plate is denoted by “a”and “H”respectively. The laminate

is made of material plies that are idealized to be homogeneous, elastic and orthotropic. The fol-

lowing material properties are used: E11 = 25GPa, E22 = E33 = 1GPa, G12 = G13 = 0.5GPa,

G23 = 0.2GPa, and ν12 = ν13 = ν23 = 0.25. Subscripts 1,2 and 3 denote the fibre, transverse

and thickness directions, respectively. The rectangular Cartesian coordinate system used is such

that the origin is located at the center of the middle layer of the plate. Stresses are normalized
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according to the following formulae,

(τ ′

xz , τ ′

yz) =
1

pz S
(τxz , τyz) , σ′

zz =
1

pz

σzz ,

where the S is the laminate length to thickness ratio S = a/H.

The discrete model is generated using a simple linear solid-shell element developed by Vu-Quoc

and Tan [15, 16]. This element possesses good coarse mesh and distortion insensitivity properties

for a large range of aspect ratios. Unless differently stated, the in-plane mesh consists of 14 × 14

elements. The minimum required number of elements in the thickness direction is three. While

this is sufficient for accurate interlaminar stresses, it doesn’t allow the detailed evaluation of their

through the thickness variation. In the case under consideration the values of transverse stresses in

the middle of every layer are also reported and, as a consequence, three more mathematical inter-

faces are required in these locations to give a total number of six elements through the thickness.

Laminates of length to thickness ratios S = 20, 50, 100 are analysed and the results calculated at

several points of interest are reported in table 1. Compared to Pagano’s exact solutions, excellent

agreement is obtained for all the considered cases.

A laminate of length to thickness ratio S = 100 is considered in detail to demonstrate the efficacy

of the method for thin laminates. The convergence of the interlaminar stresses τ ′

xz and σ′

zz at the

[0◦/90◦] interface is plotted in figure 2. Excellent agreement with Pagano’s exact solution and fast

convergence are obtained. The percentage error at points of maximum values compared to the

exact solution is within 0.2%. Smooth distributions of interlaminar stress are observed as shown

in figure 3. The same laminate has been analysed in the work of Dakshina-Moorthy and Reddy

[31]. Regarding the structural symmetry, only a quarter of the plate is taken into account. An

in-plane mesh of [8 × 8] nine-node quadratic elements and a mesh of linear Lagrange elements

through the thickness of the laminate is considered. The interlaminar stresses are calculated and

compared using three different approaches: (1) their equilibrium based stress recovery procedure,

at nodes; (2) from constitutive relations, at integration points; and (3) variationally optimal stress

recovery procedure, at integration points. As shown in figure 4, all the aforementioned procedures

generate severe oscillations. Smoothing techniques are required. Comparing these distributions
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with the ones obtained using the present procedure it can be stated that the present procedure is

able to circumvent the shortcomings of the recovery procedures developed by Dakshina-Moorthy

and Reddy.

A laminate of length to thickness ratio S = 50 is also considered to demonstrate the accuracy of

the proposed procedure in analyzing moderately thick plates. Through-thickness distributions of

interlaminar stresses produced using the proposed method, labelled as Equilibrium, are compared

with Pagano’s exact solution in figure 5 at points of major interest. Excellent agreement and fast

convergence are again achieved.

Through-thickness distributions obtained using ABAQUS 6.8TM are also reported for compari-

son. The adopted elements are respectively, the 8-node linear brick incompatible modes C3D8I,

the 20-node quadratic brick C3D20R, and the linear 8-node C3D8R. Depending on the element

formulation, stresses are recovered at integration points using constructive models derived from

either variational principles or other energy laws [33]. Stresses are extrapolated at nodes succes-

sively using the shape functions. Both the linear C3D8R and C3D8I elements do not provide

single valued results at the interfaces. A through-the-thickness refinement of the mesh is required.

The quadratic C3D20R element does not produce an accurate estimation of the transverse shear

stress τ ′

yz. The percentage error at the point of maximum value, i.e. z = 0, compared to the exact

solution is 9.46%.

The aforementioned results are obtained adopting one additional mathematical interface in the

middle of every ply. However, these mathematical interfaces are not required to have appropri-

ate interlaminar stress distributions using the present procedure. Figure 6 shows surface plots

of the interlaminar shear stress τ ′

xz at the [0◦/90◦] interface obtained respectively without and

with additional mathematical interfaces. An almost identical response is generated, accuracy and

smoothness are satisfied regardless of the introduction of additional mathematical interfaces, imply-

ing that convergence is only related to the in-plane mesh. The present procedure uses a model with

5400 degrees of freedom and attains converged interlaminar stress results, whereas the ABAQUS’s

model using quadratic elements has 17595 degrees of freedom and still fails to converge.
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3.2. Stress analyses of laminated composite plates with open hole subjected to uniaxial tension

Stress concentration phenomena play an important role in the design of layered structures. A

well known stress concentration problem is the problem of a plate loaded in-plane and containing

a circular open hole. This problem combines strong in-plane stress gradients with free edge effects

and is characterized by the occurrence of strongly three-dimensional singular stress fields at the

free edges in the interface between two layers of composite laminates. As a consequence, stress

calculation at the interlaminar surfaces in the vicinity of the hole edge is a difficult problem.

The accuracy of the present recovery procedure is tested examining a square [45◦/ − 45◦]s plate

with a circular hole as shown in figure 7. This problem has been analysed by Iarve and Pagano [34]

using a method developed for the superposition of a hybrid and displacement approximation. They

use asymptotic analyses to derive the hybrid stress functions and the displacement approximation

is based on the polynomial B-spline functions. The laminate consist of the planar dimensions

a = 508mm, diameter of the hole D = 50.8mm, coordinate of the hole center xc = yc = a/2,

ply thickness h = 2.54mm. Each ply is treated as an homogeneous, elastic and orthotropic

material with the following properties: E11 = 138GPa, E22 = E33 = 14.5GPa, G12 = G13 =

G23 = 5.86GPa, and ν12 = ν13 = ν23 = 0.21. The uniaxial loading u0/a = 0.001 is applied via

displacement boundary conditions at the lateral sides (x = 0, a),

−ux(0, y, z) = ux(a, y, z) = u0 , uy(0, y, z) = uy(a, y, z) = 0. (6)

The averaged applied stress is calculated as:

σ0 =
1

aH

∫ a

0

∫ H

0
σxx(a, y, z) dy dz (7)

where H is the complete laminate thickness.

Owing to the symmetry of loading and lay-up, only half of the total thickness of the laminate is

modelled. The in-plane mesh is shown in figure 8, and different number of elements along the

thickness direction are considered. The designation [ner/rsr − net] indicates: “ner”is the number

of elements extending in a radial direction from the hole edge to the end of the circular region,

9
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r = 80mm, “rsr”is the radial spacing ratio of the elements in the circular region, and “net”is the

number of elements through the half thickness. The number of elements around a quarter of the

hole edge is 18.

Interlaminar stress distributions along the radial r coordinate at θ = 90◦, evaluated in a cylindrical

coordinate system r, θ, z with the origin in the center of the plate, are shown in figure 9. These

distributions are plotted starting from the hole edge up to one laminate thickness r = H + D/2,

at the 45◦/−45◦ interfacial surface, and compared with the stress fields provided by Iarve and

Pagano (not reported) in the singular neighborhood of the ply interface and the hole edge. The

present approach shows excellent agreement with Iarve and Pagano’s distributions for a distance

from the hole edge greater than one ply thickness. Convergence is reached using coarse meshes

(mesh labelled as 24/30− 2 solves a system of 69120 linear equations), however, a mesh-dependent

influence of the stress singularities is encountered within one ply-thickness from the hole edge.

This influence is present in terms of oscillations that seem to be reduced introducing mathematical

interface in the middle of every ply as far as the interlaminar shear stress τθz is concerned, and

using a refined mesh close to the hole edge as far as the interlaminar normal stress σzz is concerned.

These oscillations may be related to the high value of aspect ratio of the solid-shell element used

for meshing this region, and probably generating some inaccuracy in presence of high gradients.

To understand how this mesh-dependent behaviour of the stress singularities effects the reliability

of the present procedure close to the hole edge, a symmetric cross ply [90◦/0◦]s laminate similar to

the previous one and subjected to an uniaxial tensile load σ0 was also considered. This laminate

has been analysed by Hu et al. [35] using a three-dimensional finite-element (FE) analysis based

on displacement formulation employing a curved isoparametric 20-node element. The total length

of the panel is 60 mm, the total width 30 mm, the hole radius R is 2.5 mm, and the ply thickness

h is equal to 0.125 mm. Material properties are the same used for the [45◦/ − 45◦]s previously

analysed.

Owing to the symmetry of loading, hole location and lay-up, only one-eight of the laminate is

modelled. The in-plane mesh structure is the same used previously, with the addition of a coarse

parte extended in the x direction since the laminate is not anymore square. Henceforward, if not
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differently stated, the mesh adopted solves a system of 43200 linear equations. In their work, Hu et

al. adopt a FE model consisting of 4000 elements and solving a system of 56000 linear equations.

They provide stress distributions along radial lines away from the hole and around the hole at the

90◦/0◦ interface, obtained by averaging the 90◦ and 0◦ ply values at the interface, a customary

finite element practice. These distributions are obtained near but not at the hole edge because of

the mathematical interlaminar stress singularity.

As far as the present procedure is concerned, the radial σzz distributions away from the hole at

three angular positions θ = 0◦, 45◦, 90◦ are presented in figure 10(a). The σzz distributions have

step gradients near the hole edge and approach to zero within a ply thickness from the hole. Due

to the more refined mesh adopted compared to the one used in the [45◦/ − 45◦]s laminate, os-

cillations close to the hole edge are not anymore present, but smooth behaviours are generated.

These distributions are in excellent agreement with the results (not reported) of Hu et al. [35].

Figure 10(b) shows the interlaminar normal stress distributions at the 90◦/0◦ ply interface around

the hole. As a mathematical interlaminar stress singularity exists at the free edge between the

90◦ and 0◦ plies, the computed stresses are presented near but not at the hole boundary. As the

distance from the edge (r − R) increases, the interlaminar stress σzz is rapidly decreased. When

(r −R) = 0.1R, i.e. two-ply thickness away from the hole boundary, σzz becomes almost zero. σzz

is compressive for most of the region around the hole with a small tensile region near θ = 90◦. The

largest compressive σzz occurs at about 60◦ from the loading axis. The distribution obtained by

Hu et al. at (r −R)/R = 0.0001 is also plotted for comparison. The maximum difference between

the two distributions is within 3% at θ = 60◦.

The radial variation of τθz at θ = 10◦, 45◦, 75◦ is shown in figure 11(a). The decay ratio to zero

varies with θ; the maximum decay ratio is at θ = 75◦ and, as pointed out in the plot, oscillations are

still present really close to the hole edge for all the distributions. Nevertheless, these distributions

are in very good agreement with the ones obtained by Hu et al. The circumferential interlaminar

shear stress distributions τθz at various distances, (r − R)/R, from the hole boundary are shown

in figure 11(b). Similar to the normal stress, σzz, the interlaminar shear stress τθz decreases as

the distance (r-R) from the hole boundary increases and becomes small within two-ply thickness
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(0.25mm) from the hole. The maximum value is obtained at approximately θ = 75◦ from the load-

ing axes and is 1.75σ0 which is about seven times as large as the largest σzz value computed for

the same distance r/R = 0.000082 from the hole. This comparison indicates that, in this case, the

interlaminar shear stress τθz is mainly responsible for the onset of delamination in the laminate.

The distribution obtained by Hu et al. at (r − R)/R = 0.0001 is also plotted for comparison.

The maximum difference between the two distributions is within 4% at θ = 75◦. The shear stress

component τrz is very small compared to τθz and can be neglected.

The minimum distance r/R = 0.000082 from the hole to report the circumferential interlaminar

stress distributions was selected based on two considerations. Firstly, there is a limit in the re-

finement of the mesh close to the hole edge since the aspect ratio of the solid element used can be

increased until a certain threshold. Secondly, stress oscillations begin after the considered point

and a certain error in the distributions can be introduced. To verify if these oscillations effect the

prediction of delamination initiation, a stress failure criteria needs to be selected.

From the literature [36] it can be seen that the approach for predicting failure in such laminates has

been that of averaging the interlaminar stresses over a distance from the hole edge, suggesting that

the exact values of the stresses at the free edge are not too important. As failure stress criterion

was assumed the Tsai-Wu criterion [37] which takes into account the interaction of all six stress

components in a quadratic equation. Since it is assumed that the delamination initiation is mainly

attributed to interlaminar stress effects, only the interlaminar stresses are considered. Moreover,

since the interlaminar shear stress τrz can be neglected compared to τθz, the Tsai-Wu criterion in

a cylindrical coordinate system can be simplified as,

(σzz

Z

)2
+

(τθz

S

)2
= e2







e < 1 no failure

e > 1 failure
(8)

where Z is the interlaminar normal strength and S is the interlaminar shear strength. For positive

interlaminar normal stress σz the uniaxial tensile strength Zt should be used while for negative σz

the compressive strength Zc should be employed.

The average stress failure criteria assumes that delamination initiates when the stresses at a char-
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acteristic distance a0 from the discontinuity meet the failure criteria (8). The average of a stress

component is defined as,

σij =
1

a0

∫ R+a0

R

σij dr (9)

The following strength properties, Zt = 50.6MPa, Zc = 200MPa and S = 103MPa, were used for

the carbon fiber-epoxy laminates. Figure 12 shows the distributions of the e-index around the hole

obtained assuming different values of a0. The maximum value of e varies with a0 and occurs in

the region θ = 67.5◦ − 75◦ to the loading direction, indicating that these are the critical locations

for delamination growth. e-indexes distributions obtained by Hu et al. are also reported for com-

parison. Slightly different values of the failure index e are obtained assuming a0 = 0.0005 between

70◦ and 80◦, but the percentage difference is always within 3%. Consequently, the oscillations of

the interlaminar shear stress τθz close to the hole edge do not seems to influence the failure index

distribution. The introduction of mathematical interfaces in the middle of every layer produces

negligible variations on the results, indicating that convergence is already reached.

It is worth mentioning that the characteristic distance a0 is experimentally determined and can

vary with lay-up and hole size. Average stress failure criteria are appropriate for predicting onset

of delamination but they are not suitable for failure analysis of composites, properly analysed using

fracture mechanics based methods instead [38, 39].

4. Conclusion

An efficient interlaminar stress recovery procedure for three-dimensional finite elements formu-

lations is presented. This procedure, based on equilibrium considerations, retrieves interlaminar

stress values directly at the interfacial nodes between the plies and stress continuity at the inter-

element boundary is automatically satisfied. As a consequence, smooth distributions are easily

generated. Plates of various geometries were considered and the results were compared with avail-

able exact and Finite Element solutions. These comparisons indicated that excellent agreement

was obtained with exact solutions and convergence was reached using considerably less degrees

of freedom compared to other finite elements procedures. Consequently, the procedure is more

suitable for design purposes. Special emphasis is placed on the problem of loaded plate with an
13
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open circular hole. The present procedure is able to produce converged mesh-independent average

interlaminar stresses even though some oscillations are encountered close to the hole edge. As such

it can be effectively combined with average failure stress criteria for the prediction of delamination

initiation in presence of curved free edges and stress concentrations. The present procedure is

currently being implemented in the commercial Finite Element software ABAQUS 6.8TM.
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Table 1: Recovered stress fields considering different values of length to thickness ratio S.

S τ ′

xz(−
a
2
, 0, 0) τ ′

yz(0,− a
2
, 0) σ′

zz(0, 0, H/6)

20 EXACT 0.3846 0.0938 0.7398
EQUILIBRIUM 0.3845 0.0938 0.7429

50 EXACT 0.3934 0.0842 0.7406
EQUILIBRIUM 0.3928 0.0841 0.7436

100 EXACT 0.3946 0.0828 0.7407
EQUILIBRIUM 0.3926 0.0823 0.7434

Wf
W

Connecting

forces lf

Figure 1: Connecting forces λf at the interfacial nodes of each element obtained by the FETI method
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Figure 2: Convergence of the recovered interlaminar transverse stresses at the [0◦/90◦] interface and y = 0 of a
[0◦/90◦/0◦] laminate, S = 100.
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Figure 3: Surface plot of the recovered interlaminar stresses at the [0◦/90◦] interface of a [0◦/90◦/0◦] laminate,
S = 100.

Figure 4: Shear stress distribution τ ′

xz at the interlaminar surface [0◦/90◦] and y = 0 of a [0◦/90◦/0◦] laminate
obtained by Reddy and Dakshina-Moorthy [31] considering different approaches, S = 100.

18



ACCEPTED MANUSCRIPT 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

τ’
xz

 (−a/2,0,z/H)

z/
H

EXACT
ABAQUS / C3D8I
ABAQUS / C3D20R
ABAQUS / C3D8R
EQUILIBRIUM

0 0.02 0.04 0.06 0.08 0.1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

τ’
yz

 ( 0,−a/2,z/H)

z/
H

EXACT
ABAQUS / C3D8I
ABAQUS / C3D20R
ABAQUS / C3D8R
EQUILIBRIUM

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

σ’
zz

 (0,0,z/H)

z/
H

EXACT
ABAQUS / C3D8I
ABAQUS / C3D20R
ABAQUS / C3D8R
EQUILIBRIUM

Figure 5: Comparisons between through-thickness distributions of the transverse stresses obtained using the present
equilibrium based procedure, using different ABAQUS’s elements, and Pagano’s exact solution, S = 50.
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xz obtained without additional mathematical
interfaces.
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Figure 6: Surface plot of the recovered interlaminar shear stress τ ′

xz at the [0◦/90◦] interface of a [0◦/90◦/0◦] laminate,
S = 50.
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Figure 7: Laminate plate with hole.
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Figure 8: Example of the adopted mesh
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Figure 9: Interlaminar transverse stress distributions at the 45◦/−45◦ interface of a [45◦/−45◦]s symmetric laminate,
θ = 90◦, from the hole edge up to one laminate thickness with different meshes.
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Figure 10: Normalized interlaminar normal stress distributions σzz/σ0 at the 90◦/0◦ interface of a [90◦/0◦]s sym-
metric laminate.
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Figure 11: Normalized interlaminar shear stress distributions τθz/σ0 at the 90◦/0◦ interface of a [90◦/0◦]s symmetric
laminate.
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Figure 12: e-index distributions at the 90◦/0◦ interface of a [90◦/0◦]s symmetric laminate near the hole edge
determined by the average stress criterion.
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