
HAL Id: hal-00612682
https://hal.science/hal-00612682v1

Submitted on 29 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model checking applied to mobile agent system
Cyril Dumont, Fabrice Mourlin

To cite this version:
Cyril Dumont, Fabrice Mourlin. Model checking applied to mobile agent system. Sophia-Antipolis
Formal Analysis Workshop, Oct 2010, Sophia-Antipolis, France. 2p. �hal-00612682�

https://hal.science/hal-00612682v1
https://hal.archives-ouvertes.fr


Model checking applied to mobile agent system
Cyril Dumont, Fabrice Mourlin

LACL, Paris East University, 94100 Creteil, France
dumont cyril@yahoo.fr, fabrice.mourlin@wanadoo.fr

Abstract—The subject of this contribution is about use of
formal specification in order to prove business properties of a
mobile agent system. First, we can be described this kind of
system by the use of process algebra, in particular theπ-calculus
language. Then, from such formal specification, we can generate
semi automatically automata using an XML transformation.
Finally, we compute acceptance graph to validate a formal
property. This validation is assisted by the use of a tool such
Uppaal from Aalborg university.

Index Terms—mobile agent system, process algebra, temporal
logic, model checking.

I. I NTRODUCTION

Mobile agent systems provide a new approach of software
based on adaptability of the system against its runtime context.
Also, this means mobile agent is a reactive component like
a stimulus recorder device. For example, a mobile agent can
interact with resource to extract data. If the resource is missing,
it can adapt its behaviour and move on other computer to
perform its task.

The relative informality and high level of abstraction of
current practice in describing mobile agent system might
at first glance suggest that mobile agent descriptions have
little substantive value for software engineers. First, over time
engineers have evolved a collection of idioms, patterns, and
styles of agent system organization that serve as a shared,
semantically rich vocabulary between engineers.

Formal models are needed for careful description and rea-
soning about agents, just as for other kinds of distributed
systems. Important issues that arise in modeling agent com-
putation are: agent communication, dynamic creation and
destruction of agents, mobility, and naming. How to choose
a formal approach ? There are multi factors and is based not
only on application domain but also on past experience. And
how can we check the specification from this formal approach
? Two questions we will try to answer in this paper.

II. FORMAL SPECIFICATION

Process algebra is widely used for studying concurrent
processes (CCS: Milner’s Calculus of Communicating Sys-
tems [1], ACP: Bergstra & Klop’s Algebra of Communicating
Processes [2]). But the expression of mobile agent needs useof
languages which allow higher order term. Actually a agent is
not just a name or a channel but a data structure. More recently,
π-calculus language provides such kind of term and mobile
agent are expressed as simple as a function call [3]. Several
semantics are defined for this formal language and tools are
built for creating new specification. Also, this language with

extensions is selected for specifying our mobile agent system
like the the Higher Orderπ-calculus (HOπ). Extensions are
about polyadic communications and higher order term con-
struction. Indeed in the HOπ-calculus not only names, but
also agents of arbitrarily high order, can be transmitted.

This core language is rich enough to describe distributed
protocol such as SLP (Service Location Protocol) [4] or
detection intrusion system such as AAFID [5]. We have now
experience about process algebra and more precisely with
this formal language. Also, we built case studies and our
formal specifications were used to drive project construction.
This means how mobile agent can move from one computer
to another one. This means also the structure of exchanged
messages over the network.

Some programming logics have been proposed to express
properties ofπ-calculus agents. We can cite theµ-calculus
that allows to express a given property is verified by a given
process (inπ-calculus). Computer-assisted proof adapted toπ-
calculus are very few. However theMobility Workbench allows
to define agent and to verify some properties. Unfortunately
some work as [6] show that, despite a important expressive
power,theπ-calculus and in particular its logics adapted have
a lack of suitable model-checkers.

III. T EMPORAL PROPERTIES OF MOBILE AGENT SYSTEM

When mobile agent application is deployed over a network,
it can be useful to check traditional assertions. This wish needs
a specific approach where initial formal specifications are a
basis.

Also we have examined the use of assertions in testing
new and improved programming. The kind of properties can
be about event occurrence such that specific communication
between two agents on a given location. Of course, specifi-
cations define formal type for agents, messages, etc . . . But,
type checking does not cover all features. Temporal logic isa
formalism used to describe how a program state will change
with time.

In addition to type checking, assertions provide a great
way to determine that various properties are maintained in
a mobile agent application. Our interest concerns three cate-
gories of common assertion properties. Traditionally, assertion
properties fall into one of these three categories. First, pre-
conditions assert that a property holds before execution ofa
code block. Then, post-conditions assert that a property hold
after execution of a code block and finally invariants assert
that a property holds before and after the execution of a code
block.



As helpful as assertions of these typical forms can be, they
don’t quite have the range for all the properties we’d like to
be able to hold in a mobile agent system. This is just a short
list of the types of system properties that can be expressed
in a traditional assertion language (properties that we would
like verify in agent behaviour when we modeling a system of
mobile agents)

• To ensure that any location (i.e. a computer) is visited
only once

• To assert that resources are never accessed by unautho-
rized agents

• To assert that each agent is given a chance to run
• To assert that the system will never get itself into dead-

lock (i.e. two or more agents are waiting on each other)
Following are two very useful types of properties that a

specifier likes to make that are simply not possible to express
with conventional assertions:

• Safety assertions state that certain undesirable states
of the agent system will never be reached under any
circumstances.

• Liveness assertions state that certain events are guaran-
teed to occur eventually, for instance, that a given agent
will eventually wake up instead of sleeping forever.

Temporal logic can help make these assertions. This is
a type of modal logic [7] that is used for reasoning about
changing properties with time. Several modal operators are
usually available in temporal logic: always, sometime, until,
next.

Here’s an example assertion for two agents that asserts they
never deadlock. (Note that the boolean methodisWaiting is
used to check if one agent is waiting a task performed by the
other.)

always {agent1.isWaiting(agent2)}
implies {! agent2.isWaiting(agent1)}

The translation of this formulae is : in all cases during the
execution of the mobile agent system , ifagent1 is waiting a
task performed byagent2 thenagent2 can’t be waiting a task
performed byagent1.

IV. FROM π-CALCULUS SPECIFICATION TO TEMPORAL

LOGIC

To prove that the previous formulae is verified, it is essential
to transform our type definitions (written inπ-calculus )into
automata definition. Also, we defined operators to build timed
automata from an agent definition with a structure close to
term definition. Because concrete specifications are quite large,
these operators are developed as data transformers.

In our case of mobile agent system, our ability to statically
check such assertions is paltry, but quality tools exist for
checking that these assertions hold during particular runsof
the program. We can use UPPAAL [8], where the two inputs
to the model checking problem are the system model and the
properties that such a system must satisfy.

We can cite the work done by the creators of theHD
Automata Laboratory (HAL) described in [9]. The goal of

the HAL is to verify properties of mobile systems specified
on π-calculus. They pass by an intermediate step,History
Dependent automata (HD-automata), to generate ordinary
automata fromπ-calculus agents.

In our case, we will use the power of XML formalism. A
choice of more evident that UPPAAL uses this formalism.So
we use a XSL transformation (XSLT for eXtensible Stylesheet
Transformation) that is an XML operation which transforms
an input XML graph into another one. The input XML graph is
one of agent definitions. The output XML graph is a skeleton
of timed automata. The translation is not complete because
of clock definitions and token type. These clocks should not
be confused with hardware clocks (local to computer). Clocks
should rather be considered as stop watches or chronometers.
Time is continuous and all clocks advance at the same rate,
though it is possible to test the value of a clock or reset it.

V. CONCLUSION AND FUTURE WORK

Our formal approach has allowed us to model our earlier
work on an architecture based on mobile agent for numerical
solving [10].From a code written in the Java language, we
got to specify agents in HOπ-calculus. Translated into a
XML graph, these agents have been transformed into automata
(with XSLT). This modeling allowed us to verify if such
a computation, deployed on our platform, will always end
whatever number of agents available for this calculation (using
UPPAAL software).

Next step of our work is to manage code generation with
the use of formal specification. We first computed a set of
automata from pi calculus representations by using congruent
operator. We want now to define new operator to get a skeleton
of mobile code. Finally, this next step should keep initial
assertions into programming definition.

REFERENCES

[1] R. Milner, Communication and Concurrency. Prentice Hall, 1989.
[2] J. Bergstra and M. Loots, “Program algebra for componentcode,”

Formal aspects of computing, vol. 12, pp. 1–17, 2000.
[3] R. Milner, Communicating and Mobile Systems: the Pi-Calculus. Cam-

bridge University Press, 1999.
[4] J. Kempf, R. S. Pierre, and P. S. Pierre,Service Location Protocol for

Enterprise Networks: Implementing and Deploying a Dynamic Service
Finder. John Wiley & Sons, 1999.

[5] J. S. Balasubramaniyan, J. O. Garcia-Fernandez, D. Isacoff, E. Spaf-
ford, and D. Zamboni, “An architecture for intrusion detection using
autonomous agents,” COAST Laboratory, Purdue University,Tech. Rep.,
1998.

[6] N. Bernard and Y. Dumond, “Spécification en pi-calcul del’étude de
cas relative au contrôle d’accès,” inProceedings of AFADL’07, 2000.

[7] E. A. Emerson and J. Y. Halpern, “sometimes and not never revisited: On
branching versus linear time temporal logic,”Journal of the Association
for Computing Machinery, vol. 33, pp. 151–178, 1986.

[8] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” Int.
Journal on Software Tools for Technology Transfer, vol. 1, pp. 134–
152, 1997.

[9] G. Ferrari, S. Gnesi, U. Montanari, and M.Pistore, “A model checking
verification environement for mobile processes,”ACM Transactions on
Software Engineering and Methodology, vol. 12, no. 4, pp. 440–473,
2003.

[10] C. Dumont and F. Mourlin, “Space based architecture fornumerical
solving,” in CIMCA 2008: Proceedings of the International Conference
on Computational Intelligence for Modelling Control and Automation.
Vienna, Austria: IEEE Computer Society, December 2008, pp.309–314.


