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ABSTRACT.Our aim is to propose an improved regularization method for data completion prob-
lems. This method is presented on the Cauchy problem for the Laplace equation in 2D situa-
tions. This method is an iterative one, uses a regularization with fading effect and penalization
terms which take into account the fact that, under some regularity assumptions, the partial
derivatives of a harmonic function is also harmonic. Many numerical simulations using the
finite element method highlight the efficiency, accuracy, stability when data are noisy and the
ability of the method to take into account and deblur noisy data.

RÉSUMÉ.Cet article propose une amélioration d’une méthode de régularisation pour les prob-
lèmes de complétion des données. Cette méthode est présentée, en dimension deux, sur le prob-
lème de Cauchy associé à l’équation de Laplace. Elle repose sur un processus itératif et utilise
une régularisation à effet évanescent et des termes de pénalisation qui prennent en compte le
fait que les dérivées partielles d’une fonction harmoniquesont aussi harmoniques. Des simu-
lations numériques, utilisant la méthode des éléments finis, mettent en évidence l’efficacité, la
précision et la stabilité de la méthode, ainsi que sa capacité à débruiter les données.

KEYWORDS:Cauchy problems, Inverse problems, Data completion, Laplace equation, Regular-
ization.

MOTS-CLÉS :Problèmes de Cauchy, problèmes inverses, complétion de données, équation de
Laplace, Régularisation.
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1. Introduction

Inverse problems arise in many engineering fields, such as, in thermal sciences,
electrostatics, solid mechanics and find applications in non-destructive testing or in
medical investigations. Kubo (1988) has defined inverse problems in opposition to
direct problems. Direct problems are problems for which thegeometry of the domain,
the equilibrium equations, the constitutive equations, the boundary conditions on the
whole boundary of the domain and the initial conditions are all given. For Kubo,
inverse problems can be characterized by the lack of at leastone of these elements
of information. According to this definition, many physicalproblems, for example,
the identification of material parameters, the identification of unknown boundaries
(such as corrosion zones, cavities or cracks), the identification of inclusions, the iden-
tification of initial boundary conditions, the identification of inaccessible boundary
conditions can be considered as inverse problems. In a mathematical sense, direct
problems can be considered as well-posed problems. In linear cases, these problems
have a unique solution which is stable (continuously dependent on the data). Con-
versely, inverse problems are generally ill-posed problems in the Hadamard sense
(Hadamard, 1923), since the existence or uniqueness or the continuous dependence
on the data of their solutions may not be ensured.

The purpose of this paper is to examine an inverse boundary value problem asso-
ciated with the Laplace equation. It consists in recoveringmissing data (for instance,
both temperature and heat flux are unknown) on some part of theboundary of a do-
main from overspecified data (both temperature and heat flux are given) on the other
part. In this case, the equilibrium equation, the constitutive equation, the domain and
its boundary are known. This problem is namely known as a Cauchy problem and is a
data completion problem. In order to solve the Cauchy problem for the Laplace equa-
tion, many regularization methods have been introduced (Andrieuxet al., 2006; Bour-
geois, 2005; Chenet al., 2009; Cimetièreet al., 2000; Cimetièreet al., 2001; Cimetière
et al., 2005; Delvareet al., 2002; Delvareet al., 2008; Englet al., 1996; Hayashi
et al., 2002; Jourhmaneet al., 2004; Klibanov, 1991; Kozlovet al., 1991; Lattèset
al., 1967; Lesnicet al., 1997; Marin, 2005; Marin, 2009b; Marin, 2009a; Marin, 2011).
These methods can be classified as Tikhonov type methods (Chenet al., 2009; Hayashi
et al., 2002; Marin, 2005; Tikhonovet al., 1977), quasi-reversibility type methods
(Bourgeois, 2005; Klibanov, 1991; Lattèset al., 1967), iterative methods (Andrieuxet
al., 2006; Cimetièreet al., 2000; Cimetièreet al., 2001; Cimetièreet al., 2005; Delvare
et al., 2002; Delvareet al., 2008; Englet al., 1996; Jourhmaneet al., 2004; Kozlovet
al., 1991; Lesnicet al., 1997; Marin, 2009b; Marin, 2009a; Marin, 2011; Haoet al.,
2000)... Quasi reversibility methods and Tikhonov regularization methods present the
advantage of leading to well posed problems after modifyingthe equilibrium equation.
Some iterative methods are based on the use of a sequence of well-posed problems and
others on the minimization of an energy-like functional. Numerical algorithms are
implemented using different numerical methods, such as thefinite element method
(FEM) (Andrieuxet al., 2006; Bourgeois, 2005; Cimetièreet al., 2000; Cimetièreet
al., 2001; Cimetièreet al., 2005; Cimetièreet al., 2002), the boundary element method
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(BEM) (Delvareet al., 2002; Delvareet al., 2008; Jourhmaneet al., 2004; Kozlovet
al., 1991; Lesnicet al., 1997; Cimetièreet al., 2002), the finite difference method
(Klibanov, 1991) or meshless methods in conjunction with Tikhonov regularization
techniques (Chenet al., 2009; Marin, 2005; Marin, 2009b; Marin, 2009a; Marin,
2011) or in conjunction with a singular value decomposition(Chenet al., 2009).

A somewhat different resolution approach was first introduced in (Cimetièreet
al., 2000) to solve the Cauchy problem for the Laplace equation.This approach,
also used in (Cimetièreet al., 2001; Delvareet al., 2002), reduces the resolution of
the Cauchy problem to the resolution of a sequence of optimization problems under
equality constraints. The functional is composed of two terms. At each step of the res-
olution, the first term gives the gap between the optimal element and the overspecified
boundary data (relaxation term), the second one the gap between the optimal element
and the previous optimal element (regularization term). The equality constraints char-
acterize the equilibrium. So, at each step an optimal element is obtained which is an
exact solution to the equilibrium equation and is nearer to the overspecified data than
the previous optimal element calculated. In the case of compatible data, it was also
proved that the sequence converges to the solution of the Cauchy problem. The addi-
tional regularization term tends to zero as iterations continue. It is the reason why this
method is called the evanescent regularization method. This inverse technique was
extended to the Cauchy problem in linear elasticity (Delvareet al., 2010).

In order to improve the reconstruction of the normal derivative, a first-order
method was introduced (Delvareet al., 2008). This method connects the determi-
nation of the solution of the Cauchy problem with the determination of two auxiliary
functions, which are the partial derivatives of the solution when the data are compat-
ible. The first-order problem needs additional boundary conditions which have to be
derived from the given boundary conditions of the Cauchy problem. The evaluation of
these additional boundary conditions requires the boundary conditions to be tangen-
tially differentiated. These tangential derivatives haveto be numerically evaluated.

The purpose of this paper is to propose a resolution method for the Cauchy prob-
lem designed to reconstruct, in a very precise way, regular harmonic functions when
the boundary is non-regular. This method is based on the sameprinciple as the first-
order method but requiring no numerical evaluations of additional data.This method
relies on a system of two weak integral formulations which connect the two partial
derivatives of a harmonic function and not their normal derivatives. Section 2 is de-
voted to the formulation of the Cauchy problem for the Laplace equation. In Section
3 the system of weak formulations which connects the partialderivatives of a har-
monic function is introduced. Section 4 describes the inverse method and Section 5
describes its numerical implementation using the finite element method. In Section 6
several numerical simulations are presented.
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2. The Cauchy problem for the Laplace equation

Let us consider an open setΩ in IR2, assuming that its boundaryΓ is divided in
two partsΓd andΓu, whereΓd∪Γu = Γ andΓd∩Γu = ∅. The subscriptd denotes the
data and the subscriptu denotes the unknowns. With no source term, the equilibrium
equation is given by:

∆u =
∂2u

∂x2
1

+
∂2u

∂x2
2

= 0 x ∈ Ω [1]

At a pointx ∈ Γ, n(x) denotes the outward unit normal vector and the normal
derivativeu′ is defined by:

u′ =
∂u

∂n
=

∂u

∂x1

n1 +
∂u

∂x2

n2

It is assumed that both the functionu and the normal derivativeu′ are given or
known on the part of boundaryΓd but no condition is prescribed on the remaining
partΓu:

u(x) = φd x ∈ Γd

u′(x) = ψd x ∈ Γd

[2]

whereφd andψd are prescribed functions.

The equilibrium equation [1] and the boundary conditions [2] lead to the formula-
tion of the Cauchy problem for the Laplace equation:







∆u = 0 x ∈ Ω
u = φd x ∈ Γd

u′ = ψd x ∈ Γd

[3]

This problem is difficult to solve, since it is ill-posed. When it admits a solution,
its solution is unique, but it is known to be very sensitive (Hadamard, 1923; Englet
al., 1996; Tikhonovet al., 1977) to small perturbations on boundary conditions [2].
Thereafter, the Cauchy problem [3] is regarded as a problem without dimension.

3. System of weak formulations connecting the partial derivatives and
reformulation of the Cauchy problem

3.1. Weak formulation of the Cauchy problem

Let u be a harmonic function. We have the following weak formulation:

< r(u, u′), v >≡

∫

Ω

grad u grad v dΩ −

∫

Γ

u′ vds = 0 ∀v ∈ H1(Ω) [4]
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We can deduce the following weak formulation of the Cauchy problem [3]:






< r(u, u′), v >≡ 0 ∀v ∈ H1(Ω)
u = φd x ∈ Γd

u′ = ψd x ∈ Γd

[5]

3.2. Two weak equations connecting the partial derivatives of a harmonic function

Under the regularity assumptionu ∈ C2(Ω) ∩ C3(Ω), we obtain

∀i = 1, 2
∂u

∂xi

is harmonic onΩ [6]

i.e.

∆

(

∂u

∂xi

)

=
∂ (∆u)

∂xi

= 0 ∀x ∈ Ω [7]

Next, using∆u = 0 on the boundaryΓ, we obtain

∂

∂n

(

∂u

∂x2

)

=
∂

∂s

(

∂u

∂x1

)

∀x ∈ Γ [8]

and

∂

∂n

(

∂u

∂x1

)

= −
∂

∂s

(

∂u

∂x2

)

∀x ∈ Γ [9]

The weak formulation [4] can be written for
∂u

∂x1

:

< R1

(

∂u

∂x1

,
∂u

∂x2

)

, v >≡

∫

Ω

grad

(

∂u

∂x1

)

grad v dΩ

+

∫

Γ

∂

∂s

(

∂u

∂x2

)

vds = 0 ∀v ∈ H1(Ω)

[10]

and for
∂u

∂x2

:

< R2

(

∂u

∂x1

,
∂u

∂x2

)

, v >≡

∫

Ω

grad

(

∂u

∂x2

)

grad v dΩ

−

∫

Γ

∂

∂s

(

∂u

∂x1

)

vds = 0 ∀v ∈ H1(Ω)

[11]
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3.3. Reformulation of the Cauchy problem

The following problem [12] is introduced:






















< r(u, u1n1 + u2n2), v >= 0 ∀v ∈ H1(Ω) (a)
u = φd on Γd (b)
u1n1 + u2n2 = ψd on Γd (c)
< R1(u1, u2), v >= 0 ∀v ∈ H1(Ω) (d)
< R2(u1, u2), v >= 0 ∀v ∈ H1(Ω) (e)

[12]

It can be proved that for compatible data,u1 andu2 are respectively the partial deriva-
tives ofu andu is the solution of the Cauchy problem [3].

4. An iterative Tikhonov type algorithm with penalization

Let us introduce the spaceH(Ω) of solutions of the weak formulation [12a]:

H(Ω) =
{

(u, u1, u2) / < r(u, u1n1 + u2n2), v >= 0 ∀v ∈ H1(Ω)
}

Next, let us denoteH(Γ) the space composed of the restrictions onΓ of elements
(u, u1, u2) in H(Ω).

As in (Cimetièreet al., 2001), the reliable information (equilibrium equation [12a])
and the uncertain informations (boundary conditions [12b and 12c]) are distinguished.
An iterative Tikhonov type algorithm is introduced where the equations [12d and 12e]
are taken into account through penalization terms.

Let considerc > 0 andU
0 = 0















FindU
k+1 = (uk+1, uk+1

1 , uk+1
2 ) ∈ H(Γ) such that

Jk(Uk+1) ≤ Jk(W) ∀W ∈ H(Γ) with:
Jk(W) = ||w − φd||2Γd

+ ||(w1n1 + w2n2) − ψd||2Γd
+ c||w − uk||2Γ

+ ||R1(w1, w2)||2Γ + ||R2(w1, w2)||2Γ

[13]

where the norms are defined by:

∥

∥v
∥

∥

2

Γd

=

∫

Γd

v2 ds

∥

∥v
∥

∥

2

Γ
=

∫

Γ

v2 ds

In the iterative process [13], the equilibrium equation [1](or in a weak sense re-
lation [12a] is exactly taken into account since at each stepthe search for the optimal
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element is performed in spaceH(Γ). The functional is composed of different terms
which play different roles. The terms||w − φd||2Γd

and ||(w1n1 + w2n2) − ψd||2Γd

act only onΓd and represent the gap between the optimal element and the overspec-
ified boundary data. They relax the overspecified data which can possibly be blurred
by measurement noises (relaxation terms). The termc||w − uk||2Γ acts on the whole
boundaryΓ and not only on the boundaryΓu where the boundary conditions are to
be completed. This term is a regularization term and controls the distance between
the new optimal element and the previous optimal element. This term tends to zero
as the iterations continue. The terms||R1(w1, w2)||2Γ and||R2(w1, w2)||2Γ are penal-
ization terms. At each step the optimal element obtained is an exact solution of the
equilibrium equation [12a] and is near to the overspecified dataφd andψd.

5. FEM implementation

5.1. Discretization of the relation [12a]- Discrete solutions space

The first issue in this section is to discretize the weak formulation [12a]. Our main
concern has been to make use of any ordinary finite element code, not to work out a
specific one or a specific finite element. As a matter of fact, computations were run
usingCast3M1 (CASTEM2000, 1998) and piecewise linear finite elements, which
means a piecewise constant approximation for the normal derivative. Let us now
discretize the domainΩ, h being the discretization parameter standing for the element
size, leading ton nodes andn elements on the boundary, andm nodes inside the
domain. LetVh be the space of continuous piecewise linear functions with respect to
the mesh, and let us defineVh(Γ) andWh(Γ) as the space of continuous piecewise
linear functions and the space of piecewise constant functions on the boundary. Traces
of functions belonging toVh(Ω) span the spaceVh(Γ), whereas the associated normal
derivatives belong to the spaceWh(Γ) of piecewise constant functions. DefiningU ,
U1, U2 andU ′ as then vectors standing respectively for then nodal values ofu, u1,
u2 and then discrete values ofu′ on the boundary, andU∗ them-vector of internal
nodal values ofu, the discrete equilibrium equations read as:

[

Aii AT

ei

Aei Aee

] (

U∗

U

)

=

(

0
−BU ′

)

[14]

Aii is the stiffness matrix corresponding to the Dirichlet problem and thus is invertible.
Expressing the internal unknownsU∗ in terms of the boundary onesU , i.eperforming
a condensation, Equation [14] reduces to:

(Aee − Aei A
−1
ii
AT

ei )U + B U ′ = 0 [15]

1. The Finite Element code Cast3M is developed by the Department of Mechanics and Tech-
nology (DMT) of the French Atomic Energy Agency (CEA - DEN/DM2S/SEMT), http://www-
cast3m.cea.fr
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The matrix form of [15] reads:

[

A B
]

(

U
U ′

)

= 0 [16]

U ′ can be expressed as a function ofU1 andU2, and ofNi, the discrete components
of the normal vectorn, and leads to the following system of linear equations:

AU +B1U1 +B2U2 = 0 [17]

where the matricesA,B1 andB2 only depend on the domain mesh. The linear system
[17] of n equations for3n unknowns defines the discrete formulation of the space
H(Γ) and leads to the definition of the following discrete solutions space:

Hh(Γ) =

{

(U,U1, U2) ∈ IRn × IRn × IRn such that

Eh(U,U1, U2) = AU +B1U1 +B2U2 = 0

}

[18]

whereEh denotes a linear operator mappingIRn × IRn × IRn ontoIRn.

5.2. Discretization of the relations [12d] and [12e]

Next, we need to discretize the relations< R1 (u1, u2) , v >≡ 0 and
< R2 (u1, u2) , v >≡ 0 using the finite element method. Considering the same finite
element discretization as in the previous section, the system ofn linear equations with
2n unknowns [19] (respectively the system [20]) represents the discrete formulation
of Equation [10] ((respectively of Equation [11]):

AU1 + CU2 = 0 [19]

AU2 − CU1 = 0 [20]

Foru = x1 +x2, we obtainU1 = (1, ..., 1) andU2 = (1, ..., 1). These two vectors
satisfy the system of2n equations with2n unknowns composed of the linear system
[19] and of the linear system [20]. So the lines of the linear systems [19-20] are not
independent. This explains why the relations [12c] and [12d] (the systems [19] and
[20] in the discrete form of the algorithm) are taken into account in the functional to
be minimized and not as equality constraints.

5.3. Discretization of the (k + 1)th iteration

Given now thatc > 0 and(U0, U0
1 , U

0
2 ) = (0, 0, 0) ∈ Hh(Γ), iteration(k+1) of

the discretized iterative algorithm reads as follows:














FindΨk+1 = (Uk+1, Uk+1
1 , Uk+1

2 ) ∈ R3Nsuch that
Jk(Ψk+1) ≤ Jk(Ψ) ∀Ψ ∈ R3N

under the equality constraints
AU +B1U1 +B2U2 = 0

[21]
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Problem [21] is a minimization problem inR3n under then equality constraints
expressed by [17]. Its solution is given by:
∣

∣

∣

∣

∣

∣

Find
(

Uk+1, Uk+1
1 , Uk+1

2 , λk+1
)

∈ IR4n such that:

∇Jk
c

(

Uk+1, Uk+1
1 , Uk+1

2

)

+
(

λk+1
)T

∇Eh

(

Uk+1, Uk+1
1 , Uk+1

2

)

= 0

Eh

(

Uk+1, Uk+1
1 , Uk+1

2

)

= 0

[22]

whereλk+1 is a n−vector of Lagrange multipliers introduced to take the equality
constraints [16] into account.

Each iteration in the iterative algorithm must solve a system of 4n linear equations
with 4n unknowns. The matrix of this linear system is independent ofthe iterations
and needs to be computed only once. For this reason, a direct algorithm (the Crout
factorization) has been preferred to iterative methods. The factorization, which is
obtained at the first step, is also used at each following step.

The corresponding system for the first-order method (Delvareet al., 2008) involves
a system of9n+1 equations for9n+1 unknowns and moreover needs to numerically
differentiateφd twice andψd once.

6. Numerical simulations

The purpose of this section is to present the numerical results obtained with the
method introduced. The procedure used during the numericalsimulations is as fol-
lows:

(i) The meshing of the boundary is made usingSEG2 elements. TheSEG2 element
is a finite element with two nodes which leads to a linear interpolation of the functions
u, u1 andu2.

(ii) The user specifies the meshing of the boundary specifying the number and the
distribution of the finite elements on each part of the boundary.

(iii) Then, the mesh of the entire domain is generated automatically by a routine
included in theCast3m software (CASTEM2000, 1998). This mesh is constituted of
4-node quadrilaterals and 3-node triangles.

(iv) The computation and the assembly of the stiffness matrix corresponding to
the domain is performed thanks to the standard routines ofCast3m software
(CASTEM2000, 1998).

(v) This software creates a superelement based on the boundary and computes the
corresponding stiffness matrix. This leads to the condensed stiffness matrix A.

(vi) The stiffness matrix A is then used by the specific code that implements the
inverse method introduced.

Note that the inverse method only involves values on the boundary. Therefore, only
for the different numerical tests will the discretization of the boundaryΓ be specified.
Moreover, note that all numerical computations were performed on a machine with a
2.20GHz Intelr CoreTM 2 Duo processor T7500.
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Different cases are considered for which an analytical solution uan is known. The
following control quantities are used to assess the accuracy of the method:

(i) theL2(Γ) gap between an optimal elementu and the analytical solutionuan on
Γ:

gΓ =

∫

Γ

(

u− uan
)2
ds =

∥

∥u− uan
∥

∥

2

Γ

(ii) the L2(Γ) gap between the normal derivativeu′ of an optimal element and the
normal derivative of the analytical solution onΓ:

g′Γ =

∫

Γ

(

u′ − u′an
)2
ds =

∥

∥u′ − u′an
∥

∥

2

Γ

(iii) the L2(Γd) gap between an optimal elementu and the dataφd onΓd:

gΓd
=

∫

Γd

(

u− φd

)2
ds =

∥

∥u− φd

∥

∥

2

Γd

(iv) theL2(Γd) gap between the normal derivativeu′ and the dataψd onΓd:

g′Γd
=

∫

Γd

(

u′ − ψd

)2
ds =

∥

∥u′ − ψd

∥

∥

2

Γd

(v) theL2(Γ) relative error (in%) made onu:

uerror =

√

√

√

√

√

√

√

∫

Γ

(

u− uan
)2
ds

∫

Γ

(

uan
)2
ds

=

√

√

√

√

∥

∥u− uan
∥

∥

2

Γ
∥

∥uan
∥

∥

2

Γ

(vi) theL2(Γ) relative error (in%) made onu′:

u′
error

=

√

√

√

√

√

√

√

∫

Γ

(

u′ − u′an
)2
ds

∫

Γ

(

u′an
)2
ds

=

√

√

√

√

∥

∥u′ − u′an
∥

∥

2

Γ
∥

∥u′an
∥

∥

2

Γ

6.1. Example 1

Numerical simulations are performed on a square domain (Ω =]0, 1[×]0, 1[) (Fig-
ure 1). The boundary partΓd is composed of the two sides (x2 = 0 andx1 = 1). The
boundary partΓu is composed of the two sides (x1 = 0 andx2 = 1). Each side of
the square domain is discretized usingN finite elementsSEG2. All the finite elements
have the same length and the nodes are uniformly distributed. This discretization used



A robust data completion method 11

(0, 0) (1, 0)

(1, 1)(0, 1)

Γd

Γd

Γu

Γu

Ω

Figure 1. Square domainΩ

to find the functionu and its normal derivativeu′ onΓu, from the knowledge of func-
tion u and its normal derivativeu′ on Γd. The dataφd andψd are built using the
analytical solution:

uan(x1, x2) = cos(x1) cosh(x2) + sin(x1) sinh(x2) [23]

6.1.1. Comparison with other methods

 0.4
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 0  0.5  1  1.5  2  2.5  3  3.5  4

analytic solution

new method

(Cimetièreet al., 2001)
(Delvareet al., 2008)

Arc length

Figure 2. u reconstructions (comparison of different methods)



12

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5  3  3.5  4

analytic solution

new method

(Cimetièreet al., 2001)
(Delvareet al., 2008)
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Figure 3. u′ reconstructions (comparison of different methods)

In this section, the reconstructions obtained with this newmethod are compared
with those obtained by other methods. This example was studied using a Tikhonov
like method (Hayashiet al., 2002), using a fading regularization method (Cimetièreet
al., 2001) and using an iterative method (Lesnicet al., 1997). All these methods gave
similar results. This example was also studied using a first-order method (Delvareet
al., 2008). Figures 2 and 3 display all these reconstructions. The new method gives
more accurate normal derivative reconstructions than the others.

6.1.2. Evolution of the control quantities during the iterative process

In the present case, the data onΓd are generated from the analytical solution (Equa-
tion [23]) and are not blurred by measurement noise. The boundariesΓd andΓu are
both approximated with160 SEG2 finite elements. The value of the parameterc is
arbitrarily fixed at0.01.

Figure 4 represents the evolution of different control quantitiesgΓ, g′Γ, gΓd
andg′Γd

versus the number of iterationsk. Figure 5 represents the evolution of the errorsuerror

andu′
error

versus the number of iterationsk. We notice from the300th iteration that
the quantitiesgΓ, g′Γ, gΓd

, g′Γd
, uerror andu′error remain constant. This confirms that

the method converges.The iterative process is stopped when two successive optimal
elements are identical.The residual termsgΓd

andg′Γd
(relaxation terms) decrease

during the iterative process and after convergence these terms remain constant.
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It can also be observed that the error in the numerical normalderivative obtained
(u′

error
) using this method is larger than that corresponding to the reconstructed func-

tion (uerror). This last remark is also valid for all the following numerical examples
which will be analysed.

6.1.3. Behaviour with respect toc parameter

It is necessary to look at the influence of parameterc. For the same discretization
as in the previous example, different values of the parameter c are tested. Table I
lists the results obtained for each value of parameterc by specifying the number of
iterations necessary to achieve convergence, theuerror, theu′

error
and the CPU time.

The errors onu andu′ are identical for each value of the parameterc.

Table 1. Influence ofc on the number of iterationsk to achieve convergence - influence
of c on theuerror and on theu′

error

c k uerror in % u′error in % CPU time ins
1. 16832 0.04564 0.48925 116.95
0.1 1931 0.04564 0.48925 14.87
0.01 320 0.04564 0.48926 3.83
0.001 35 0.04564 0.48925 1.88
0.0001 11 0.04564 0.48925 1.72
1E-5 7 0.04564 0.48925 1.69
1E-6 4 0.04563 0.48922 1.67
1E-7 4 0.04565 0.48969 1.67
1E-8 4 0.04620 0.49821 1.67

This confirms that the algorithm converges to the same solution whatever the value
of c. However the choice of the parameterc affects the numberk of iterations needed
to obtain convergence. From the evolution of the CPU time with c (or with the number
of iterationsk) it can be deduced that the CPU time taken by each iteration for k > 1 is
roughly6.85 10−3 s. This CPU time is lower than the CPU time taken to achieve both
the preliminary computations and the first iteration (roughly 1.64 s). Subsequently,
the value ofc and the number of iterations required to achieve convergence will be no
longer specified.

6.1.4. Behaviour with respect to the mesh refinement

It is necessary to see how the reconstructions are influencedwhen the mesh re-
finement increases (depending on the number of finite elementsN on each side of the
square domain). Figure 6 shows the reconstructions onΓ of the functionu obtained
with N = 5, N = 80 andN = 150. Figure 7 shows the corresponding reconstruc-
tions of the normal derivative. Table II lists the errorsuerror andu′

error
for different

mesh refinements. It can be observed that the error level decreases as the mesh re-
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finement increases. This confirms that the inverse method is stable with respect to the
mesh refinement.It can also be observed that reconstructions using a coarse mesh
(N = 5) are also accurate.

Table 2. Influence of mesh refinement on theuerror and on theu′error

N uerror in % u′
error

in %
5 0.376 2.843
10 0.185 1.443
20 0.108 1.086
30 0.074 0.746
40 0.063 0.676
50 0.053 0.584
60 0.049 0.543
80 0.046 0.489
100 0.035 0.398
120 0.027 0.355
150 0.024 0.299
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Figure 6. u reconstructions using different boundary mesh refinements
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Figure 7. u′ reconstructions using different boundary mesh refinements

6.1.5. Behaviour with respect to noisy dataφd

It is necessary to see how the reconstructions are influencedwhen data are noisy.
The noisy displacement dataφd are generated by:

φd = φan

d
+ δ η φmax

d
[24]

where−1 ≤ η ≤ 1 is a random value,δ is the noise level in % andφmax

d
is the

maximal value of the data ofΓd.

The boundary partsΓd andΓu are both approximated using160 finite elements.
The value of parameterc is arbitrarily fixed at0.1.

The first step is to verify that the stopping criterion (gΓd
andg′Γd

become constant)
remains reliable when the data are noisy. Figure 8 represents the evolution of the con-
trol quantitygΓd

versus the number of iterationsk when the noise level is respectively
fixed at0%, 1%, 5%, 10%, 20% and50%. Figure 9 represents the evolution of the
control quantityg′Γd

versus the number of iterationsk when the noise level is respec-
tively fixed at0%, 1%, 5%, 10%, 20% and50%. It can be noticed that the quantities
gΓd

andg′Γd
decrease at the beginning and then remain constant. The iterative process

is stopped at this stage.

Figure 10 represents the evolution of the control quantityuerror versus the number
of iterationsk when the noise level is respectively fixed at0%, 1%, 5%, 10%, 20%
and50%. Figure 11 represents the evolution of the control quantityu′

error
versus

the number of iterationsk when the noise level is respectively fixed at0%, 1%, 5%,
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Table 3. Influence of the noise level on the gapsgΓd
andg′Γd

and on the errorsuerror

andu′
error

δ in % gΓd
g′Γd

uerror in % u′
error

in %

0 1.22E-7 2.80E-7 0.05 0.49
1 2.21E-4 5.72E-7 0.27 1.77
2 8.84E-4 1.35E-6 0.42 2.23
3 1.99E-3 2.61E-6 0.59 2.74
5 5.53E-3 6.58E-6 0.96 3.83
10 2.21E-2 2.50E-5 1.88 6.69
20 8.83E-2 9.81E-5 3.73 12.54
25 0.14 1.52E-4 4.66 15.47
30 0.20 2.19E-4 5.59 18.42
40 0.35 3.89E-4 7.45 24.30
45 0.45 4.92E-4 8.38 27.25
50 0.55 6.07E-4 9.31 30.20
75 1.24 1.36E-3 13.96 44.94
80 1.79 1.56E-3 14.89 47.89
100 2.21 2.42E-3 18.61 59.68

10%, 20% and50%. It can be noticed that the quantitiesuerror andu′error have the
same evolutions as the quantitiesgΓd

andg′Γd
. This confirms that the chosen stopping

criterion (gΓd
andg′Γd

become constant) remains reliable when the dataφd is noisy.

Figure 12 represents the reconstructions ofu on the whole boundaryΓ when the
noise level is respectively fixed at5% and at10%. On the same figure, the noisy data
φd used when the noise level is fixed at10% is also specified. It can be noticed that the
reconstructions correspond to the analytical solutionuan and that the noise in the data
has been deleted by the algorithm. Figure 13 gives the corresponding reconstructions
of the normal derivative. The reconstructions obtained canbe seen to be very accurate.

The functional is composed of different terms with different roles. As in most
inverse methods, there is a regularization term which tendsto zero as the iterations
continue. But, in the present method, there is also a relaxation term that allows data
blurred by noise to be taken into account. We therefore seek asolution which is
close to the data but not a solution that exactly fits the data.The algorithm then
recomputes, at each step, a solution on the whole boundary. Residual terms are equal
to the relaxation termsgΓd

andg′Γd
. These terms correspond to the gap onΓd between

the deblurred reconstruction and the noisy data.

Figure 14 gives the evolution of the residual gapsgΓd
andg′Γd

obtained after con-
vergence of the iterative process with respect to the noise levelδ. Figure 15 gives the
evolution of the errorsuerror andu′

error
obtained after convergence of the iterative
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process with respect to the noise levelδ. Table III lists the values of the residual er-
rorsuerror andu′error and the value of the residual gapsgΓd

andg′Γd
obtained after

convergence for the different noise levels considered.

6.1.6. Behaviour with respect to noisy dataψd

A similar study has been performed with noisy normal derivative data. The noisy
dataψd are generated by:

ψd = ψan

d + δ η ψmax

d [25]

Figure 16 gives the reconstructions ofu on the whole boundaryΓ when the noise
level is respectively fixed at5% and at10%. Figure 17 represents the corresponding
reconstructions of the normal derivative on the whole boundaryΓ. On the same figure,
the noisy dataψd used when the noise level is fixed at10% is also specified. It can
be noticed that the reconstructions corresponds to the analytical solution and that the
noise in the data has been deleted by the algorithm. The reconstructions obtained can
be seen to be very accurate.

Figure 18 gives the evolution of the errorsuerror andu′
error

obtained after con-
vergence of the iterative process with respect to the noise levelδ. Figure 19 gives the
evolution of the residual gapsgΓd

andg′Γd
obtained after convergence of the iterative

process with respect to the noise levelδ.
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6.2. Example 2

In this example, the functionu to be reconstructed is given by:

u(x1, x2) =
x2

(x1 −
1

2
)
2

+ x2
2

[26]

The domainΩ and its boundaryΓ are indicated in Figure 20.

For the first numerical simulations, the boundary partΓd is defined byΓd = Γ1 ∪
Γ2 ∪ Γ3 and is discretized using120 finite elementsSEG2. The boundary partΓu is
defined byΓu = Γ4 ∪ Γ5 and is discretized using360 finite elementsSEG2. Both
the dataφd andψd are noisy. Figure 21 gives the reconstructions of the function
on the boundary partΓu when the noise level on the dataφd andψd is respectively
fixed at0%, 1% and at10%. Figure 22 gives the corresponding reconstructions of the
normal function derivative on the boundary partΓu. Figure 23 gives the noisy data
φd when the noise level is fixed at10% as well as the corresponding reconstruction
of the function on the boundary partΓd. Figure 24 gives the noisy dataψd when the
noise level is fixed at10% as well as the corresponding reconstruction of the normal
derivative on the boundary partΓd. It is found in this case that the reconstructions are
accurate on the whole boundary (on both boundary partsΓu andΓd) and that the noise
in the data has been deleted by the algorithm.
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levels (in %)

For the second numerical simulations, we consider a situation where the numbers
of available data onΓd for u (N1 values) and foru′ (N2 values) are different. We
examine the following cases:

- case 1:N1 = 40 andN2 = 120,

- case 2:N1 = 120 andN2 = 40,

- case 3:N1 = N2 = 120,

- case 4:N1 = N2 = 40.

In a sake of simplicity, we assume that these data are uniformly distributed onΓd but
are noisy (the noise level on the dataφd andψd is fixed at10%). Before making the
data completion in case 2 (respectively in case 3),80 auxiliary data are generated for
u (respectively foru′) by interpolating the available data in order to have the same
number of data foru andu′ and to use the same finite element discretization as the
one used in the first simulations. For case 4, the boundary part Γd is discretized using a
coarser mesh with40 finite elementsSEG2. Figure 25 gives the reconstructions of the
function on the boundary partΓu for the four cases investigated. Figure 26 gives the
corresponding reconstructions of the normal function derivative. It can be observed
that the reconstructions in case 1 and in case 4 are slightly less accurate than that
obtained in case 2 and in case 3.
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Figure 11. Evolution ofu′error versus the number of iterationsk for differentu noise
levels (in %)

In the last numerical simulation, the robustness of the inverse method with respect
to the number of corners onΓu is studied. In this case, the boundary partΓd extension
is reduced and is limited toΓ2. Γd is discretized using90 finite elementsSEG2. The
boundary partΓu presents 3 singular points and is defined byΓu = Γ3 ∪ Γ4 ∪ Γ5 ∪
Γ1. Γ1 is discretized using15 finite elementsSEG2, Γ3 is discretized using15 finite
elementsSEG2 andΓ4∪Γ5 is discretized using360 finite elementsSEG2. The dataφd

andψd are exact. Figure 27 gives the reconstruction of the function on the boundary
partΓu. Figure 28 gives the corresponding reconstruction of the normal derivative on
the boundary partΓu.

It is found in all cases that the reconstructions are accurate when the domain has
a non-regular boundary. It may also be noticed that for thesedifferent numerical
simulations, the number of data (number of nodes onΓd) was less than the number of
unknowns sought (number of nodes onΓu).
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Figure 12. The noisy dataφd when the noise level is 10% and theu reconstructions
for differentu noise levels
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Figure 13. Theu′ reconstructions for differentu noise levels
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Figure 16. u reconstructions for differentu′ noise levels
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Figure 17. The noisy dataψd when the noise level is10% andu′ reconstructions for
differentu′ noise levels
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Figure 18. Influence ofu′ noise level (in %) on the errorsuerror andu′
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Figure 21. u reconstructions onΓu when both dataφd andψd are noisy (different
noise levels)
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Figure 22. u′ reconstructions onΓu when both dataφd andψd are noisy (different
noise levels)
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Figure 23. u reconstruction onΓd and the noisy dataφd when the noise level is10%
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Figure 24. u′ reconstruction onΓd and the noisy dataψd when the noise level is10%
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Figure 25. u reconstruction onΓu
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Figure 26. u′ reconstruction onΓu
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Figure 27. u reconstruction onΓu
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Figure 28. u′ reconstruction onΓu

7. Concluding remarks

In this paper, an inverse method has been introduced for solving 2D Cauchy prob-
lems associated with the Laplace equation. This method is based on the one hand on
the fading regularization effect introduced by Cimetière et Al. (Cimetièreet al., 2001)
and on the other hand on the same principle as the first-order inverse method intro-
duced by Delvare and Cimetière (Delvareet al., 2008) but this method does not require
the numerical evaluations of additional data. This method relies on a system of two
weak integral formulations which connect the two partial derivatives of a harmonic
function and not their normal derivatives. This system is used to introduce first order
penalization terms in the functional to be minimized. The numerical simulations in
2D situations prove the efficiency and the robustness of thisapproachwhen dealing
with regular solutionsand that the method is more accurate than methods introduced
in previous papers (Cimetièreet al., 2001; Cimetièreet al., 2002; Delvareet al., 2008).
In particular, it givesu′ with increased accuracy when the boundary has corners, it is
stable with respect to strong perturbations on the data and is able to deblur the two
boundary dataφd andψd when they are noisy.The problem remains open whether the
method can be adapted to reconstruct non-regular solutions.
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