
HAL Id: hal-00612627
https://hal.science/hal-00612627

Submitted on 29 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Jacobi computation using mobile agent
Cyril Dumont, Fabrice Mourlin

To cite this version:
Cyril Dumont, Fabrice Mourlin. Jacobi computation using mobile agent. International Journal of
Computer Science and Information Technologies, 2010, 1 (5), pp.392-401. �hal-00612627�

https://hal.science/hal-00612627
https://hal.archives-ouvertes.fr

Jacobi computation using mobile agent
Cyril Dumont1, Fabrice Mourlin2

LACL, Department of Computer Science, Paris East University, 94000 Creteil, France

Abstract— Physical phenomena occur in a wide range of
mathematical applications: from fluid to solid mechanics,
electromagnetic and electrical engineering. Engineers
working toward an optimized modelling must develop their
software and physical system together. This development
follows a standard life-cycle with design, coding and test.
Validation is become quite complex and is subdivided into
several parts: unit, integration, functional and system. Each
piece of validation brings its brick. Entire system is tested as
per the requirements. They are about numerical results,
performance, architecture and fault tolerance. We defined a
distributed architecture for numerical computation based on
the use of mobile agents. A group or space of agents manages
a whole computation, from its registration until its validation.
Their role is multiple: they prepare input data and operate
tasks but above they administer distributed architecture. The
main impact is failure management. Failure can concern not
only software services but also material. Also, the completion
of an execution can need task recovery, anomaly reporting or
favourite configuration. All these details consist of a main
report about validation of distributed application though
simulation.

Keywords— Mobile agent, distributed application, space computing,
architecture modelling, fault tolerance, performance measure,
reporting.

I. INTRODUCTION

Numerical software was introduced very early in the
sixties; First implementations are done with FORTRAN
language and dedicated platform [1]. The main goal was to
transfer numerical analysis and algorithmic expertise to
practitioners [2] [3]. But, the users want numerical
applications which run fast, are easily moved among
computing platforms, always produce the right answer, and
are easy to understand and integrate with their new
applications. Also, developers had to develop several version
of their numerical software depending on material architecture
of end users or depending of software architecture of users’
projects [4].

In that context, software lifecycle [5] become complex
especially in numerical analysis domain where a set of
features has to be taken into account: efficiency, portability,
reliability and usability are of primary concern. Behind these
words, architecture constraints are hidden and thus, software
building is a more complex challenge. In comparison with
other domain such as web development [6], developers want
to work in respect of layer approach. Each layer is about a

specific concern and everything is designed platform
independent. The objective is to reduce the number of
application version.

When the main key word is efficiency, the challenge
becomes to find out best use of computing resources. And
because, time is always money, the second key word is
reliability which could be declined as adaptability in a context
where resources can be unavailable. A developer does not
accept to lost computational time due to hardware failure. So
when another resource can be used, the computation has to
exploit it instead of aborting [7]. This involves third important
key word: portability, which means that a resource ought to be
used even if it is not the same as the previous one [8]. These
three main directives drove our definition of a numerical
development plat form based on mobile agents [9]. We
introduce definition of mobile agent into next section and how
they answer to a part of the challenge. Then, we present how
mobile agents allow developer to observe software properties
such that visited nodes, pending requests, etc. Next; we
explain the constraints due to numerical analysis and the
definition of libraries. The next part is about our
implementation of our platform and definition of computing
space. We use it to solve a referent example about Jacobi
equation solving and finally, we provide our results on our
platform and next directions for our work.

II. MOBILE AGENT PROGRAMMING

Mobile agents offer new solutions to a spectrum of
problems frequently encountered in distributed applications.
At the same time, their properties provide new pragmatic
concerns and allow defining new approach of distributed
systems [10].

A. Mobile agent properties

The life of software has increased and it became common
to use software whose lifetime is greater than that of material.
Also, software properties are essential for a greater lifetime.
Good software has to be modular, loosely coupling, portable,
and so on [11]. But its software architecture takes more
importance place in its evaluation. This architecture is often
static in the sense that it is decided at the installation step. So,
what happens when material has to be changed? This was
always a limit of software life. New installation process was
to be engaged.

Mobility plays a crucial role in the adaptability of software.
This property allows software or piece of code to migrate
from a material to another one. Even if this change needs
specific permission, it is a solution to change of materials. In

Cyril Dumont et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 392-401

392

fact, movement of code has to be considered as an event like
start, stop or suspend. A migration can be decided by
program, for instance, a collector agent wishes to move to
another work station because its activity is ended on the
current node. A migration can be decided by observation, for
instance, a monitor agent can export observer agent on new
work stations because these devices are new on the network.
In that case, mobile is managed by container instead of by
agent itself.

This adaptability hides portable ability of the agent [12]. Its
behaviour starts on a workstation and continues on another
one. Moreover, a mobile agent is loosely coupling by
construction. It cannot depend on a specific physical resource
because this one has a precise location on network and the
agent is mobile. Also, a mobile agent can need computing
resource but this one is changeable. As first results, we
defined mobile agent as an elementary brick of distributed
system. We compose mobile agent into more complex
structure called agency or space where they operate [13]. It is
a restricted domain where specific security rules are applied to
mobile agents. It is also, an execution area whose the limits
are not constant.

B. Communication cost reduction

A key advantage of mobile agents is that they can decrease
communication costs. In client server architecture, messages
are sent from client to server and they have to understand
same message format. This is also a limit of software life [14].
Now, consider that the message is not only a set of data but
also a set of methods to exploit these data. The format can
evolve if its API respects same interfaces [15].

In another approach, part of the client or the server can
move to the other side of the communications link. This
means that the client or server has moved, interactions
between the two can bypass the network. Very often, client
part can be considered as a mobile requester. It contains only a
request and its mission is to deliver its demand to a right
server. If the first one is busy or unavailable, it will move to
another server and so on. This is why we explain that mobile
agents exploit in a better way a distributed architecture where
resources are not reliable or where configuration is evolving
[16]. But migration cannot be a free operation. If mobile agent
first decides to move on another site, this site or agent host
can accept or refuse its arrival: this is negotiation protocol
with specific rules per node.

C. Negotiation before agent importation

Mobility is done under control of the receiver on
destination node. When a mobile agent moves to a new site, it
is first studied by the agent host. We can divide mobile agents
into two main categories [17]. First, there is “mobile client”.
As we explained just before, it contains message and ability to
read and manage the data. This means that such mobile agent
exposes a provided interface (called “Messenger” for
instance) which will be used by the host. The analysis of the
signature of all the operations of this interface insures that this
agent will not access to local resources of the host. To sum up,

this mobile agent is just an observer and it will be accepted by
the host if there is no more filter on message type.

Secondly, there is “mobile service”. In that case, an activity
moves near to client data. If this is possible, this activity will
be done on these data. Before, agent host has to check what is
requested locally by the activity. All these constraints are
declared into a requested interface (called “Invoker” for
instance) which will be used by the host (Fig1). The analysis
of the signature of all the operation lists the requirements of
the mobile agent. The consequence could be an acceptance or
a refusal from agent host to mobile agent. In case of
importation, new permission will be assigned to this mobile
agent. These will allow it to use local resources as mentioned
into its requested interface.

Both cases (mobile client or mobile service) are two

extreme examples. Often, a mobile agent has a provided
interface and a requested interface. For instance, through,
requested interface mobile agent mentions that it ought to read
local data set. And through its provided interface, it will
expose its results (for instance, maximum and minimum
values of the set). This negotiation algorithm can be more
complex when requested interface is about local data
exchange with other mobile agents present on the same agent
host [18] [19]. Because the controls are often sequential and
no deterministic, a first mobile agent has to be accepted even
if the second agent is not already there. As example, if we
consider an agent host which has four values. These real
values are coefficients of a quartic equation of the fourth
degree. To solve its equation, the host needs to receive first an
agent (called “Analyzer”) for parsing the equation: is it a
biquadratic equation or a quasi symmetric equation.
Depending on the result, it will import an agent “Solver”. This
mobile agent exposes a requested interface where it requires
the use of Analyzer agent.

The negotiation protocol depends not only on the
requirements of input agents. Some no functional properties
can be added. First features are about the origin of mobile
agent. Because a computation can be interrupted when an
intruder item occurs, agent host has to know the agent base.
This means the base where the agents are, is published into a
registry. We want to avoid that a “Solver” agent can replace
another one accidentally. Also, we defined the concern of
agency or agent space, which delimits an area where an agent
base is available. Thus, an agent host can only receive mobile

Target node

Source node

Fig. 1 : UML component diagram on agent importation

Cyril Dumont et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 392-401

393

agent from the agent space where the host belongs to. This
structure of space is initially build at the beginning of the
computation case and can be considered as a first reading as a
container of a computation.

Because security is often considered as a key feature in web
project, the negotiation protocol can take into account the
provider of the mobile agent through a certificate. This means
that a public key can be read to identify the issuer of the agent.
When the public key is recognised, additional permissions can
be assigned to the agent and so improve its execution on the
agent host. To be stable, a negotiation protocol must be
opened to new rules such that localisation (it means the
previous sites where the mobile agent was), time to run before
the end of the lease, version management.

Over the set of nodes belonging to a space, the same
negotiation protocol is often applied, but we can configure a
subpart with one strategy and another without any control.
This can be interesting when some nodes are not available, we
can apply a negotiation protocol which always fails.

D. Mobile agent manageability

The requirements for managing distributed applications
depend on types of applications. Short-lived computations or
long-lived computations do not require same controls [20]. In
the first case, run time is less than few minutes. Administrator
does not have enough time to observe really what happens.
But he will record data about run time for a post mortem
analysis. When execution time is more than few minutes, we
guess that administrator can apply observations on to an agent
space. The administration of mobile agents provides methods
that can be used to manage agents belonging to a space.

The definition of these operations comes from the
properties of mobile agent system. First, mobility involves
that an observer needs to know where mobile agents are over
the network. This information is obtained from agent hosts.
When a mobile agent moves from one node to another one,
agent host receives mobile agent and records its importation
request with the success or failure of the negotiation. Also, the
collect of these data provides enough details to build a
geographical map about the activities of mobile agents.

But this map is only a snapshot of an execution. For a long-
lived computation, an observer needs to follow mobile agent
to understand its itinerary over network. This could provide
details about exploitation of computing resources. This can
explain also delay during the computation. When, two mobile
agents (Analyzer and Solver) have to communicate directly on
to a specific agent host. If the itinerary of Solver agent is
shorter than the itinerary of the other, it could be blocked,
waiting for an exchange of data.

Communication can also be enhanced to become more
expressive for management. A basic improvement is to use
message queue to keep trace on requests. In that case, mobile
agents exchange message asynchronously. This approach
offers three advantages. First, administrator can access to
message queue to control its length and its contents. The
message order can be changed; some of them can be deleted.
Secondly, message can be stored by observer for a post
mortem analysis. Finally, delays are suppressed when a sender

is waiting for a receiver. Then, administrator can interact with
distributed execution through message queues. If a mobile
agent is considered not enough powerful for the amount of
messages, administrator can simulate agent host and ask for a
new importation of agent. This kind of strategy is welcomed
when activity is unpredictable or when delays are cumulated
until a final incident.

Direct management operations on mobile agent need to
design mobile agent to be administrable. This aspect is often
treated as a technical facet distinct of business activity of
agent. So, their internal properties are observed by the use of
dedicated framework such as JMX or by the use of web
service with SOMA [21], [22].

III. EXPERIENCE AND APPLICATION DOMAIN

We started our research activities on mobile agent for more
than a decade. First implementations show important
properties, explained in previous sections. First applications
were about distributed system management: new
implementation of service location protocol [23]. We built
another implementation of AAFID algorithm defined by
Spafford and Zamboni [24], where mobile agents help to
detect intrusion on a network.

We defined a distributed monitor based on an agency which
collects anomalies of cluster of web servers [25]. This project
was realized for end users called AnswerDesk Corp. which
manages information for call centers. This work has supported
extensions for improve communication with other
applications. This means that XML messages were accepted
as input and output. Monitoring reports were built from
mobile agent observation and transform into XML stream. As
results, reports were used by other tools like mail and editor
for publication [26].

Another application domain is numerical analysis and the
definition of a platform for the management of computing
cases. In that context, mobile agents are used to manage
heterogeneous codes into a space where data are prepared for
a distributed computation. We applied our platform for several
case studies. Each of them brings new improvements for our
platform, about performance, administration and also for
interoperable exchange of mobile agent [27] [28]. We
consider that all the examples are convincing and they show
the essential role of mobile agent into distributed
computations. We used several numerical codes such that,
Choleski, Pi calculus or Cardan solver because we wish to
show our approach is polyvalent. In this document, we
decided to introduce our recent improvements with the use of
Jacobi computing code. This is a reference computation and
some numerical solvers already exist. So it is possible for
readers to compare our results. Moreover, Jacobi computation
interferes into more complex computations in thermodynamic
simulation. Thus, this application can be thought as a part of a
more complex case study.

Application of mobile agent is not restricted to use of local
network. We can consider mobile agent as a mobile service
and export it on remote node through http protocol. First

Cyril Dumont et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 392-401

394

validation is already done for data collection of RFID sensors.
The subject of our prototype was the authentication of users
for remote working [29].

IV. REQUIREMENTS FOR NUMERICAL COMPUTATION

We begin by outlining critical requirements for numerical
computing. Many new languages offer features that can
provide significant benefits for developers of mathematical
software [30]. Languages that reduce programmer time and
increase software reliability, involve often cost in computer
resources. Generally, the requirements are ordered and
performance is main concern, followed by memory
management.

A. Performance for numerical part

A platform form for numerical code has to be efficient. It
often contains a lot of computations on large set of data and its
evaluation has to be fast enough for building a benchmark.
Performance concerns not only the cost of functions of
methods, but also resource accesses and code placement on
computing resources.

When placement is declared at the beginning of
computation, this does not accept any perturbation. If a
processor is not usable, the computation can be aborted or
performance can be heavily damaged. When execution
context is no reliable or when computing resources have to be
shared between users, then platform ought to be fault tolerant.
This means that the platform has to manage material
architecture. If all resources are similar like a grid of
processors, the management is simplified, but it can become
more complex when network is heterogenous (clock cycle,
cache size, etc).

B. Memory management

Recent studies and experiments have shown that in
computationally intensive applications where objects are
being allocated and released more frequently, garbage
collection can actually observed carefully [31]. This becomes
much more difficult when memory is distributed onto a set of
processors.

Explicit memory management has proved to be a fruitful
source of bugs, crashes, memory leaks, and poor performance
[32]. Also it may be preferable to leave memory management
to the operating system and to observe its effects. This
problem is even more important than the data size is huge. For
instance, when multi dimensional matrix is used with FDTD
computation and the number of items can be bigger than a
million of float value.

The platform has to manage occurrences of large data for
reducing duplication and also for optimizing their accesses in
a multi thread application. It can also offer pre-statement on
these large data. For instance, after data extraction from a data
source, data have to be prepared for computation. Also, this is
in close relation with numerical code.

When numerical code is written into an object oriented
language, implementation of alternative arithmetic parts, such
as complex, interval, and multiple precision requires the
support of new objects with value semantics. The size of

classes is essential and developers have to preferred
lightweight classes [33].

C. Reuse of code

Code rewriting can be an approach when new language is
chosen with new features. But constraints of new languages
do not allow same performance. Java software is often
perceived to be slow as compared to corresponding C/C++ or
FORTRAN software. For some computationally demanding
algorithms, straightforward implementations in Java may run
100-150 times or more slower than C++ or FORTRAN. In the
past, problem algorithms have included floating point
intensive algorithms such as FFTs (Fast Fourier
Transformation) and integer functions such as alignment byte
manipulations [34].

Also, a platform for numerical code evaluation has to
accept code written in different languages, such as Java, C#,
C++ or FORTRAN. This programming language is always the
most common and some applications are considered as
reference in numerical domain. This means that no developer
will decide to rewrite such application into a more convenient
programming language, even if maintainability is improved.

D. Data security

Traditional distributed systems enable users to use data and
applications on distant networks without confining them to
networks that they are directly connected to. Unfortunately,
development of data security in distributed systems takes
place simultaneously with the development of the network
[35].

When a set of computing resources are shared by two users,
each of them what to have the insurance that his data and his
code is distinct from his colleague. Even if this colleague
belongs to the same team, a platform has to isolate not only
strategic data (because they can represent a important
mathematical model for instance), but also execution of code.
If the components of both executions are mixed, it will
certainly cause errors during simulation and waste of time.

If separation of code is easy to do, it is not so easy to prove
when end users want to do it. Very often, geographical
isolation is used to establish that there is no interference at all.
Data preservation has to respect the same constraints except
that the size is not the same. In some code this size
corresponds to a material limit. Also, its distribution on set of
computing resources set more serious problems of
management.

This remark requires defining a container of computation
run time. This container will be responsible to component
loading for code part and also, manager for data scattering. Of
course, other facets can be added to that container, such that
distributed transaction. It is a distributed control mechanism
analogous to database transactions for controlling access to
shared memory in distributed computing. This aspect has also
to be isolated into a run time structure.

Thus, it appears that use of container (agent space) is
crucial into a shared environment. Finally the containers have
to be observed through platform which plays the role of
controller. This corresponds to the management of state of

Cyril Dumont et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 392-401

395

containers (its automaton is basic at that level and will become
more structured into next step of implementation).

V. IMPLEMENTATION OF A MOBILE AGENT COALITION

The implementation of our architecture is completely

written in Java. The Java language and his APIs provide
portability (very useful in a heterogeneous network of
machines). One of these APIs is specially adapted to our
architecture: the Jini API. Jini is the name for a distributed
infrastructure computing environment that can offer “network
plug and play”. A device or software service like an agent can
be connected to a network and announce its presence, and
clients that wish to use such a service can then locate it and
call it to perform tasks [36].

A. The JavaSpaces Technology

JavaSpaces technology [37] is a high-level communication

tool for processes into a distributed application. It is a space-
based model with a main element: a space. A space is a
shared, network-accesible repository for objects. A space
stores entries.

You can invoke four primary operations on a JavaSpaces
service:

 write : Writes new entry into a space
 read : Makes a copy of an entry in a space
 take : Retrieves an entry from a space
 notify : Notifies a specified agent when entries that

match the given template are written into a space

Each operation has entries as a parameter. Some are
templates, which are a kind of entry. The write() operation is a
store operation. The read() and take() operations are a
combination of search and fetch operations. If a take() or
read() operation doesn't find an object, the process can (or not)
wait until an object arrives.

Unlike conventional object stores, objects are passive data.
Therefore, processes do not modify objects in the space or
invoke their methods directly. In order to modify an object, a
process must explicitly remove, update, and reinsert it into the
space.

B. The MCA Architecture

Our architecture is based on JavaSpaces technology. We

will present the main elements for the implementation of the
resolution of a computation case (Fig. 3).

1) The MCASpace

The MCASpace is a specialized space for numerical

computation. It is actually a subclass of a space. It contains a

limited number of types of entries. These entries all
implement the abstract class Storable (Fig. 2), which serialize
all entries put on the MCASpace (in XML format). We
describe then these types of entries:

 ComputationCase : When an object of that type is added

to MCASpace, a transaction is created. All entries specific
to this computation case will be part of this transaction.

 MCAProperty: represents a global property of a

computation case with a name and a value. These
properties are shared by all agents participating in a
computation case

 DataHandler: Such entries can simulate a distributed

memory. Indeed, each entry of this type gives access to a
resource : write access with the method getInputStream
and a read access with the method getOutputStream. I

 Task: It is a representation of a task which is a part of the

computation case. A Task has the following properties :
 name: it must be unique. In a transaction, there

cannot be two Tasks with the same name.
 parameters: it is the parameters list of the Task. It

can be null.
 compute_agent_name: it is the name of the

ComputeAgent needed to execute the Task.
 worker: it is the name or address of the

ComputingWorker which executes or had executed
the this task.

 result: it is the result of the Task. It can be null if the
Task uses the DataHandler without giving any result.

 parentTask: it is the name of the Tasks which are
needed to be executed before the current Task.

Fig. 2 Entries class diagram

Cyril Dumont et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 392-401

396

Barrier Synchronization – Barriers are a common and

simple technique to synchronize agents in a distributed
computation. Barriers are easy to implement in our
architecture with a shared entry (named Barrier) in the
MCASpace.

2) ComputingWorker agents

A ComputingWorker is a agent that executes a part of of the
computation case algorithm (using the ComputeAgent we will
see in the next section C.). The number of ComputingWorker
may vary during the execution of the case.

Fig. 3 Main MCA Components

3) ComputingMaster agent

In all cases, the ComputingMaster writes the first task to
execute on the MCASpace and then signals the end of its
computation case to the coalition of agents involved in the
computation case resolution.

The Master agent plays several roles:

 Scheduling: creation and writing of Task objects
necessary for the resolution of the case.

 Data partitioning: creation and writing of

DataHandler objects necessary for the resolution
of the case.

C. Definition of a mobile agent

ComputeAgent is a mobile agent available on a lookup for

all the ComputingWorkers. When a ComputingWorker needs
one ComputeAgent, it gets a copy of it. This agent must
implement an interface ComputeAgentInterface, and redefine
the method execute. This method takes two parameters: one
Task and a set of MCAProperty; it returns a result. It is here
that we find the computation algorithm. We have to define the
different ComputeAgent of the computation case to define the
different Tasks.

There are two types of ComputeAgent:

 A Java agent: the code of the computation case is

developed in Java code. The ComputeAgent,
necessary for the executions of the task, is a class
that implements the Java interface
ComputeAgentInterface and redefines the method
execute. Then the code is completely written in Java
language and can use multiple Java API available.

 A native agent: this time, the code of the
computation case is already existing and developed
in another language (C/C++). It is here that adaptive
runtime for numerical code makes sense. (Fig. 4)

Fig. 4 Execution of a native task

Cyril Dumont et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 392-401

397

VI. APPLICATION EXAMPLE: THE JACOBI RELAXATION

The Jacobi Relaxation is an iterative algorithm that is used

to approximate Laplace differential equations. The Jacobi
Relaxation technique can be used in a variety of applications,
including the simulation of temperature transfer (as we’ll see
shortly).

A. Background

The problem that interests us is the temperature distribution in
a square box whose boundaries are subjected to a constant
temperature. From Fourier's law [37], which describes the
transport of heat in a homogeneous medium, we can take the
heat will spread within the field based on a dynamics
described by the following partial differential equation:

with the function representing the temperature and α the
coefficient of thermal diffusion in the area studied. In a closed
system (which is our case) the temperature will tend towards a
steady state. The problem is therefore to solve the Laplace
equation

We consider that the problem lies in the x0y plane. To

solve it, we will discretize square box into a mesh

with step and .
Obviously, the higher the accuracy threshold, the lower the
numerical solution will be close to the theoretical value.

Using the method of finite differences, we obtain

and we note that the function at point is the
average of its 4 adjacent points.

Fig. 5 Modeling of a square box: (a) a 2-D mesh; (b) communication between

each vertex at each iteration; (c) representation of a vertex in the

 plane.

1) sequential algorithm

To solve this problem we represent the function by a

matrix of real numbers and proposed the following
iterative scheme

By imposing a temperature at the boundaries of the domain,

the problem is solved by letting evolve the temperature until
the dynamics stabilizes. We use the Dirichlet boundary
condition - When imposed on an ordinary or a partial
differential equation, it specifies the values a solution needs to
take on the boundary of the domain.

We deduce the following algorithm

1. Initialization. We impose the value to all the points on
the West boundary (and the value to all
the points on the East (), North () and South
() boundaries.

2. Iteration. For each value , we calculate the average of
neighboring values. Then we compute the absolute value of
the difference of value between the old and the new value.
Finally we calculate to know the biggest
difference in iteration.

3. Test. We define threshold accuracy . If , the
process is stopped. Otherwise it restarts the iteration. The
process converges to the solution. If the accuracy threshold
was not reached, the process will be MAXITER maximum
iterations.

2) parallel algorithm

There are many ways to parallelize this algorithm. The

simplest way is to create as many threads as there are
processes on the network, where each process performs this
algorithm for a subsection of the matrix. This is known as a
sub-matrix decomposition. In this way, each process iterates
through one a sub-matrix of the overall matrix and updates the
values of the cells in its own sub-matrix.

This algorithm exhibits data parallelism due to the fact that the
same set of steps are applied to multiple pieces of data. In this
case, the procedure is an average being computed and the
different pieces of data are sub-matrix.

Cyril Dumont et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 392-401

398

Fig. 6 (a) sharing matrix in sub-matrix; (b) each process receives a sub-
matrix and the boundaries of neighbouring sub-matrices; (c) at each iteration
the boundaries are update and should be exchanged with the processes that

deal with neighbouring sub-matrices

With this partition, each sub-matrix may communicate with

two, three, or four neighbors, depending of their position
(respectively at a corner, a border, or in the center of the
whole matrix). This partition is more effective when the data
to processor ratio is large.

Communications appear at sub-matrix boundaries to send
boundaries values to neighbors and receive values from
neighbors.

B. Implementation of Jacobi Relaxation on our architecture

If a resolution of a specific computation case does not

require redefinition of a “specific” ComputingWorker. The
resolution of the Jacobi relaxation using our architecture
requires the development of two new “specific” classes:

 JacobiMaster: An agent, instance of this class, writes a

ComputationCase entry into MCASpace and gets the new
transaction. Then he writes two MCAProperty: one for the
desired accuracy and one for the maximum number of
iterations.
 This ComputingMaster divides the file containing the
matrix into files containing sub-matrix and he writes the
corresponding DataHandler entries on MCASpace.

 JacobiComputeAgent: This class derives from

ComputeAgentInterface. An agent mobile, instance of this
class, is on a Jini lookup, somewhere on the network, not
necessarily on the same machine as the MCASpace. This
agent reads the two MCAProperty. It reads data
corresponding to the task using the DataHandler.
 Then it executes a local compute, it updates the value
of each cell. For the boundaries, JacobiComputeAgent
need to communicate with their neighbours. Each agent
writes two, three or four DataHandler corresponding to
these boundaries.
 Before reading the data necessary to calculate its
boundaries, a JacobiComputeAgent use a barrier (cf. The
MCA Architecture) to wait until all other agents have
finished computing the current iteration. When the barrier
is passed the agent can execute a “border” compute using
the DataHandler corresponding to the boundaries of its
sub-matrix neighbouring.

VII. MAIN RESULTS

In this section, we report on experiments designed to test
the effectiveness of our approach. We start with results about
Jacobi computation published into 44th IEEE Conference on
Decision and control [39]. These results are also available on
network. It appears that our numerical results are equivalent
and our time measure provides interesting time distributions.
They highlight ration between computing time and
management time of platform.

We observe that data preparation is unimportant comparing
to agent space creation and management, but it cost increases
with size of data, but the ratio is quite weak.

Our tests are also about reliability. We do not have any
reference with equivalent work in numerical domain. The
scheduling of our tests starts by interruption of computing
resource. This is done easily by use of system interruption.
The observed effect is the cancellation of task registration.
Then its initial state is reinitialized. Next, a worker books this
task and redoes it as if it was a new one. By the end, the
results are obtained even if delay can be recorded.

Next test is about the share of computing resource. Because
we want to insure that components are not shared and also that
data are well managed, we used same computing resource by
to agent spaces. Then we observed what is loaded by both
spaces and we recorded code base of each loaded component.
It appears that code origin is preserved and also our control
strategy can be enforced by use of signature. We did not used
that in our experiments because its control involves a time
overhead.

We observed also memory mapping during experiments.
Our goal is not to find memory leaks but to check hierarchy of
access to main data. This step is equipped by use of managed
beans which notify read and write events to a bean console.
After several test suites, we do not identify any violation of
access from one agent space to another one. Of course, this is
not verification but a validation for convincing that our
approach has good properties.

Next, we recorded performance test by use of distinct
configurations of memory allocations. A configuration is
based on set of parameters which customize not only memory
size but also its subdivision into generations. This
configuration contains also a selection of garbage collector
algorithm dedicated for distributed system. To sum up,
garbage collector interruption cause delay in our simulation
and the number of passes can be reduced if young generation
size is increased. But it is also essential to limit the period of
each garbage pass.

As a drawback, when new computing resources are added
to our platform, their management involve memory allocation
and precise memory configuration is less important. So, we
concluded that this customization cost much more time to set
than an adapted management of computing resource.

By the end of our tests, we considered that a deployment on
architecture of eight computing resources was the low limit to
apply our Jacobi solver, but this value is closely related to the

Cyril Dumont et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 392-401

399

input data. We currently continue test step to determine low
limits with other reference matrices.

VIII. CONCLUSION

We explain through our document the important role of a
platform dedicated to simulation of numerical code. We
started from our past experience with mobile agents and our
knowledge into numerical computing and we build a case
study around a reference example.

This example stresses the advantage of our platform for
validation of software architecture. After a set of test, the
objective is to design the most well adapted architecture for a
distributed computation. Because, these features depend on
empirical concern (data and code), simulations is the most
efficient way. In our example, this was obtained after a
classical validation step through reference tests.

REFERENCES
[1] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart.

LINPACK Users' Guide. SIAM, Philadelphia, 1979.
[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz,

A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D.
Sorensen. LAPACK Users' Guide. SIAM, Philadelphia, 1992.

[3] A. J. C. Bik and D. B. Gannon. A note on native level 1 BLAS in Java.
Concurrency: Practice and Experience, 9(11):1091-1099, Nov. 1997.

[4] R. F. Boisvert, S. Browne, J. Dongarra, and E. Grosse. Digital software
and data repositories for support of scientific computing. In N. Adam,
B. K. Bhargava, and M. Halem, editors, Advances in Digital Libraries,
number 1082 in Lecture Notes in Computer Science, pages 61-72.
Springer-Verlag, New York, 1996.

[5] Guidelines for the Successful Acquisition and Management of
Software Intensive Systems (GSAM), Version 3, Chapter 5, USAF
Software Technology Support Center, May 2000.

[6] Pressman, Roger S., “Understanding Software Engineering Practices,
Required at SEI Level 2 Process Maturity,” Software Engineering
Training Series, Software Engineering Process Group, 30 July 1993.

[7] Java language proposal. Visual Numerics, Inc., 9990 Richmond Ave.,
Ste. 400, Houston, TX 77042-4548. Available at
http://www.vni.com/products/wpd/jnl/JNL/docs/intro.html, 1997.

[8] G. Fox, X. Li, Z. Qiang, and W. Zhigang. A prototype Fortran-to-Java
converter. Concurrency: Practice and Experience, 9(11):1047{1061,
Nov. 1997.

[9] Cyril Dumont, Fabrice Mourlin: A Mobile Computing Architecture for
Numerical Simulation UBICOMM 2007, November 4-9, 2007 -
Papeete, French Polynesia (Tahiti) IOS Press (6 pages),

[10] G.R. Andrews, 1991, Paradigms for process interaction in distributed
programs. ACM Computing Surveys, 23(1):49–90.

[11] E. Gendelman, L. F. Bic, and M. B. Dillencourt, 2000, An application-
transparent, platform-independent approach to rollback-recovery for
mobile-agent systems. In ICDCS 2000: 20th International Conference
on Distributed Computing Systems, Tapei, Taiwan.

[12] Frederick C. Knabe. Language Support for Mobile Agents. PhD thesis,
School of Computer Science,CarnegieMellon University, Pittsburgh,
Pennsylvania 15213,December1995. Technical report CMU-CS-95-
223.

[13] Andreea Barbu, Fabrice Mourlin: A Higher Order-Calculus
Specification for a Mobile Agent in JINI. SNPD 2003, Fourth
International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing
(SNPD'03), October 16-18, 2003, Lübeck, Germany pp 203-209.

[14] L.F. Bic, M. Fukuda, and M. Dillencourt, 1996, Distributed computing
using autonomous objects. IEEE Computer, 29(8).

[15] Anand Tripathi, Tanvir Ahmed, Vineet Kakani, Shremattie Jaman.
"Distributed Collaborations using Network Mobile Agents", 2nd
International Symposium on Agent Systems and Applcations/4th
International Symposium on Mobile Agents, September 2000.

[16] Anand R. Tripathi, Muralidhar Koka, Sandeep Karanth, Abhijit Pathak,
and Tanvir Ahmed. "Secure Multi-Agent Coordination in a Network
Monitoring System", Software Engineering for Large-Scale Multi-
Agent Systems, 2002 (SELMAS 2002), 251- 266, Springer, LNCS
2603, 2003.

[17] G. M. Gavalas D., Greenwood D. and O. M. Advanced network
monitoring applications based on mobile/intelligent agent technology.
Computer Communications Journal, 23(8):720–730, April 2000.
http://citeseer.nj.nec.com/268291.html.

[18] Garrido L, Sycara K. Multi-agent meeting scheduling: preliminary
experimental results. Proceedings of the Second International
Conference in Multi-Agent Systems (ICMAS’96), Kyoto, Japan; 1996.

[19] Bouzid M, Mouaddib A-I. Cooperative uncertain temporal reasoning
for distributed transportation scheduling. Proceedings of the
International Conference on Multi Agent Systems; 1998. pp. 397–398.

[20] A. Corradi, C. Stefanelli, F. Tarantino How to Employ Mobile Agents
in Systems Management, Proceedings of the Third International
Conference on The Practical Applications of Intelligent Agents and
Multi-Agent Technology (PAAM'98), London, UK, March 23-25,
1998. Pages 17-26.

[21] P. Bellavista, A. Corradi, C. Stefanelli: An Integrated Management
Environment for Network Resources and Services, IEEE Journal on
Selected Areas in Communication (JSAC), Special Issue on "Recent
Advances in Network Management and Operations", Vol. 18, No. 5,
pp.676-685, May 2000.

[22] F. Baschieri, P. Bellavista, A. Corradi, Mobile Agents for QoS
Tailoring, Control and Adaptation over the Internet: the ubiQoS Video
on Demand Service, published in the proceedings of the 2nd IEEE
International Symposium on Applications and the Internet (SAINT'02),
Nara, Japan, January 28-February 1, 2002, IEEE Computer Society
Press.

[23] Andreea Barbu et Fabrice Mourlin, "From higher order Pi calculus
specification to RMI implementation", CSITeA’03, International
Conference on Computer Science, Software Engineering, Information
Technology, e-Business, and Applications (June 5-7, 2003 Rio de
Janeiro, Brazil) BRJ Academic Editor pp241-251,

[24] Maamoun Bernichi et Fabrice Mourlin, "Java mobile agents for
monitoring mobile activities", In Eurocon'05 conference, Serbia &
Montenegro, Belgrade, November 22-24, 2005.SMB Editor pp63-73

[25] Bernichi, M. & Mourlin, F. "Software management based on mobile
agents", Second International Conference on Systems and Networks
Communications, IEEE Computer Society Press (6 pages), Cap Esterel,
France, Aout 2007

[26] Mekki, R. & Mourlin, F. "Mobile agent as interoperable mobile
service for monitoring ", Second International Conference on Systems
and Networks Communications, IEEE Computer Society Press, Porto,
Portugal, September 2009

[27] Dumont, C. & Mourlin, F. "Space based architecture for numerical
solving", ISE2008: 5th International Conference on Innovation in
Software Engineering, 10-12 December 2008 - Vienna, Austria (IEEE
CS 6 pages)

[28] Cyril Dumont, Fabrice Mourlin, "Adaptive runtime for numerical
code", MOSIM'2010: 8th ENIM/IFAC International Conference on
Modelling and Simulation, IOS Press (8 pages),

[29] Agourare, K. & Mourlin, F. "Authentication and Location Control via
RFID Analysis" ETFA 2009, Emerging Technologies and Factory
Automation, September 23 - 26, 2009, University of Balearic Islands
(UIB), Spain NTCS Editor 86 pages,

[30] Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.
1998. Numerical Recipes in C++: The Art of Scientific Computing.
Cambridge University Press, Cambridge, Mass,

[31] Berger, E.D.; Zorn, B.G.; McKinley, K.S. (2002). "Reconsidering
custom memory allocation". Proceedings of the 17th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications. ACM Press New York, NY, USA. pp. 1–12.

[32] Jose E. Moreira, Sam P. Midkiff, and Manish Gupta, From flop to
megaflops: Java for technical computing. Proceedings of the 11th
International Workshop on Languages and Compilers for Parallel
Computing, LCPC'98. IBM Research Report 21166, 1998.

[33] Bruno Blanchet, Escape Analysis: Correctness Proof, Implementation
and Experimental Results, in Proceedings of the 25th ACM SIGPLAN-

Cyril Dumont et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 392-401

400

SIGACT Symposium on Principles of Programming Languages,
January 19-21, 1998.

[34] Schatzman J. C.; Writing high performance Java code which runs as
fast as FORTRAN, C or C++, Society of Photo-Optical
Instrumentation Engineers, Bellingham, WA, INTERNATIONAL
(Revue) SPIE, Bellingham WA, ETATS-UNIS (2001) vol. 4521, pp.
106-114 ISBN 0-8194-4245-3,

[35] Guynes, C., Golladay R, & Huff R. (2000), Database security in a
client/server environment, SIGSAC Review, 14, pp. 9-12.

[36] Jan Newmarch, Foundations of Jini 2 Programming, 2006

[37] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces Principles, Patterns,
and Practice. Pearson Education, November 1999.

[38] J. Legras. Techniques de résolution des équations aux dérivées
partielles. Paris, Dunod, 1956

[39] J.-P. Aubin, A. M. Bayen, and P. Saint-Pierre. A viability approach to
Hamilton-Jacobi equations: application to concave highway traffic flux
functions. In 44th IEEE Conference on Decision and control and
European Control Conference, pages 3519–3524, Sevilla, Spain, Dec
2005.

Cyril Dumont et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (5) , 2010, 392-401

401

