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ABSTRACTOUr aim is to propose an improved regularization method fatadcompletion prob-

lems. This method is presented on the Cauchy problem forapkate equation in 2D situa-
tions. This method is an iterative one, uses a regularizatiith fading effect and penalization
terms which take into account the fact that, under some asijylassumptions, the partial
derivatives of a harmonic function is also harmonic. Manyneuical simulations using the
finite element method highlight the efficiency, accura@bibty when data are noisy and the
ability of the method to take into account and deblur noistada

RESUME.Cet article propose une amélioration d’'une méthode de ®@igation pour les prob-
lemes de complétion des données. Cette méthode est pedsentémension deux, sur le prob-
leme de Cauchy associé a I'équation de Laplace. Elle repasarsprocessus itératif et utilise
une régularisation a effet évanescent et des termes deipétiah qui prennent en compte le
fait que les dérivées partielles d’'une fonction harmonigoat aussi harmoniques. Des simu-
lations numériques, utilisant la méthode des éléments fim$tent en évidence I'efficacité, la
précision et la stabilité de la méthode, ainsi que sa cagagitiébruiter les données.

KEYWORDSCauchy problems, Inverse problems, Data completion, lapkuation, Regular-
ization.

MOTS-CLES :Problemes de Cauchy, problémes inverses, complétion deédenéquation de
Laplace, Régularisation.
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1. Introduction

Inverse problems arise in many engineering fields, suchnatheirmal sciences,
electrostatics, solid mechanics and find applications im-aestructive testing or in
medical investigations. Kubo (1988) has defined inversélpros in opposition to
direct problems. Direct problems are problems for whichgbemetry of the domain,
the equilibrium equations, the constitutive equations,ibundary conditions on the
whole boundary of the domain and the initial conditions dtegizen. For Kubo,
inverse problems can be characterized by the lack of at teesbf these elements
of information. According to this definition, many physiqaioblems, for example,
the identification of material parameters, the identifmatof unknown boundaries
(such as corrosion zones, cavities or cracks), the ideatiific of inclusions, the iden-
tification of initial boundary conditions, the identificati of inaccessible boundary
conditions can be considered as inverse problems. In a matieal sense, direct
problems can be considered as well-posed problems. Irrlggszs, these problems
have a unique solution which is stable (continuously depehdn the data). Con-
versely, inverse problems are generally ill-posed proklémthe Hadamard sense
(Hadamard, 1923), since the existence or uniqueness oiotiteiaous dependence
on the data of their solutions may not be ensured.

The purpose of this paper is to examine an inverse boundéug paoblem asso-
ciated with the Laplace equation. It consists in recovenimgging data (for instance,
both temperature and heat flux are unknown) on some part dfdbedary of a do-
main from overspecified data (both temperature and heat fugigen) on the other
part. In this case, the equilibrium equation, the constiéuequation, the domain and
its boundary are known. This problem is namely known as a Bapmblem and is a
data completion problem. In order to solve the Cauchy prolite the Laplace equa-
tion, many regularization methods have been introduced(i&nxet al., 2006; Bour-
geois, 2005; Cheet al,, 2009; Cimetieret al, 2000; Cimetieret al,, 2001; Cimetiére
et al, 2005; Delvareet al,, 2002; Delvareet al, 2008; Englet al, 1996; Hayashi
et al, 2002; Jourhmanet al,, 2004; Klibanov, 1991; Kozloet al., 1991; Lattéset
al., 1967; Lesniet al,, 1997; Marin, 2005; Marin, 2009b; Marin, 2009a; Marin, 2p11
These methods can be classified as Tikhonov type methods €ak 2009; Hayashi
et al, 2002; Marin, 2005; Tikhonoet al, 1977), quasi-reversibility type methods
(Bourgeois, 2005; Klibanov, 1991; Lattésal., 1967), iterative methods (Andrieex
al., 2006; Cimetieret al,, 2000; Cimetiéret al., 2001; Cimetieret al,, 2005; Delvare
et al, 2002; Delvareet al,, 2008; Englet al., 1996; Jourhmanet al., 2004; Kozlovet
al., 1991; Lesnicet al, 1997; Marin, 2009b; Marin, 2009a; Marin, 2011; Haal.,
2000)... Quasi reversibility methods and Tikhonov regm&tion methods present the
advantage of leading to well posed problems after modiftfiegequilibrium equation.
Some iterative methods are based on the use of a sequenck-pbsed problems and
others on the minimization of an energy-like functional. M&rical algorithms are
implemented using different numerical methods, such aditiite element method
(FEM) (Andrieuxet al, 2006; Bourgeois, 2005; Cimetieet al., 2000; Cimetiérest
al., 2001; Cimetierest al,, 2005; Cimetieret al,, 2002), the boundary element method



A robust data completion method 3

(BEM) (Delvareet al., 2002; Delvareet al,, 2008; Jourhmanet al., 2004; Kozlovet
al., 1991; Lesnicet al, 1997; Cimetiéreet al, 2002), the finite difference method
(Klibanov, 1991) or meshless methods in conjunction witkh®nov regularization
techniques (Chemwt al, 2009; Marin, 2005; Marin, 2009b; Marin, 2009a; Marin,
2011) or in conjunction with a singular value decomposi(iGhenet al., 2009).

A somewhat different resolution approach was first intreduim (Cimetiéreet
al., 2000) to solve the Cauchy problem for the Laplace equatidhis approach,
also used in (Cimetiéret al, 2001; Delvareet al,, 2002), reduces the resolution of
the Cauchy problem to the resolution of a sequence of omitioiz problems under
equality constraints. The functional is composed of twoterAt each step of the res-
olution, the first term gives the gap between the optimal elerand the overspecified
boundary data (relaxation term), the second one the gapebkettthe optimal element
and the previous optimal element (regularization term} &tuality constraints char-
acterize the equilibrium. So, at each step an optimal elé¢sabtained which is an
exact solution to the equilibrium equation and is nearehédverspecified data than
the previous optimal element calculated. In the case of etilmlp data, it was also
proved that the sequence converges to the solution of thehgauroblem. The addi-
tional regularization term tends to zero as iterationsioomet It is the reason why this
method is called the evanescent regularization methods ifkierse technique was
extended to the Cauchy problem in linear elasticity (Dehedral., 2010).

In order to improve the reconstruction of the normal deiwegta first-order
method was introduced (Delvagt al., 2008). This method connects the determi-
nation of the solution of the Cauchy problem with the deteation of two auxiliary
functions, which are the partial derivatives of the solntwehen the data are compat-
ible. The first-order problem needs additional boundarydit@mns which have to be
derived from the given boundary conditions of the Cauchypf@m. The evaluation of
these additional boundary conditions requires the boynclamditions to be tangen-
tially differentiated. These tangential derivatives hatvee numerically evaluated.

The purpose of this paper is to propose a resolution methuitiéoCauchy prob-
lem designed to reconstruct, in a very precise way, regaenbnic functions when
the boundary is non-regular. This method is based on the pamaple as the first-
order method but requiring no numerical evaluations of taltl data.This method
relies on a system of two weak integral formulations whichreect the two partial
derivatives of a harmonic function and not their normal ¢gives. Section 2 is de-
voted to the formulation of the Cauchy problem for the Laplaquation. In Section
3 the system of weak formulations which connects the padgaivatives of a har-
monic function is introduced. Section 4 describes the swenethod and Section 5
describes its numerical implementation using the finitenelet method. In Section 6
several numerical simulations are presented.



2. The Cauchy problem for the L aplace equation

Let us consider an open s@tin IR?, assuming that its boundafyis divided in
two partsl'y andl",,, wherel';UT',, = I" andl';NT",, = (. The subscript denotes the
data and the subscriptdenotes the unknowns. With no source term, the equilibrium
equation is given by:

0%u  0%u

Ay =20 0
“ ox3 = 0z}

=0 x € [1]

At a pointz € T, n(x) denotes the outward unit normal vector and the normal
derivativeu’ is defined by:
,  Ou  Ou ou

= — = — + -
b on axlnl 8$2n2

It is assumed that both the functienand the normal derivative’ are given or
known on the part of boundary, but no condition is prescribed on the remaining
partl’,:

’U,(IL') = ¢q zely
u’(x) =1y rzely [2]

whereg, andy, are prescribed functions.

The equilibrium equation [1] and the boundary conditiorjd¢2ad to the formula-
tion of the Cauchy problem for the Laplace equation:

Au=0 x e
U= ¢q rely [3]
’U,/:’l/)d rely

This problem is difficult to solve, since it is ill-posed. Whi admits a solution,
its solution is unique, but it is known to be very sensitive@tdmard, 1923; Engt

al., 1996; Tikhonowet al,, 1977) to small perturbations on boundary conditions [2].
Thereafter, the Cauchy problem [3] is regarded as a problgnout dimension.

3. System of weak formulations connecting the partial derivatives and
reformulation of the Cauchy problem
3.1. Weak formulation of the Cauchy problem

Let » be a harmonic function. We have the following weak formuwlati

< r(u,u),v >E/gradugmdvd9 — /u'vds:O Yo e HY(Q) [4]
Q r
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We can deduce the following weak formulation of the Cauclopfam [3]:

U= g el (5]

<r(u,u),v>=0 Yve HY(Q)
’U,/:’l/)d rzely

3.2. Two weak equations connecting the partial derivatives of a harmonic function

Under the regularity assumptianc C2( Q) N C3(2), we obtain

Vi=1,2 Ou is harmonic or{) [6]
i
ie.
ou 0 (Au)
A = = Q 7

Next, usingAu = 0 on the boundary', we obtain

0 ( Ju 0 ( Ou

0 ( Ou 0 ( Ou
. . ou
The weak formulation [4] can be written f%;:
T

ou Ou ou
gu o gu = g Q
< Ry (8:1:1’8:172)’U> /Qgrad(azl)gradvd

and

[10]
0 ( Ou B 1
ou
d for—:
an Orax2
ou Ou ou
_— = — Q
< Ry (3!1717 8:172) LU > /Qgrad (8:172) gradv d
[11]

/%(%%@0 Vo e H'(Q)
T 1



3.3. Reformulation of the Cauchy problem

The following problem [12] is introduced:

< r(u,uing +ugng),v >=0 Yo € HY(Q) (a)
(

U= Pq on Ty b)
uny + UgNg = Py on Ty (¢) [12]
< Ri(ug,uz),v >=0 Vo e HY(Q) (d)
< Ra(ug,uz),v >=0 Yo e HY(Q) (e)

It can be proved that for compatible data,andu, are respectively the partial deriva-
tives ofu andw is the solution of the Cauchy problem [3].

4. An iterative Tikhonov type algorithm with penalization

Let us introduce the spadé((2) of solutions of the weak formulation [12a]:

H(Q) = {(Uaul,UQ) / < T(U,Uﬂh +UQ712),1) >=0 Yove¢€ Hl(Q)}

Next, let us denotél (T") the space composed of the restrictiondoof elements
(u, u1,ug) in H(Q).

Asin (Cimetiérest al, 2001), the reliable information (equilibrium equatio2l)
and the uncertain informations (boundary conditions [T E2c]) are distinguished.
An iterative Tikhonov type algorithm is introduced where grquations [12d and 12¢]
are taken into account through penalization terms.

Let consider > 0 andU°% = 0

Find Uk+! = (ub*1 o#! 45T1) € H(I) such that
JEUR) < JK(W) YW € H(T) with:
JEW) = [|w — ¢all}, + |[(win1 + wang) — ¥ql[}, + cl|lw — u*[}
+ [[Ri (w1, wa)|[f + [[Ra(wi,wa)|[f
[13]

where the norms are defined by:

Ioll, = o s
ol = [ o® as

In the iterative process [13], the equilibrium equation (@] in a weak sense re-
lation [12a] is exactly taken into account since at each #tegearch for the optimal
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element is performed in spadé(I"). The functional is composed of different terms
which play different roles. The termaw — ¢q|[f, and||(win + wana) — ¥allf,
act only onl'; and represent the gap between the optimal element and thepece
ified boundary data. They relax the overspecified data whachpossibly be blurred
by measurement noises (relaxation terms). The t@fm — u*||2 acts on the whole
boundaryl” and not only on the boundaiy, where the boundary conditions are to
be completed. This term is a regularization term and cositteé distance between
the new optimal element and the previous optimal elemenis fEBnm tends to zero
as the iterations continue. The terfB; (wy, w2)||% and||Ra (w1, ws)||% are penal-
ization terms. At each step the optimal element obtained isxact solution of the
equilibrium equation [12a] and is near to the overspecifedd,; andq,.

5. FEM implementation
5.1. Discretization of the relation [12a]- Discrete solutions space

The first issue in this section is to discretize the weak fdathon [12a]. Our main
concern has been to make use of any ordinary finite elemeet cad to work out a
specific one or a specific finite element. As a matter of facghmatations were run
using Cast3M! (CASTEM2000, 1998) and piecewise linear finite elementsicivh
means a piecewise constant approximation for the normatadise. Let us now
discretize the domaift, h being the discretization parameter standing for the elémen
size, leading ton nodes andh elements on the boundary, and nodes inside the
domain. LetV}, be the space of continuous piecewise linear functions \eitpect to
the mesh, and let us defing (I') andW,,(T") as the space of continuous piecewise
linear functions and the space of piecewise constant fomgtn the boundary. Traces
of functions belonging td%,(£2) span the spacs, (I"), whereas the associated normal
derivatives belong to the spat®, (I") of piecewise constant functions. Definibg
U, Uy andU’ as then vectors standing respectively for thenodal values ofi, u1,
ug and then discrete values of’ on the boundary, anti * the m-vector of internal
nodal values ofi, the discrete equilibrium equations read as:

Ay AT v\ (0
(o) = () 4
A;; isthe stiffness matrix corresponding to the Dirichlet gembband thus is invertible.

Expressing the internal unknowt’s in terms of the boundary oné5 i.e performing
a condensation, Equation [14] reduces to:

(Aee — A AV ATHU + BU' = 0 [15]
1. The Finite Element code Cast3M is developed by the DepaitwfeMechanics and Tech-

nology (DMT) of the French Atomic Energy Agency (CEA - DEN/8/SEMT), http://www-
cast3m.cea.fr



The matrix form of [15] reads:

[ A B}(g,):o [16]

U’ can be expressed as a functiongfandUs;, and of N;, the discrete components
of the normal vecton, and leads to the following system of linear equations:

AU + B1U1 + BaUs =0 [17]

where the matriced, B; andB; only depend on the domain mesh. The linear system
[17] of n equations for3n unknowns defines the discrete formulation of the space
H(T") and leads to the definition of the following discrete solns§space:

(18]

En(U,Uy,Us) = AU + B1U, + ByUs =0

U,Up,Us) € R® x IR™ x IR™ such that
Hh(F){( 1, h) ) ) }

whereL), denotes a linear operator mappiRg x IR™ x IR"™ ontoIR".

5.2. Discretization of therelations[12d] and [12€]

Next, we need to discretize the relations Ry (u1,us),v >=0 and
< Rs (u1,us2),v >= 0 using the finite element method. Considering the same finite
element discretization as in the previous section, theesysifn linear equations with
2n unknowns [19] (respectively the system [20]) represergsdiscrete formulation
of Equation [10] ((respectively of Equation [11]):

AU, +CU2 =0 [19]
AUy — CUy = 0 [20]

Foru = 21 + x2, we obtainl/; = (1, ..., 1) andU; = (1, ..., 1). These two vectors
satisfy the system dfn equations witi2n unknowns composed of the linear system
[19] and of the linear system [20]. So the lines of the lingetams [19-20] are not
independent. This explains why the relations [12c¢] and [1#d systems [19] and
[20] in the discrete form of the algorithm) are taken into@aat in the functional to
be minimized and not as equality constraints.

5.3. Discretization of the (k + 1)*" iteration

Given now that > 0 and(U°, U?, U?) = (0,0,0) € Hy(T), iteration(k + 1) of
the discretized iterative algorithm reads as follows:

Find Ukt = (Uk+1 Ukt UF 1) € R3Nsuch that
JE(WkHY) < JR(W) YO € R3V

under the equality constraints

AU + B1Uy + ByUs; =0

(21]
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Problem [21] is a minimization problem iR3" under then equality constraints
expressed by [17]. Its solution is given by:

Find (U*1, UFH UFT AFL) € RY™ such that
ch{c (Uk+17 Uf“, U2k+1) + ()\k+1)T VE), (Uzﬁq7 U{H—l’ U2k+1) —0 [22]
By (UM, U USTY) =

where \**1 is an—vector of Lagrange multipliers introduced to take the eityal
constraints [16] into account.

Each iteration in the iterative algorithm must solve a systé4n linear equations
with 4n unknowns. The matrix of this linear system is independenhefiterations
and needs to be computed only once. For this reason, a digecttam (the Crout
factorization) has been preferred to iterative methodse fHttorization, which is
obtained at the first step, is also used at each following step

The corresponding system for the first-order method (Deletal., 2008) involves
a system ofin + 1 equations fodn + 1 unknowns and moreover needs to numerically
differentiatep, twice andyy once.

6. Numerical ssimulations

The purpose of this section is to present the numerical tesbltained with the
method introduced. The procedure used during the humesiicallations is as fol-
lows:

(i) The meshing of the boundary is made usgEg2 elements. Th8EG2 element
is a finite element with two nodes which leads to a linear puéation of the functions
w, w1 andus.

(ii) The user specifies the meshing of the boundary spegjfttie number and the
distribution of the finite elements on each part of the boupnda

(iii) Then, the mesh of the entire domain is generated autically by a routine
included in theCast3m software (CASTEMZ2000, 1998). This mesh is constituted of
4-node quadrilaterals and 3-node triangles.

(iv) The computation and the assembly of the stiffness matarresponding to
the domain is performed thanks to the standard routine€aaft3m software
(CASTEM2000, 1998).

(v) This software creates a superelement based on the bguaigid computes the
corresponding stiffness matrix. This leads to the condiestness matrix A.

(vi) The stiffness matrix A is then used by the specific codat implements the
inverse method introduced.

Note that the inverse method only involves values on the Bann Therefore, only
for the different numerical tests will the discretizatiditloe boundaryl” be specified.
Moreover, note that all numerical computations were penfx on a machine with a
2.20GHz InteP Core™™ 2 Duo processor T7500.
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Different cases are considered for which an analyticalt&mu,*" is known. The
following control quantities are used to assess the acgwfhe method:

(i) the L?(T") gap between an optimal elemenéand the analytical solution®™ on

or = [ (w=u)? ds = ffu =}

(ii) the L%(T") gap between the normal derivativéof an optimal element and the
normal derivative of the analytical solution dn

2 2
! / lan _ / lan
o = [ (0 =) ds = ol =]

r

(iii) the L?(T";) gap between an optimal elemenand the data, onT'y:
2 2
g = [ (=00 ds = lu—oul?,
Ta
(iv) the L%(T";) gap between the normal derivativeand the data); onT':
= [ = va) ds = = vl
Ty

(v) the L?(T") relative error (ir%) made onu:

Uerror = 5
/ (u‘m) ds
I

(vi) the L?(T") relative error (in%) made ony’:

/ /F (u/ - u/‘m)2 ds
error / (u/an)2 ds

T

u

6.1. Examplel

Numerical simulations are performed on a square donfaia]0, 1[x]0, 1]) (Fig-
ure 1). The boundary palt; is composed of the two sidesy{= 0 andz; = 1). The
boundary part’,, is composed of the two sides,(= 0 andxzs = 1). Each side of
the square domain is discretized usiNdinite elementSEG2. All the finite elements
have the same length and the nodes are uniformly distribditeid discretization used
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(0,1) Ly (1,1)
Fu Q Fd
(0,0) Ty (1,0)

Figure 1. Square domai

to find the function, and its normal derivative’ onT',,, from the knowledge of func-
tion » and its normal derivative’ on I'y. The datag; and, are built using the
analytical solution:

u®(x1,xe) = cos(x1) cosh(xa) + sin(zq) sinh(zq) [23]

6.1.1. Comparison with other methods

2 \
"’“'“
18 1 B,
analytic solution * b
1.6 [Cimetiereetal, 2001) J .
’ (Delvareet al,, 2008) J
14 new method o+ /[ X
; K
1.2 #
1 LT ¥ *00ne
% .
0.8 F
l' .
06 o
0.4

0 0.5 1 15 2 25 3 3.5 4
Arc length

Figure 2. u reconstructions (comparison of different methods)
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25
2 i,
analytic solution \
1.5 I (cimetiereet al, 2001) .
(Delvareet al, 2008) L}
1t new method
0.5
O % o®
-05 -. ..' 000000 g
! i
15 ‘

0 0.5 1 15 2 25 3 3.5 4
Arc length

Figure3. v/ reconstructions (comparison of different methods)

In this section, the reconstructions obtained with this megthod are compared
with those obtained by other methods. This example waseduasing a Tikhonov
like method (Hayashet al., 2002), using a fading regularization method (Cimeteire
al., 2001) and using an iterative method (Lesgi@l, 1997). All these methods gave
similar results. This example was also studied using adirder method (Delvaret
al., 2008). Figures 2 and 3 display all these reconstructioh® rlew method gives
more accurate normal derivative reconstructions than tiners.

6.1.2. Evolution of the control quantities during the iterativeopess

Inthe present case, the datalgpare generated from the analytical solution (Equa-
tion [23]) and are not blurred by measurement noise. The thaxiesl’; andl’, are
both approximated with60 SEG2 finite elements. The value of the parametds
arbitrarily fixed at0.01.

Figure 4 represents the evolution of different control dit@s gr, g1, gr,, andgr.,
versus the number of iteratiohs Figure 5 represents the evolution of the errqrs.,-
andu.,.,.,. versus the number of iteratiofts We notice from thed00'" iteration that
the quantitiegr, g1, gr,, g’Fd, Uerror @Ndul,.,... remain constant. This confirms that
the method converge3he iterative process is stopped when two successive optima
elements are identicalThe residual termgr, andgr. (relaxation terms) decrease

during the iterative process and after convergence thess temain constant.
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It can also be observed that the error in the numerical nodai@ative obtained
(ul,...,) using this method is larger than that corresponding toe¢benstructed func-
tion (uerr0rr). This last remark is also valid for all the following nuneai examples
which will be analysed.

6.1.3. Behaviour with respect toparameter

It is necessary to look at the influence of parametdfor the same discretization
as in the previous example, different values of the parametee tested. Table |
lists the results obtained for each value of parametey specifying the number of
iterations necessary to achieve convergenceythg,, thew.,, . and the CPU time.

The errors on: andw’ are identical for each value of the parameter

Table 1. Influence of: on the number of iterationisto achieve convergence - influence
of c on theu,..., and on theu’

error

c k Uerror N % | ULy r0r IN % | CPU time ins
1. 16832 | 0.04564 0.48925 116.95

0.1 1931 | 0.04564 0.48925 14.87

0.01 | 320 | 0.04564 0.48926 3.83

0.001 | 35 0.04564 0.48925 1.88

0.0001| 11 0.04564 0.48925 1.72

1E-5 7 0.04564 0.48925 1.69
1E-6 | 4 0.04563 0.48922 1.67
1E-7 | 4 0.04565 0.48969 1.67
1E-8 | 4 0.04620 0.49821 1.67

This confirms that the algorithm converges to the same soluthatever the value
of ¢. However the choice of the parametaaffects the numbek of iterations needed
to obtain convergence. From the evolution of the CPU timé w{br with the number
of iterationsk) it can be deduced that the CPU time taken by each iteratidn fo 1 is
roughly6.8510~3 s. This CPU time is lower than the CPU time taken to achieve both
the preliminary computations and the first iteration (rdygh64 s). Subsequently,
the value ofc and the number of iterations required to achieve converyetitbe no
longer specified.

6.1.4. Behaviour with respect to the mesh refinement

It is necessary to see how the reconstructions are influembed the mesh re-
finementincreases (depending on the number of finite eleméinh each side of the
square domain). Figure 6 shows the reconstructions ohthe functionu obtained
with N =5, N = 80 andN = 150. Figure 7 shows the corresponding reconstruc-
tions of the normal derivative. Table Il lists the errets ., anduy,..,. for different

mesh refinements. It can be observed that the error levetdses as the mesh re-
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finement increases. This confirms that the inverse methddleswith respect to the
mesh refinementlt can also be observed that reconstructions using a coagsb m
(VN = 5) are also accurate

Table 2. Influence of mesh refinement on the,.,- and on theu’

error

N | terror N% | 4l iN %

5 0.376 2.843

10 | 0.185 1.443

20 | 0.108 1.086

30 | 0.074 0.746

40 | 0.063 0.676

50 | 0.053 0.584

60 | 0.049 0.543

80 | 0.046 0.489

100 | 0.035 0.398

120 | 0.027 0.355

150 | 0.024 0.299

2
,....“.'.
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Figure 6. u reconstructions using different boundary mesh refinements
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6.1.5. Behaviour with respect to noisy datg

It is necessary to see how the reconstructions are influembed data are noisy.
The noisy displacement datg are generated by:

ba = ¢3" + NP " (24]

where—1 < n < 1is a random valuej is the noise level in % ang’'*” is the
maximal value of the data df;.

The boundary parts,; andI’,, are both approximated usingo0 finite elements.
The value of parameteris arbitrarily fixed a).1.

The first step is to verify that the stopping criterigi ( andgr. | become constant)
remains reliable when the data are noisy. Figure 8 repreiemevolution of the con-
trol quantitygr, versus the number of iteratioksvhen the noise level is respectively
fixed at0%, 1%, 5%, 10%, 20% and50%. Figure 9 represents the evolution of the
control quantitygy. | versus the number of iteratiossvhen the noise level is respec-
tively fixed at0%, 1%, 5%, 10%, 20% and50%. It can be noticed that the quantities
gr, andgr., decrease at the beginning and then remain constant. Theveeprocess
is stopped at this stage.

Figure 10 represents the evolution of the control quantity.,,. versus the number
of iterationsk when the noise level is respectively fixedo&t, 1%, 5%, 10%, 20%
and50%. Figure 11 represents the evolution of the control quantity. . versus
the number of iterations when the noise level is respectively fixed&t, 1%, 5%,
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Table 3. Influence of the noise level on the gaps andgr., and on the errorsic;..o,
andu/

error

6in% | gr, gr, Uerror N % | UL,00r IN %
0 1.22E-7| 2.80E-7| 0.05 0.49
1 2.21E-4| 5.72E-7| 0.27 1.77
2 8.84E-4| 1.35E-6| 0.42 2.23
3 1.99E-3| 2.61E-6| 0.59 2.74
5 5.53E-3| 6.58E-6| 0.96 3.83
10 2.21E-2| 2.50E-5| 1.88 6.69
20 8.83E-2| 9.81E-5| 3.73 12.54
25 0.14 1.52E-4| 4.66 15.47
30 0.20 2.19E-4| 5.59 18.42
40 0.35 3.89E-4| 7.45 24.30
45 0.45 4. 92E-4| 8.38 27.25
50 0.55 6.07E-4| 9.31 30.20
75 1.24 1.36E-3| 13.96 44,94
80 1.79 1.56E-3| 14.89 47.89
100 2.21 2.42E-3| 18.61 59.68

10%, 20% and50%. It can be noticed that the quantities. ., andu.,..,,. have the

same evolutions as the quantitigs andgr.,. This confirms that the chosen stopping
criterion (gr, andgr., become constant) remains reliable when the dats noisy.

Figure 12 represents the reconstructions @i the whole boundary when the
noise level is respectively fixed a% and atl0%. On the same figure, the noisy data
¢q used when the noise level is fixedl@t’ is also specified. It can be noticed that the
reconstructions correspond to the analytical soluti¥hand that the noise in the data
has been deleted by the algorithm. Figure 13 gives the quneking reconstructions
of the normal derivative. The reconstructions obtainedxaseen to be very accurate.

The functional is composed of different terms with differeoles. As in most
inverse methods, there is a regularization term which téad=ro as the iterations
continue. But, in the present method, there is also a retax&trm that allows data
blurred by noise to be taken into account. We therefore sesidwgion which is
close to the data but not a solution that exactly fits the ddtae algorithm then
recomputes, at each step, a solution on the whole boundasyd&al terms are equal
to the relaxation termgr,, andgr. . These terms correspond to the gaggrbetween
the deblurred reconstruction and the noisy data.

Figure 14 gives the evolution of the residual ggpg andgr., obtained after con-
vergence of the iterative process with respect to the neisdd. Figure 15 gives the
evolution of the errorsi.,,., andu’ obtained after convergence of the iterative

error
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Figure 8. Evolution of the gagr, versus the number of iteratiorisfor differentu
noise levels (in %)

process with respect to the noise levelTable 11l lists the values of the residual er-
rOrS Ueyror andu’ and the value of the residual gaps, andg’Fd obtained after

error

convergence for the different noise levels considered.

6.1.6. Behaviour with respect to noisy datg

A similar study has been performed with noisy normal deieatlata. The noisy
datayy, are generated by:

Ya = vg" + 0y (25]

Figure 16 gives the reconstructionswobn the whole boundarly when the noise
level is respectively fixed &% and at10%. Figure 17 represents the corresponding
reconstructions of the normal derivative on the whole beuypt. On the same figure,
the noisy data),; used when the noise level is fixed &% is also specified. It can
be noticed that the reconstructions corresponds to thetaelsolution and that the
noise in the data has been deleted by the algorithm. The s&cations obtained can
be seen to be very accurate.

Figure 18 gives the evolution of the errars.,,- andw.,...,. obtained after con-
vergence of the iterative process with respect to the neisdd. Figure 19 gives the
evolution of the residual gapg, andgr., obtained after convergence of the iterative

process with respect to the noise level
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Figure 9. Evolution of the gagy., versus the number of iteratiorisfor differentu
noise levels (in %)

6.2. Example2

In this example, the function to be reconstructed is given by:
)

(z1 — %)2 + 292

(26]

u(z1,72) =

The domain2 and its boundary' are indicated in Figure 20.

For the first numerical simulations, the boundary parts defined byl'y; =Ty U
I's UT'3 and is discretized usintR0 finite elementsSEG2. The boundary paff,, is
defined byl', = I'y U T'5 and is discretized using60 finite elementsSEG2. Both
the datap, and, are noisy. Figure 21 gives the reconstructions of the foncti
on the boundary pait, when the noise level on the data and, is respectively
fixed at0%, 1% and at10%. Figure 22 gives the corresponding reconstructions of the
normal function derivative on the boundary pRgt. Figure 23 gives the noisy data
¢4 when the noise level is fixed a0% as well as the corresponding reconstruction
of the function on the boundary pdrt,. Figure 24 gives the noisy data; when the
noise level is fixed at0% as well as the corresponding reconstruction of the normal
derivative on the boundary pdry. Itis found in this case that the reconstructions are
accurate on the whole boundary (on both boundary parendl’;) and that the noise
in the data has been deleted by the algorithm.
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For the second numerical simulations, we consider a simathere the numbers

of available data o' for u (N7 values) and for’ (N, values) are different. We
examine the following cases:

case 1:N; = 40 and N, = 120,
case 2:N; = 120 and N, = 40,
case 3:N; = Ny = 120,

- case 4:.N; = N, = 40.

In a sake of simplicity, we assume that these data are unlijatistributed onl"; but

are noisy (the noise level on the dataand, is fixed at10%). Before making the
data completion in case 2 (respectively in case&@)xuxiliary data are generated for

u (respectively foru’) by interpolating the available data in order to have theesam
number of data for: andw’ and to use the same finite element discretization as the
one used in the first simulations. For case 4, the boundaty'pas discretized using a
coarser mesh witHo finite elementSEG2. Figure 25 gives the reconstructions of the
function on the boundary palt, for the four cases investigated. Figure 26 gives the
corresponding reconstructions of the normal functionvdgitie. It can be observed

that the reconstructions in case 1 and in case 4 are sligigk dccurate than that
obtained in case 2 and in case 3.



A robust data completion method 21

100 R
&o o J
c 10 0% -+ —
._& 1% *
2 5% -
<5 10% -~
z 20% . b
1k 50% o
s R—
0.1
1 10 100

Figure 11. Evolution ofu.,..,,. versus the number of iteratiorisfor differentu noise
levels (in %)

In the last numerical simulation, the robustness of therswenethod with respect
to the number of corners dn, is studied. In this case, the boundary darextension
is reduced and is limited tB,. I'y is discretized using0 finite elementSEG2. The
boundary part’,, presents 3 singular points and is definedihy= I's UT'y UT'5 U
I';. 'y is discretized using5 finite elementsSEG2, I'; is discretized using5 finite
element$SEG2 andl", U5 is discretized using60 finite elementSEG2. The datayy
andi, are exact. Figure 27 gives the reconstruction of the funatio the boundary
partl’,. Figure 28 gives the corresponding reconstruction of threnabderivative on
the boundary paft,,.

It is found in all cases that the reconstructions are acewaen the domain has
a non-regular boundary. It may also be noticed that for tltBerent numerical
simulations, the number of data (humber of node§ grwas less than the number of
unknowns sought (number of nodesioy).
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7. Concluding remarks

In this paper, an inverse method has been introduced foingoD Cauchy prob-
lems associated with the Laplace equation. This methodsischan the one hand on
the fading regularization effect introduced by Cimetieréle (Cimetiéreet al,, 2001)
and on the other hand on the same principle as the first-onderse method intro-
duced by Delvare and Cimetiére (Delvatel.,, 2008) but this method does not require
the numerical evaluations of additional data. This metledigs on a system of two
weak integral formulations which connect the two partiafidgives of a harmonic
function and not their normal derivatives. This system isdu® introduce first order
penalization terms in the functional to be minimized. Thenetcal simulations in
2D situations prove the efficiency and the robustness ofahEoachwhen dealing
with regular solutiongind that the method is more accurate than methods introduced
in previous papers (Cimetiéet al,, 2001; Cimetiéret al, 2002; Delvarest al., 2008).

In particular, it givesu’ with increased accuracy when the boundary has corners, it is
stable with respect to strong perturbations on the datasable to deblur the two
boundary date, andy;, when they are noisylhe problem remains open whether the
method can be adapted to reconstruct non-regular solutions
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