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Beyond the uncoupled regime, the rigorous description of the dynamics of (piecewise) expanding coupled map lattices remains largely incomplete. To address this issue, we study repellers of periodic chains of linearly coupled Lorenz-type maps which we analyze by means of symbolic dynamics. Whereas all symbolic codes are admissible for sufficiently small coupling intensity, when the interaction strength exceeds a chain length independent threshold, we prove that a large bunch of codes is pruned and an extensive decay follows suit for the topological entropy. This quantity however does not immediately drops off to 0. Instead, it is shown to be continuous at the threshold and to remain extensively bounded below by a positive number in a large part of the expanding regime. The analysis is firstly accomplished in a piecewise affine setting where all calculations are explicit and is then extended by continuation to CML based on C 1 -perturbations of the individual map.

Introduction

Coupled Map Lattices (CML) were introduced almost thirty years ago to simulate the time evolution of spatially extended systems [START_REF] Kaneko | Period-doubling of kink-antikink patterns, quasiperiodicity in antiferro-like structures and spatial intermittency in coupled logistic lattice[END_REF]. Often designated as "discrete time dynamical systems with discrete space", their dynamics is generated by the iterations of a mapping acting on real sequences. In applications, these sequences usually represent the spatial profile of a physical quantity distributed in an extended domain; e.g. the status of an advection flow in atmospheric circulation [START_REF] Lind | Modeling velocity in gradient flows with coupled-map lattices with advection[END_REF], the distribution of a dispersed population in Ecology [START_REF] Solé | Spiral waves, chaos and multiple attractors in lattice models of interacting populations[END_REF] or the concentration of a chemical oscillator in a large vessel [START_REF] Waller | Spatial and temporal structure in systems of coupled nonlinear oscillators[END_REF].

While easy to implement, CML were specifically designed to preclude numerical instabilities and other asymptotic divergences that materialize in traditional PDE's and coupled ODE's models [START_REF] Oono | Computationally efficient modeling of ordering of quenched phases[END_REF]. Their simplicity and convenience contributed to their success as a simulation tool in many scientific disciplines [START_REF] Kaneko | Theory and Applications of Coupled Map Lattices[END_REF]. This buoyant usage in applications has naturally called for the development of a mathematical theory that could put the observed phenomenology onto a rigorous footing.

Whereas their numerical simulations are easily accessible, the rigorous description of the global dynamics of CML is usually not [START_REF] Chazottes | Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems[END_REF]. The latent existence of large/infinite dimensional attractors brings additional problems to standard difficulties that arise in the analysis of concrete dynamical systems. Moreover, their mappings are typically composed of an individual nonlinearity at each lattice site and a (diffusive-like) interaction between the sites. The relative weight of these components is quantified by a coupling parameter whose intensity has a deep impact on the attractor; an increase of coupling may bring its dimension from a large number down to or below 1.

Not surprisingly, mathematical results on arbitrarily large/infinite lattices have been limited to the cases where one of the ingredients dominates the dynamics. In particular, for (piecewise) expanding individual maps, accomplishments mostly concern the existence of physical measure in the weak interaction regime, when the CML resembles the interaction-free system, see e.g. [START_REF] Afraimovich | Topological properties of linearly coupled expanding map lattices[END_REF][START_REF] Bricmont | Coupled analytic maps[END_REF][START_REF] Bunimovich | Space-time chaos in coupled map lattices[END_REF][START_REF] Jiang | Equilibrium measures for coupled map lattices: Existence, uniqueness and finite-dimensional approximations[END_REF][START_REF] Keller | Uniqueness of the SRB measure for piecewise expanding weakly coupled map lattices in any dimension[END_REF]. In brief, these results are based on perturbation arguments applied to uniformly hyperbolic subsets. Proofs have however required substantial efforts and the introduction of original objects in order to be achieved for the models employed in simulations. For smooth real individual maps, some rigorous results can be found on synchrony phenomena that take place when the interaction prevails [START_REF] Fernandez | Global synchronisation in translation invariant coupled map lattices[END_REF][START_REF] Jost | Spectral properties and synchronization in coupled map lattices[END_REF]. But to the best of our knowledge, no study exists on the (global) CML dynamics beyond the uncoupled regime when the individual map is (piecewise) expanding. Of note, few papers have considered the entire coupling range by limiting the analysis to small lattices, basically with 2 sites [START_REF] Fernandez | Coupling two unimodal maps of simple kneading sequences[END_REF][START_REF] Keller | Some phase transitions in coupled map lattices[END_REF][START_REF] Koiller | Coupled map networks[END_REF]. Moreover, proofs of the phase transitions, i.e. the co-existence of two 'Gibbs phases' on a unique indecomposable attractor, have been given in specially designed examples [START_REF] Bardet | Phase transitions in a piecewise expanding coupled map lattice with linear nearest neighbour coupling[END_REF][START_REF] Gielis | Coupled map lattices with phase transitions[END_REF].

The aim of this paper is to provide insights into the dynamics of (standard) CML on large lattices with piecewise expanding individual maps, throughout the domain where the mapping remains expanding. For simplicity, focus is on the description of repellers in periodic chains of coupled piecewise increasing Lorenz-type [START_REF] Guckenheimer | Nonlinear oscillators, dynamical systems and bifurcations of vector fields[END_REF][START_REF] Rand | The topological classification of lorenz attractors[END_REF][START_REF] Robinson | Dynamical Systems[END_REF] maps. The analysis follows the approach developed in the case of 2 sites [START_REF] Coutinho | Symbolic dynamics of two coupled lorenz maps: From uncoupled regime to synchronisation[END_REF][START_REF] Fernandez | Route to chaotic synchronisation in coupled map lattices: rigorous results[END_REF]. It primarily consider piecewise linear maps and then extends the results by continuation to CML based on C 1 -perturbations of the individual map.

Our strategy consists in analyzing the symbolic dynamics associated with the restriction of the CML to its repeller in the expanding regime. An equation for spatio-temporal symbolic sequences is established whose solutions coincide with the codes of orbits lying in the repeller. By analyzing the equation, the maximal coupling parameter up to which all sequences are solutions (and hence the CML remains conjugated to its interaction-free counterpart) is computed. Beyond that threshold (which does not depend on the chain length), many sequences are pruned and coupling-dependent estimates of both forbidden and admissible sequences are established. Inspired by the physical nature of diffusive-type interactions, the main criteria for (non-)admissibility is the size of space-time reactangles where the orbits are composed of heterogeneous configurations, viz. when their coordinates are out of sync.

The estimates imply upper and lower bounds on the topological entropy of repellers, which become sharper and sharper as the coupling is decreased back to the threshold. Not only these bounds apply to coupled periodic chains of any (even) length, but there are shown to be extensive, namely to scale linearly with the period length. In that way, we prove that while a macroscopic change of the dynamics occurs beyond the uncoupled regime, the dynamics remains "extensively" chaotic in a large part of the expanding domain.

Model and main results

We consider basic Coupled Map Lattices (CML) on periodic chains Z 2L := Z/2LZ with even number 2L of sites (L 1 is an arbitrary integer). 1 Thus the phase space is the set R Z 2L of periodic configurations x = {x s } s∈Z 2L with real components x s , endowed with uniform norm • . In this set, the dynamics is generated by the iterations of the map F ,2L defined by [START_REF] Chazottes | Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems[END_REF][START_REF] Kaneko | Theory and Applications of Coupled Map Lattices[END_REF] (

F ,2L x) s = (1 -)f (x s ) + 2 (f (x s-1 ) + f (x s+1 )), ∀s ∈ Z 2L ,
where ∈ [0, 1] is the coupling strength and the individual map f is the piecewise affine symmetric expanding map [START_REF] Guckenheimer | Nonlinear oscillators, dynamical systems and bifurcations of vector fields[END_REF][START_REF] Rand | The topological classification of lorenz attractors[END_REF][START_REF] Robinson | Dynamical Systems[END_REF], see Figure 1, left.

f (x) = ax -(a -1)H(x -1/2), ∀x ∈ R.
Here the slope a > 2 is fixed and H denotes the Heaviside function

H(x) = 0 if x < 0 1 if x 0 ∀x ∈ R.
The assumption a > 2 implies that the repeller k f of the individual dynamical system (R, f ), namely the subset of points x ∈ R whose forward orbit {f t (x)} t 0 is bounded, is a Cantor set bounded away from the discontinuity x = 1/2. As a consequence, k f is uniformly hyperbolic and hence structurally stable with respect to small C 1 -perturbations. Moreover, the system (k f , f ) is topologically conjugated to the full Bernoulli shift with two symbols and 1 Assuming even number of sites makes the analysis much simpler. However, it is likely that the existence of extensive bounds on the topological entropy does not depend on that assumption and holds for periodic chains of any number of sites. Similarly, these bounds might hold for one-dimensional lattices with other types of boundary conditions instead of periodic ones. as such, its topological entropy is equal to log 2. (For a definition and basic properties of the topological entropy in dynamical systems, see e.g. [START_REF] Katok | Introduction to the Modern Theory of Dynamical Systems[END_REF][START_REF] Robinson | Dynamical Systems[END_REF].)

In brief, the individual system is the most basic example of a simultaneously chaotic and robust system. Given such simple features for the individual dynamics, we would like to get insights into the corresponding characteristics for the CML (R Z 2L , F ,2L ). In particular, we ask about the topological entropy in the repeller K ,2L (which, again, is defined as the set of points whose forward orbit remains bounded). For simplicity, we only consider the case where the CML is expanding, namely when ∈ [0, e ] where e = a-1 2a is independent of L, see equation [START_REF] Guckenheimer | Nonlinear oscillators, dynamical systems and bifurcations of vector fields[END_REF] in Appendix A. Structural stability of the individual system implies that the same property holds for the uncoupled system F 0,2L , uniformly in the lattice size [START_REF] Mackay | Dynamics of networks: Features which persist from the uncoupled limit, Stochastic and spatial structures of dynamical systems[END_REF]. As a consequence, (K ,2L , F ,2L ) and (K 0,2L , F 0,2L ) remain topologically conjugated provided that is small enough. Thanks to the piecewise affine assumption, the maximal coupling parameter up to which this property persists can be explicitly computed. When formulated in terms of the topological entropy h ,2L := h top (K ,2L , F ,2L ), the robustness of the uncoupled system with respect to small variations of coupling writes as follows.

Proposition 2.1. For every L 1, we have h ,2L = h 0,2L = (2L) log 2 iff c := a-2 2a . Notice that the maximal coupling parameter c does not depend on L and c < e . The proof of this statement relies on symbolic dynamics and is given in Section 3.2.

Since (2L) log 2 is a maximum for the CML entropy, Proposition 2.1 stipulates that this quantity must decrease beyond the uncoupled regime (i.e. h ,2L < (2L) log 2 for all L when > c ). However, it does not provide any estimate about the decay behavior when the number L of sites diverges. A more accurate analysis of non-admissible sequences beyond c shows that this decay is actually extensive. Proposition 2.2. For every > c , there exists δ > 0 such that for all L 1, we have h ,2L < (2L)(log 2 -δ).

For the proof, see Section 3.3. Of note, one expects that δ → 0 when → + c . This property will follow from the next statement.

Whereas the CML entropy is subjected to extensive decay for > c , it does not immediately drop off to zero. Uniform positive lower bounds exist for the entropy per lattice site h ,2L /(2L) provided that is sufficiently close to the threshold c . More precisely, we have the following statement whose proof is given in Section 4.

Proposition 2.3. For every 0 < δ < log 2, there exists δ > c such that for all < δ and L 1, we have h ,2L (2L)δ. This phenomenology, namely the existence of upper and lower bounds on the entropy per lattice site across the expanding coupling range, is not limited to piecewise affine CML. It extends to every CML with individual maps that are small C 1 -perturbations of the piecewise affine map f , see Figure 1, right. In order to accurately state this result, let g : R → R be a continuous and increasing map for x < 1/2 and for x 1/2 and let

a g := inf x<y< 1 2 or 1 2 x<y g(y) -g(x) y -x and g -f := sup x∈R |g(x) -f (x)|. (1) 
Let also F g, ,2L denote the CML with individual map g, namely

(F g, ,2L x) s = (1 -)g(x s ) + 2 (g(x s-1 ) + g(x s+1 )), ∀s ∈ Z 2L . (2) 
Theorem 2.4. For every 0 < µ < min{ c , ( ec )/2}, there exists η > 0 such that for every < e -µ and L 1, any CML F g, ,2L with individual map g satisfying g -f + |a g -a| < η has a repeller I g, ,2L on which the entropy satisfies

δ h top (I g, ,2L , F g, ,2L ) 2L δ ,
where the upper and lower bounds → δ and → δ have the following properties

δ = log 2 if < c -µ δ < log 2 if > c -µ , lim →( c -µ) + δ = log 2,
and δ = log 2 if < c + µ δ < log 2 if > c + µ
For the proof, see Section 5. A schematic illustration of the entropy bounds is given in Figure 2. 

Symbolic dynamics: Basic features

Symbolic description of the CML

In order to define a symbolic dynamics for the CML, we first introduce a coding that is inspired from the natural coding of the individual map. Given a periodic configuration x ∈ R Z 2L , a periodic symbolic configuration {θ s } s∈Z 2L ∈ {0, 1} Z 2L is assigned according to the components location with respect to 1/2. Namely, we set

θ s = H(x s -1/2), ∀s ∈ Z 2L
where H still denotes the Heaviside function. Now, the code θ = {θ t } t 0 associated with x is simply the sequence of symbolic configurations (the symbolic sequence for short) associated with the iterates F t ,2L x, viz. θ t s = H((F t ,2L x) s -1/2), ∀s ∈ Z 2L , t 0. The symbolic dynamics of the CML relies on the property that configurations in the repeller can be entirely determined by their code. This is a consequence of Lemma 3.1 below. Moreover, their expression is known explicitly and depends upon the function χ ,2L defined by

χ ,2L (θ) = a -1 a +∞ k=0 a -k n∈Z 2L (k) n,2L θ k n
where the coefficients

(k)
n,2L are the entries of the inverse powers C -k ,2L of the coupling operator C ,2L (see Appendix A), namely we have

(C -k ,2L x) s = n∈Z 2L (k) n,2L x s+n , ∀s ∈ Z 2L (3) 
for all k 0 and x ∈ R Z 2L . This expression follows from the fact that C ,2L is a convolution operator on R Z 2L and the inverse powers C -k ,2L are well-defined when < e and are also convolution operators [START_REF] Afraimovich | Topological properties of linearly coupled expanding map lattices[END_REF]. Throughout the paper, we shall extensively use various properties of the coefficients (k) n,2L . These properties are collected in Appendix A. In particular, we show in Claim A.3 that

+∞ k=0 a -k n∈Z 2L | (k) n,2L | < +∞
which implies that the function χ ,2L is well-defined. Hence, not only this function provides an expression of configurations in the repeller but it can be used to characterize those symbolic sequences that are actually the codes of such configurations. Let R sp and R ti respectively denote the space and time translations acting on symbolic sequences, i.e.

(R sp θ) t s = θ t s+1 and (R ti θ) t s = θ t+1 s , ∀s ∈ Z 2L , t 0. Lemma 3.1. A periodic configuration x ∈ R Z 2L belongs to K ,2L iff we have x s = χ ,2L • R s sp (θ), ∀s ∈ Z 2L
where θ is the code associated with x. Independently, given a symbolic sequence θ, the configuration {χ ,2L • R s sp (θ)} s∈Z 2L belongs to K ,2L iff θ solves the equation

θ t s = H χ ,2L • R s sp • R t ti (θ) -1/2 , ∀s ∈ Z 2L , t 0. ( 4 
)
Notice that a version of this statement for L = 1 has been given in [START_REF] Fernandez | Route to chaotic synchronisation in coupled map lattices: rigorous results[END_REF].

Proof. We only show that if x ∈ K ,2L , then it writes {χ ,2L • R s sp (θ)} s∈Z 2L . The proofs of other properties are direct and left to the reader. The action of the mapping F ,2L can be written in an operator form as follows

F ,2L x = aC ,2L x -(a -1)C ,2L θ 0 .
When < 1/2 (which is the case when < e ), all eigenvalues of C ,2L are positive and the smallest eigenvalue is 1-2 . Hence C ,2L is invertible and we have

C -1 ,2L = (1 -2 ) -1
. By inverting the previous relation and iterating, one obtains the following expression

x = a -t C -t ,2L F t ,2L x + (a -1) t-1 k=0 a -(k+1) C -k ,2L θ k , ∀t 0.
If the configuration x ∈ K ,2L , then the definition of this set implies that the norm F t ,2L x remains bounded for all times. The assumption < e then yields lim

t→+∞ a -t C -t ,2L F t ,2L x = 0.
Hence by taking the limit t → +∞ in the expression of x above, we obtain the following expression for its components

x s = a -1 a +∞ k=0 a -k (C -k ,2L θ k ) s , ∀s ∈ Z 2L
which is the desired expression.

Every solution of the admissibility equation ( 4) is called an admissible (symbolic) sequence. Let A ,2L be the set of solutions, endowed with the product topology (of discrete topology). Lemma 3.1 can be interpreted as the existence of a conjugacy, i.e. a uniformly continuous bijection,2 between the symbolic system (A ,2L , R ti ) and the CML (K ,2L , F ,2L ). In general, this conjugacy needs not be an homeomorphismand the topological entropies of the two systems need not be equal -because A ,2L may not be compact. However, uniform continuity and monotonicity of the entropy with respect to set inclusion assert the inequalities (see e.g. Proposition 3.1.6 and its proof in [START_REF] Katok | Introduction to the Modern Theory of Dynamical Systems[END_REF])

sup A⊂A ,2L , A compact, invariant h top (A, R ti ) h ,2L h top (A ,2L , R ti ), ∀ < e , (5) 
where h top (A, R ti ) and h top (A ,2L , R ti ) denote the entropy of the symbolic (sub-)systems.

The uncoupled regime < c

Based on Lemma 3.1, our strategy to investigate topological properties of the CML dynamics is to determine which symbolic sequences are solutions of the admissibility equation depending on the coupling parameter. Here, we consider the simplest case where all sequences are admissible and we rely on basic properties of the coefficients (k) n,2L in χ ,2L to compute the maximal parameter up to which this property holds. Lemma 3.2. All symbolic sequences are admissible iff < c := a-2 2a . Proof. A sequence θ solves the admissibility equation ( 4) iff

χ ,2L • R s sp • R t ti (θ) < 1/2 if θ t s = 0 χ ,2L • R s sp • R t ti (θ) 1/2 if θ t s = 1 ∀s ∈ Z 2L , t 0.
Therefore, all symbolic sequences are admissible when the following inequalities hold sup

θ∈Ω 2L : θ 0 0 =0 χ ,2L (θ) < 1/2 and inf θ∈Ω 2L : θ 0 0 =1 χ ,2L (θ) 1/2.
where Ω 2L is the set of all symbolic sequences, viz.

Ω 2L := θ = {θ t s } s∈Z 2L ,t 0 , : θ t s ∈ {0, 1} .
By continuity of the function θ → χ ,2L (θ) and compactness of Ω 2L , these upper and lower bounds are attained. Furthermore, the normalization

n∈Z 2L (k) n,2L = 1 ∀k 0 (see Claim A.2 in Appendix A) implies that following symmetry holds χ ,2L (1 -θ) = 1 -χ ,2L (θ) 
where 1 -θ := {1 -θ t s } s∈Z 2L ,t 0 . Consequently, the previous conditions are equivalent to sup

θ∈Ω 2L : θ 0 0 =0 χ ,2L (θ) < 1/2. ( 6 
)
Now, using the properties

(0) n,2L = δ n,0 mod 2L and (k)
2n,2L > 0 and

(k)
2n+1,2L < 0 (see Lemma A.1 in Appendix A again) in the expression of χ ,2L , it easily follows that sup

θ∈Ω 2L : θ 0 0 =0 χ ,2L (θ) = χ ,2L (θ 0 [(10) L ] ∞ )
where θ 0 0 = 0 and θ 0 s is arbitrary for s = 0 mod 2L. Moreover [( 10) L ] ∞ is a shortcut for θ t s = H((-1) s ), ∀s ∈ Z 2L , t 1. In particular, the maximum is attained for a sequence of 2-periodic symbolic configurations (hence it does not depend on L), viz.

χ ,2L (θ 0 [(10) L ] ∞ ) = χ ,2 ([0θ 0 1 ][10] ∞ ) = a -1 a +∞ k=1 a -k (k) 0,2 = a -1 2a 1 a -1 + 1 b -1 .
where we have used the explicit expression of (k) 0,2 from equation ( 15) in Appendix A and b := a(1 -2 ). It immediately follows that the condition [START_REF] Chazottes | Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems[END_REF] 

holds iff b > 2, i.e. iff < c . Proof of Proposition 2.1. Lemma 3.2 states that A (2L) = Ω 2L when < c .
Since this set is compact, the conjugacy between the symbolic system (A ,2L , R ti ) and the CML (K ,2L , F ,2L ) is a homeomorphism. Hence, we have

h ,2L = h top (Ω 2L , R ti ) = (2L) log 2 is maximal in this domain.
The equality h c ,2L = (2L) log 2 will be shown in the proof of Proposition 2.3 below. On another hand, the end of the proof of Lemma 3.2 shows that

χ ,2L (θ 0 [(10) L ] ∞ ) > 1/2
for every sequence with θ 0 0 = 0 when > c . By continuity of the map θ → χ ,2L (θ), there exists T ,2L 1 such that for any sequence θ so that

θ 0 0 = 0 and θ t = (10) L 1 t T ,2L (7) 
we have χ ,2L (θ) > 1/2; hence θ is not admissible. By a standard argument that we detail below, this implies that h top (A (2L) , R ti ) < (2L) log 2 which, together with the inequality (5), implies that h ,2L < (2L) log 2 when > c , as desired.

The remaining argument relies on the fact that the topological entropy of the symbolic subshift (A ,2L , R ti ) can be characterized as follows [START_REF] Katok | Introduction to the Modern Theory of Dynamical Systems[END_REF][START_REF] Lind | An Introduction to Symbolic Dynamics and Coding[END_REF] 

h top (A ,2L , R ti ) = lim T →∞ log N T,2L T = inf T 1 log N T,2L T .
where N T,2L is the number of admissible words of length T in A ,2L . In particular, we must have

h top (A ,2L , R ti ) log N T ,2L T
for every T 1. In the present case, the non-admissibility of the sequences that satisfy relation [START_REF] Coutinho | Symbolic dynamics of two coupled lorenz maps: From uncoupled regime to synchronisation[END_REF] and of symmetric sequences imply the following inequality

N T ,2L +1,2L 2 (2L)(T ,2L +1) -2 2L
which yields

h top (A ,2L , R ti ) log N T ,2L +1,2L T ,2L + 1 < (2L)(T ,2L + 1) T ,2L + 1 log 2 = (2L) log 2.
The proof is complete. 2 For > c , it is reasonable to expect that the entropy h ,2L would monotonically decrease with . While this property remains to be proved, a similar trait can be shown for the symbolic system. This is an immediate consequence of the fact that admissibility of symbolic sequences is a monotonic property in a neighborhood of c , namely

A 1,2L ⊃ A 2 ,2L ,
when 1 < 2 (are sufficiently close to c ). The proof is identical to the one of Proposition 3.2 in [START_REF] Fernandez | Route to chaotic synchronisation in coupled map lattices: rigorous results[END_REF] and essentially relies on the following property (which in turn is a consequence of the fact that (k) L,2L is the entry with smallest modulus among the configuration

{ (k) n,2L } n∈Z 2L ) sup θ 0 ∈{0,1} Z 2L : θ 0 =(10) L (C -k ,2L θ 0 ) 0 = (C -k ,2L θ0 ) 0 , ∀k 1,
where θ0 s = H((-1) s ) for all s ∈ Z 2L , except for s = L mod 2L. The details are left to the reader.

Finite spatio-temporal word non-admissibility when > c

As shown in the end of the proof of Proposition 2.1 above, beyond the uncoupled regime, the CML entropy must be smaller than its maximal value for every even number of sites, viz. h ,2L < (2L) log 2 for all L 1. In order to obtain a non-trivial uniform upper bound for the entropy per lattice site, one needs to refine the restriction (7) on admissible sequences. One way to proceed is to demonstrate that the presence of specific (large) spatio-temporal motifs in a sequence induces non-admissibility. This is the purpose of the next statement. 1 such that for every L > L , every symbolic sequence θ ∈ Ω 2L for which there exists (s 0 , t 0 ) such that (see Figure 3)
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   either θ t0 s0 = 0 and θ t0+t s0+s = H((-1) s ) or θ t0 s0 = 1 and θ t0+t s0+s = H((-1) s+1 ) ∀ -L s < L , 1 t T is not admissible.
Proof. We begin to prove that if two symbolic sequences coincide on a sufficiently large rectangular space-time window that contains the origin, then their image under χ ,2L are arbitrarily close to each other. Given L, L , T 1 with L < L, let θ, θ ∈ Ω 2L be two sequences such that

θ t s = θt s , ∀ -L s < L , 0 t T.
Since we have |θ t s -θt s | 1 for the remaining pairs (s, t), it follows from the definition of the function χ ,2L above that

|χ ,2L (θ) -χ ,2L ( θ)| m T + m L ,L,T where m T = a -1 a +∞ k=T +1 a -k n∈Z 2L | (k) n,2L | and m L ,L,T = a -1 a T k=0 a -k -L n<-L or L n<L | (k) n,2L |.
The first term m T is estimated using the property

n∈Z 2L | (k) n,2L | = (1-2 ) -k (Claim A.3 in Appendix A -recall that b = a(1 -2 )) m T = a -1 a +∞ k=T +1 a -k ( (k) 0,2 - (k) 1,2 ) = a -1 a b -T b -1 .
In particular, since b > 1 when < e , we have lim T →+∞ m T = 0. In order to control the second term m L ,L,T , we consider the entries

{ (k)
n } n∈Z of the inverse powers C -k of the coupling operator C defined on bounded configurations of the infinite lattice Z. (Just as for its periodic version, the operator C is invertible when < e and its inverse powers are all convolution operators [START_REF] Afraimovich | Topological properties of linearly coupled expanding map lattices[END_REF].) That is to say, given x ∈ ∞ (Z) we have

(C -k x) s = n∈Z (k) n x s+n ∀s ∈ Z.

The coefficients (k) n

have the same sign properties as the (k) n,2L in Lemma A.1, see relation [START_REF] Kaneko | Theory and Applications of Coupled Map Lattices[END_REF] in Appendix A. Moreover we have

(k) n,2L = m∈Z (k) n+m(2L) , ∀n ∈ Z 2L .
This easily implies the following inequality

-L n<-L or L n<L | (k) n,2L | -L n<-L or L n<L | (k) n | = (C -k x L ) 0
where the infinite configuration x L is defined by (see Figure 4)

s L L 1 s x L 1 1 Figure 4. Graphic representation of the configuration x L defined in the proof of Lemma 3.3. (x L ) s = (H(s -L ) + H(-s -L -1)) (-1) s , ∀s ∈ Z.
We have x L = 1 for all L 1 and the sequence {x L } L 1 point-wise converges to 0 (i.e. the configuration defined by x s = 0 for all s ∈ Z) as L → +∞. Convolution operators commute with point-wise limits of equibounded sequences [START_REF] Afraimovich | Topological properties of linearly coupled expanding map lattices[END_REF]. It results that for every k 0, we have lim

L →+∞ (C -k x L ) 0 = (C -k 0) 0 = 0
which yields lim L ,L→+∞ m L ,L,T = 0 for every T 1. This completes the first part of the proof. Now given > c , let η = χ ,2 ([0θ 0 1 ][10] ∞ )-1/2 > 0 where θ 0 1 is arbitrary (see end of the proof of Lemma 3.2). According to the first part of the proof, let T be sufficiently large such that m T < η/2. Then, let L be large enough such that m L ,L,T < η/2 for every L > L . By construction, any sequence θ ∈ Ω 2L where θ 0 0 = 0 and θ t s = H((-1) s ) for |s| < L and 1 t T is such that

|χ ,2L (θ) -χ ,2 ([0θ 0 1 ][10] ∞ )| m T + m L ,L
,T < η and hence χ ,2L (θ) > 1/2. Since θ 0 0 = 0, this shows that this sequence can not be admissible. By symmetry, one proves that any sequence such that θ 0 0 = 1 and θ t s = H((-1) s+1 ) for |s| < L and 1 t T is also not admissible. Finally, for any symbolic sequence θ as in the statement, the space-time translated sequence R s0 sp • R t0 ti (θ) must be of one of the previous types. As such, θ cannot be admissible and the proof is complete.

Proof of Proposition 2.2. Here L and T refer to the integers that were defined in Lemma 3.3. We are going to prove that this Lemma implies the existence of δ 1 , δ 2 > 0 for every > c such that

h top (A ,2L , R ti ) 2L(log 2 -δ 1 ) + δ 2 , ∀L > L .
Then letting L be sufficiently large such that δ1 := δ 1 -δ 2 /(2 L) > 0 and using from Proposition 2.1 that δ2 := log 2 -max 1 L< L h ,2L 2L > 0, the Proposition easily follows with δ = min{ δ1 , δ2 }.

Recall from the proof of Proposition 2.1 that we must have h

top (A ,2L , R ti ) log N T +1,2L
T +1

where N T,2L denotes the number of admissible words of length T in A ,2L . Let now L > L . A word {θ t s } t=0,••• ,T s∈Z 2L can be admissible only if each (nonoverlapping) restriction on spatial strips of width 2L namely

{θ t s } t=0,••• ,T s=r(2L ),••• ,(r+1)(2L )-1 , ∀r = 0, • • • , L L - 1 
(where • denotes the floor function) is distinct from any forbidden motif given in Lemma 3.3. It means that if θ 0 r(2L )+L = 0 then there must be -L s < L and 1 t T such that θ t r(2L )+L +s = H((-1) s ) and similarly if θ 0 r(2L )+L = 1. Notice that, given θ 0 r(2L )+L in such motifs, the other symbols for t = 0 and -L s < L , s = 0 are arbitrary. Hence there are 2 2L -1 motifs for each choice of θ 0 r(2L )+L and thus there are 2 2L forbidden motifs for each r. Consequently, there remain at most 2 2L (T +1) -2 2L choices of admissible motifs on each strip s = r(2L ), • • • , (r+1)(2L )-1. Therefore, there are at most (2 2L (T +1) -2 2L ) L L admissible sub-words on the strip s = 0, • • • , L L L -1. Assuming maximal diversity for the remaining sites s = L L L , • • • , L -1, we finally obtain the following upper bound

N T +1,2L (2 2L (T +1) -2 2L ) L L 2 (L-L L L )(T +1)
from which, using basic inequalities for the floor function (viz. x-1 < x x for all x ∈ R), it easily follows that log N T +1,2L

T + 1 2L(log 2 -δ 1 ) + δ 2 as desired, where

δ 1 = -log(1-2 -2L T ) 2L (T +1)
> 0 and δ 2 = L log 2. 2

Families of admissible subshifts with positive entropy per lattice unit

The strategy of the proof of Proposition 2.3 consists in showing the admissibility of certain symbolic subshifts that are simultaneously compact and with topological entropy equal to (2L)δ where δ > 0 approaches log 2 as → + c . Compactness implies the lower bound h ,2L (2L)δ as desired. More precisely, we introduce a one-parameter family of nested subshifts with appropriate entropy in the limit of large lattices, and we prove couplingdependent admissibility for every set in this family.

The subshift definition relies on the following terminology. The symbolic configurations 0 2L and 1 2L are called homogeneous configurations. Any other configuration is said to be heterogeneous. Now, given a configuration {θ s } := {θ s } s∈Z 2L , let the function σ : {0, 1} Z 2L → {0, 1} be defined by

σ({θ s }) = 0 if {θ s } is homogeneous 1 if {θ s } is heterogeneous
The idea behind the definition of the subshifts is to restrict repeated occurrences of heterogeneous configurations. Recall that symbolic sequences are denoted by θ = {θ t } t 0 where each θ t is a symbolic configuration. Given

ν ∈ [0, 1], let Ω ν,2L = θ ∈ Ω 2L : t2-1 t=t1 σ(θ t ) ν(t 2 -t 1 ) , ∀0 t 1 < t 2
where • is the ceiling function. Notice that Ω 1,2L contains all symbolic sequences, Ω 0,2L only consists of homogeneous sequences and Ω ν1,2L Ω ν2,2L when ν 1 < ν 2 . Moreover, we shall prove below that the sequence {h top (Ω n n+1 ,2L , R ti )} n 0 (regarded as a sequence of sequences indexed by L) uniformly converges to {(2L) log 2} L 1 . Together with the following statement, this property suffices to ensure that Proposition 2.3 holds. Note that the proof of Lemma 4.2 proves that each sequence {h top (Ω n n+1 ,2L , R ti )} n 0 is strictly increasing. We believe that the function ν → h top (Ω ν,2L , R ti ) is actually strictly increasing. Lemma 4.1. (i) For every > c , there exists ν ∈ [0, 1) such that for every ν < ν we have

Ω ν,2L ⊂ A ,2L , ∀L 1.
Moreover, for every ν > ν and L 1, some of the sequences in Ω ν,2L are not admissible. (ii) The map → ν is a decreasing Devil's staircase with limit lim → + c ν = 1.

Proof. Since each set Ω ν,2L is compact and is invariant under the action of θ → 1 -θ, the reasoning at the beginning of the proof of Lemma 3.2 can be repeated here to conclude that Ω ν,2L ⊂ A ,2L iff sup

θ∈Ω ν,2L : θ 0 0 =0 χ ,2L (θ) < 1/2 (8)
The strategy to determine the optimal ν is to obtain a manageable expression for this supremum. Recall that the definition of χ ,2L , namely

χ ,2L (θ) = a -1 a +∞ k=0 a -k (C -k ,2L θ k ) 0 involves inverse powers C -k ,2L
of the coupling operator whose entries

(k) n,2L
(see equation ( 3)) have properties listed in Lemma A.1. In particular, the sign property implies that (C -k ,2L θ k ) 0 (k 1) is maximum for θ k = ( 10)

L (i.e. θ k s = H((-1) s ) for all s ∈ Z 2L ). Moreover the normalization n∈Z 2L (k) 
n,2L = 1 (Claim A.2) indicates that, among the two homogeneous configurations, (C -k ,2L θ k ) 0 reaches its maximum for θ k = 1 2L . Therefore, given any sequence θ ∈ Ω ν,2L such that θ 0 0 = 0, the sequence θ defined by θt =    θ 0 if t = 0 (10) L if t 1 and θ t is heterogeneous 1 2L if t 1 and θ t is homogeneous also belongs to Ω ν,2L (because σ( θt ) = σ(θ t ) for all t 0) and satisfies χ ,2L (θ) χ ,2L ( θ). Accordingly, the supremum in ( 8) is attained in the subset where all sequences are composed (for t 1) of configurations that are either (10) L or 1 2L and in particular 2-periodic, viz. we have sup

θ∈Ω ν,2L : θ 0 0 =0 χ ,2L (θ) = sup θ∈Ω ν,2L : θ 0 0 =0 and θ t ∈{(10) L ,1 2L }, ∀t 1 χ ,2L (θ) = sup θ∈Ων,2 : θ 0 0 =0 and θ t ∈{10,11}, ∀t 1 χ ,2 (θ)
Finally, we proved in [START_REF] Coutinho | Symbolic dynamics of two coupled lorenz maps: From uncoupled regime to synchronisation[END_REF] the existence of a map → ν such that sup θ∈Ων,2 : θ 0 0 =0 and θ t ∈{10,11}, ∀t 1

χ ,2 (θ) < 1/2 iff ν < ν
We also showed that this map is a decreasing Devil's staircase with limit lim → + c ν = 1. This completes the proof of the Lemma. We now study properties of the subshift entropy h top (Ω ν,2L , R ti ). This quantity is an increasing function of ν that can be characterized by an algebraic equation (see equation ( 14) in [START_REF] Coutinho | Symbolic dynamics of two coupled lorenz maps: From uncoupled regime to synchronisation[END_REF] for the equation of h top (Ω ν,2 , R ti )).

For our purpose here, it is enough (and simpler) to consider the entropy h n,2L := h top (Ω n n+1 ,2L , R ti ) of the sets Ω n n+1 ,2L that consist of all symbolic sequences for which the length of any heterogeneous word is at most n. 3 Lemma 4.2. For every n 1, there exists δ n > 0 with limit lim n→∞ δ n = log 2 such that we have h n,2L (2L)δ n for all L 1.

Proof. h n,2L is the exponential rate of increase of the number N t of admissible words of length t in Ω n n+1 ,2L [START_REF] Katok | Introduction to the Modern Theory of Dynamical Systems[END_REF][START_REF] Lind | An Introduction to Symbolic Dynamics and Coding[END_REF]. Words in this set conclude with either an homogeneous configuration or an heterogeneous word of length at most n. Given t 1 (not smaller than n), let N 0 t be the number of admissible words of length t with homogeneous suffix and for k = 1, • • • , n, let N 1 k t be the number of admissible words of length t with heterogeneous suffix of length (exactly) k. Obviously we have N t = N 0 t + n k=1 N 1 k t and in order to obtain the growth rate of N t , we are going to establish an induction relation for N 0 t . Firstly, any homogeneous configuration can follow any admissible word to form another admissible word. Since there are two homogeneous configurations, this implies that N 0 t+1 = 2N t . Moreover, it is easy to see that we have

N 1 k+1 t+1 = α 2L N 1 k t for k = 1, • • • , n -1 where α 2L = 2 2L -2 is the number of heterogeneous configurations. Similarly, we have N 1 1 t+1 = α 2L N 0 t .
Based on these relations, we get the desired induction

N 0 t+1 = 2 N 0 t + n k=1 N 1 k t = 2 n k=0 α k 2L N 0 t-k
Since all coefficients in the right hand side are positive, the companion matrix associated with this induction is non-negative and irreducible. By the Perron-Frobenius Theorem, it results the quantity N 0 t has the following behavior

lim t→+∞ N 0 t+1 N 0 t = λ n,2L
where λ n,2L is the largest positive solution of the equation

λ n+1 -2 n k=0 α k 2L λ n-k = 0 (9) 
(the only one for which all components of the corresponding eigenvector are positive). The previous limit implies that

h n,2L := lim t→+∞ log(N t ) 1/t = lim t→+∞ log(N 0 t ) 1/t = log λ n,2L .
In order to complete the proof, we use the equation above to show that for every 0 < δ < log 2, there exists n δ 1 such that for all n n δ , we have

h n,2L (2L)δ ∀L 1.
We begin to prove that lim n→+∞ λ n,2L = 2 2L for every L 1. The equation ( 9) is equivalent to p n,2L (λ) = 1 where the function p n,2L is defined by

p n,2L (λ) = 2 n k=0 α k 2L λ -(k+1) .
This function has the following properties

• λ → p n,2L (λ) is strictly decreasing, • p n,2L (1) > 1, • p n+1,2L (λ) > p n,2L (λ) • p n,2L (α 2L + 2) < p ∞,2L (α 2L + 2) = 1 which immediately imply that every sequence {λ n,2L } n 1 is strictly increas- ing in [1, α 2L + 2]. Moreover, a direct computation shows that p n,2L (α 2L ) = 2 n+1 α 2L which yields λ 2 2L-1 -2,2L = α 2L . Accordingly, the series p ∞,2L (λ) is uniformly convergent for λ 2 2L-1 -1,2L λ α 2L + 2.
This function is strictly increasing and it easily follows that lim n→+∞ λ n,2L = α 2L + 2 = 2 2L as desired. Uniform control on the asymptotic behavior of λ n,2L will be granted by the following relation which is a consequence of ( 9)

λ n+1 n,2L = 2 n k=0 α k 2L λ n-k n,2L > α n 2L
Accordingly, we have

h n,2L > n n + 1 log α 2L > n n + 1 log(2 2L-1 ) > (2L) 1 - 1 n + 1 - 1 2L log 2 
Now, given 0 < δ < log 2, let L δ > 1 be such that 1 -1 L δ log 2 δ. Using that lim n→+∞ λ n,2L = 2 2L , let ñδ be sufficiently large such that

h ñδ ,2L (2L)δ, ∀L ∈ {1, • • • , 2L δ -1}.
The inequality above and the definition of L δ imply that

h 2L δ -1,2L > (2L)δ, ∀L 2L δ .
Letting n δ := max{ñ δ , 2L δ -1}, the monotonicity of the sequences {h n,2L } n 1 finally imply that for every n n δ , we have h n,2L (2L)δ for all L 1.

Proof of Proposition 2.3. This is a direct consequence of the statements in this section. By Lemma 4.1, for every n 1, there exists n > c such that all the Ω n n+1 ,2L (L 1) are admissible for every < n . It results from compactness of these subshifts, from the previous Lemma and from the left inequality in [START_REF] Bunimovich | Space-time chaos in coupled map lattices[END_REF], that h ,2L (2L)δ n for all L when < n and the Proposition follows from the limit lim n→∞ δ n = log 2. In addition, the inequality n > c for all n 1 implies that for = c we have

h c ,2L (2L) sup n 1 δ n = (2L) log 2
as claimed in Proposition 2.1. 2

Coupled map lattices with piecewise increasing individual maps

In this section, the results obtained for piecewise affine CML are extended by continuation to CML F g, ,2L with piecewise increasing individual map g, see equation ( 2) in Section 2. The strategy consists in showing that the estimates on admissible sequences persist for CML based on small C 1 perturbations of f .

To that goal, we preliminary assert the existence of a symbolic dynamics for piecewise expanding CML F g, ,2L . Recall the quantity a g defined in equation [START_REF] Afraimovich | Topological properties of linearly coupled expanding map lattices[END_REF]. Given any real map g as defined before Theorem 2.4 and with a g > 1, let g := ag-1 2ag < 1/2. Similarly to as in the piecewise linear case, the code θ associated with any point x ∈ R Z 2L is the symbolic sequence defined by θ t s = H((F t g, ,2L x) s -1/2), ∀s ∈ Z 2L , t 0. As before, the existence of the symbolic dynamics is due to the fact that every point in the repeller I g, ,2L of F g, ,2L is entirely determined by its code, which has to be an admissible sequence.

Lemma 5.1. For every < g and L 1, there exists a function χ g, ,2L : Ω 2L → R such that x ∈ I g, ,2L iff its coordinates are given by x s = χ g, ,2L • R s sp (θ), ∀s ∈ Z 2L where the code θ solves the admissibility equation

θ t s = H χ g, ,2L • R s sp • R t ti (θ) -1/2 , ∀s ∈ Z 2L , t 0.
Proof. Following a standard argument, the function χ g, ,2L is constructed by using the iterated function system associated with the pre-images of F g, ,2L . Let g 0 be the linear extension of the left branch of g to the whole R, i.e.

g 0 (x) = g(x) if x < 1/2 a g (x -1/2) + g(1/2 -0) if x 1/2
and similarly, let g 1 linear extension of the right branch of g. The maps g 0 and g 1 are invertible and when < g , the coupling operator C ,2L is also invertible. Hence, given any symbolic configuration {θ s } := {θ s } s∈Z 2L , the map F {θs},g, ,2L defined in R Z 2L by (F {θs},g, ,2L x) s = (1 -)g θs (x s ) + 2 g θs-1 (x s-1 ) + g θs+1 (x s+1 ) , ∀s ∈ Z 2L is invertible and its inverse F -1 {θs},g, ,2L given by

(F -1 {θs},g, ,2L x) s = g -1 θs ((C -1 ,2L x) s ), ∀s ∈ Z 2L ,
is well-defined in R Z 2L . We claim that the desired function χ g, ,2L is given by

χ g, ,2L (θ) = lim t→+∞ (F -1 θ 0 ,g, ,2L • F -1 θ 1 ,g, ,2L • • • • • F -1 θ t ,g, ,2L x) 0 .
We first need to show that the limit exists and does not depend on x. Monotonicity and the definition of a g imply the existence of a constant c g > 0 such that |g -1 i (x)| a -1 g |x| + c g , ∀x ∈ R, i = 0, 1 from where we get the following bound

F -1 {θs},g, ,2L x (a g (1 -2 )) -1 x + c g , ∀x ∈ R Z 2L , {θ s } ∈ {0, 1} Z 2L .
It follows that any sequence

{F -1 θ 0 ,g, ,2L • F -1 θ 1 ,g, ,2L • • • • • F -1 θ t ,g, ,2L x} t 0 is bounded in R Z 2L .
In addition, the definition of a g and C -1 ,2L = (1 -2 ) -1 yield the following inequality

F -1 {θs},g, ,2L x -F -1 {θs},g, ,2L y (a g (1 -2 )) -1 x -y (10) 
for all x, y ∈ R Z 2L and {θ s } ∈ {0, 1} Z 2L . Since (a g (1-2 )) -1 < 1 when < g , one easily deduces that every

{F -1 θ 0 ,g, ,2L • F -1 θ 1 ,g, ,2L • • • • • F -1 θ t ,g, ,2L
x} t 0 is also a Cauchy sequence. Therefore it has a limit in R Z 2L and by the previous inequality again, this limit does not depend on x. Now, continuity of the maps g 0 and g 1 implies

F θ 0 ,g, ,2L lim t→+∞ F -1 θ 0 ,g, ,2L • F -1 θ 1 ,g, ,2L • • • • • F -1 θ t ,g, ,2L x = lim t→+∞ F -1 θ 1 ,g, ,2L • • • • • F -1 θ t ,g, ,2L
x.

Since F g, ,2L x = F {θs},g, ,2L x when x satisfies θ s = H(x s -1/2) for all s ∈ Z 2L , we conclude that the configuration {R s sp • χ g, ,2L (θ)} s∈Z 2L = {χ g, ,2L • R s sp (θ)} s∈Z 2L belongs to I g, ,2L when θ is admissible. Finally, proving that every configuration in the repeller writes {χ g, ,2L • R s sp (θ)} s∈Z 2L is easy and is left to the reader.

2 With the existence of symbolic dynamics given, our second ingredient is the continuity of the component map g → χ g, ,2L (θ), uniformly in the set of symbolic sequences. Lemma 5.2. Let g and g be two individual maps with a g , a g > 1 and such that g -g η. Then, for every < min{ g , g }, L 1 and θ ∈ Ω 2L , we have

|χ g, ,2L (θ) -χ g, ,2L (θ)| η a -(1 -2 ) -1 ,
where a = max{a g , a g }.

Proof: As in the previous proof, consider the linear extensions g 0 , g 1 , g0 and g1 over R of the branches of the maps g and g. Using the definition of a g and the property g -g < η, one easily shows that g i (x + η/a g ) > gi (x) and g i (x -η/a g ) < gi (x), ∀x ∈ R, i = 0, 1 which implies the following constraint on the inverse maps

g -1 i -g-1 i η/a g for i = 0, 1.
By exchanging the roles of g i and gi , it follows that the inverse CML introduced in the previous proof satisfy the following inequality

F -1 {θs},g, ,2L x -F -1 {θs},g, ,2L x η/a, ∀x ∈ R Z 2L .
Using the inequality (10), we subsequently obtain

F -1 θ 0 ,g, ,2L • F -1 θ 1 ,g, ,2L x -F -1 θ 0 ,g, ,2L • F -1 θ 1 ,g, ,2L x F -1 θ 0 ,g, ,2L • F -1 θ 1 ,g, ,2L x -F -1 θ 0 ,g, ,2L • F -1 θ 1 ,g, ,2L x + F -1 θ 0 ,g, ,2L • F -1 θ 1 ,g, ,2L x -F -1 θ 0 ,g, ,2L • F -1 θ 1 ,g, ,2L x η/a + (a g (1 -2 )) -1 F -1 θ 1 ,g, ,2L x -F -1 θ 1 ,g, ,2L
x From thereon, an induction and a similar reasoning with the roles of g and g being exchanged directly lead to the desired conclusion.

Proof of Theorem 2.4. We prove the lower bound and the upper bound separately. For the lower bound, we first show the following statement: For every 0 < µ < c , there exists η > 0 such that for every CML F g, ,2L with individual map g satisfying g -f + |a g -a| < η, we have for every

< c -µ h top (I g, ,2L , F g, ,2L ) = (2L) log 2, ∀L 1. (11) 
In order to prove this fact, we begin to notice that the quantity

χ ,2 ([0θ 0 1 ][10] ∞ ) = sup θ∈Ω 2L : θ 0 0 =0 and θ t ∈{10,11}, ∀t 1 χ ,2 (θ) 
introduced in the proof of Lemma 3.2 above is a strictly increasing function of which coincides with 1/2 for = c . Let then

ζ := 1/2 -χ c -µ,2 ([0θ 0 1 ][10] ∞ ) > 0. Let now η 1 > 0 be sufficiently small such that we have a g (1 -2( c -µ)) > 1 whenever a g > a -η 1 (η 1 exists because a(1 -2( c -µ)) > 2). Let η = min{η 1 , ζ(a -(1 -2( c -µ)) -1 )} > 0.
Let g be an individual map such that g -f + |a g -a| < η. Notice that the constraint g -f < +∞ implies that a g a; hence a = a in this case. The condition |a g -a| < η implies c -µ < g . Lemma 5.1 then guarantees the existence of the symbolic dynamics of F g, ,2L for every < c -µ. Moreover, the condition g -f < η and Lemma 5.2 imply that

|χ g, ,2L (θ) -χ f, ,2L (θ)| ζ a -(1 -2( c -µ)) -1 a -(1 -2 ) -1 ζ, ∀θ ∈ Ω 2L , < c -µ.
The constant ζ has been chosen such that for all L 1 sup

θ∈Ω 2L : θ 0 0 =0 χ f, ,2L (θ) < 1/2 -ζ, ∀ < c -µ.
Therefore, we have sup

θ∈Ω 2L : θ 0 0 =0 χ g, ,2L (θ) < 1/2, ∀ < c -µ,
from where the relation [START_REF] Gielis | Coupled map lattices with phase transitions[END_REF] immediately follows.

In order to obtain a lower bound for > c -µ, we observe that the quantities sup

θ∈Ω n n+1 ,2 : θ 0 0 =0 and θ t ∈{10,11}, ∀t 1 χ ,2 (θ) 
(see end of the proof of Lemma 4.1) are also strictly increasing functions of [START_REF] Coutinho | Symbolic dynamics of two coupled lorenz maps: From uncoupled regime to synchronisation[END_REF]. Accordingly, a reasoning similar to the previous one concludes that for every µ < e , there exists (another) η > 0 such that for every CML F g, ,2L with individual map g satisfying g -f + |a g -a| < η, we have for every n 0

h top (I g, ,2L , F g, ,2L ) h top (Ω n n+1 ,2L , R ti ) (2L)δ n , ∀L 1, < n -µ,
where the δ n were introduced in Lemma 4.2 and the n were defined in the proof of Proposition 2.3 as the maximal coupling strength for which Ω n n+1 ,2L ⊂ A ,2L . The sequence { n } n 1 is strictly decreasing with 0 = e and lim n→+∞ n = c . It follows that the lower bound of the Theorem holds with

δ := log 2 if < c -µ δ n if > c -µ where n := max{n 1 : < n -µ}
Moreover, the fact that lim n→+∞ n = c and lim n→+∞ δ n = log 2 imply that lim →( c -µ)+ δ = log 2.

For the upper bound, the reasoning also follows the same lines. We first need an additional restriction on µ in a way that c + µ < e -µ, i.e. we take µ < min{ c , ( ec )/2}. Then letting now

ζ := χ c +µ,2 ([0θ 0 1 ][10] ∞ ) -1/2 >
0, similarly to as above, we set η > 0 (smaller than as before if necessary) such that g -f + |a g -a| < η implies g > e -µ and sup

θ∈Ω 2L , L 1 |χ g, ,2L (θ) -χ f, ,2L (θ)| ζ/2, ∀ < e -µ.
As in the proof of Proposition 2.1, this implies that h top (I g, ,2L , F g, ,2L ) < (2L) log 2 for all L 1 when > c + µ. Just as in the piecewise linear case, this does not suffice to get extensive decay. To that goal, the proof of Lemma 3.3 can be repeated mutatis mutandis to show that for every < e -µ there exists L , T 1 such that any sequence θ ∈ Ω 2L where θ 0 0 = 0 and θ t s = H((-1) s ) for |s| < L and 1 t T is so that |χ f, ,2L (θ) -χ f, ,2 ([0θ 0 1 ][10] ∞ )| ζ/2 and hence χ g, ,2L (θ) > 1/2 which we have show to imply h top (I g, ,2L , F g, ,2L ) (2L)(log 2 -δ) provided that L is sufficiently large, say L L. This concludes the proof of the Theorem. 2

Appendix A. Properties of the coupling operator C ,2L and its inverse

The CML mapping F ,2L can be regarded as the composition C ,2L and the uncoupled mapping F 0,2L given by (F 0,2L x) s = f (x s ) ∀s ∈ Z 2L .

A.1. Eigenvalues and the condition for expanding CML

The coupling operator is linear and commutes with the spatial translations R sp on the chain Z 2L defined by (R sp x) s = x s-1 for all s ∈ Z 2L . As such, it can be diagonalized in the Fourier basis and a direct calculation shows that its eigenvalues are given by ĉ( , k 2L ) for k ∈ Z 2L where [2] ĉ( , ω) = 1 -(1 -cos 2πω), ∀ω ∈ R/Z.

(Notice that the eigenvalues for k = 0, L mod 2L have multiplicity 2 and the two other ones have simple multiplicity.) In particular, all eigenvalues are nonnegative when ∈ [0, 1/2] and the smallest eigenvalue is ĉ( , 1/2) = (1 -2 ).

It follows that the eigenvalues of the (constant) derivative of F ,2L outside discontinuities are given by aĉ( , k 2L ). In particular, the smallest eigenvalue is aĉ( , 1/2) = a(1 -2 ); hence for ∈ [0, 1] the CML is expanding iff a(1 -2 ) > 1 i.e. iff 0 < e := a -1 2a .

A.2. Coefficients ,2L exists when < 1/2 and is a convolution operator [START_REF] Afraimovich | Topological properties of linearly coupled expanding map lattices[END_REF]. Hence, the coefficients as desired.
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 1 Figure 1. Left: Graph of the individual map f for a = 3. Right: Graph of a small C 1 -perturbation of f .
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 2 Figure 2. Schematic illustrations of upper and lower bounds (black step functions) on the CML entropy (red curves) per lattice site. Propositions 2.1, 2.2 and 2.3 and Theorem 2.4 attest that these bounds are independent of the lattice period 2L. Left: Piecewise affine CML F ,2L . Right: CML F g, ,2L with piecewise increasing individual map g.

Figure 3 .

 3 Figure 3. Graphic representation of the first forbidden word in Lemma 3.3. The other word is obtained by exchanging the 0's and the 1's.

  are the entries of the inverse powers C -k ,2L of the coupling operator, see relation (3) above. The inverse C -1

  can be regarded as being generated by the following induction

  ,2L , ∀n ∈ Z 2L , k 0 where (0) n,2L = δ n,0 mod 2L are the entries of the identity in R Z 2L (δ n,m being the Kronecker symbol). Together with the same properties for the configuration { (1) n,2L } n∈Z 2L , this induction relation implies the following properties.

Lemma A. 1 .

 1 Every configuration { (k) n,2L } n∈Z 2L (k 1) has the properties | for all n ∈ {0, • • • , L -1}. Proof. We first check that if {a n } n∈Z 2L and {b n } n∈Z 2L are two configurations with the properties as in the statement, then the 'convoluted' configuration {(a * b) n } n∈Z 2L defined by (a * b) n := m∈Z 2L a m b n-m also satisfies the same properties. Indeed, the equality (a * b) -n = (a * b) n follows from changing m → -m in the previous sum. Moreover, the property (-1) n (a * b) n > 0 directly follows from the relation(-1) n (a * b) n = m∈Z 2L (-1) m a m (-1) n-m b n-m . Now, in order to show the inequality |(a * b) n+1 | < |(a * b) n, | for all n ∈ {0, • • • , L -1},given that the signs of (a * b) n are alternating, it suffices to check that we have(-1) n ((a * b) n + (a * b) n+1 ) > 0, ∀n ∈ {0, • • • , L -1}.To that we goal, we shall need the following inequality(-1) n+m (a n-m + a n+m+1 ) > 0, ∀n, m ∈ {0, • • • , L -1}(13)that holds for every sequence satisfying the properties of the statement. Indeed, when n, m ∈ {0, • • • , L -1}, we have-L + 1 n -m L -1 and 1 n + m + 1 2L -1and we consider separately the cases n + m + 1 L and L + 1 n + m + 1.In the first case, we certainly have |n -m| n + m + 1 and the inequality|a n | > |a n+1 | for all n ∈ {0, • • • , L -1} implies |a n-m | = |a |n-m| | > |a n+m+1 |. If L + 1 n + m + 1 2L -1, we have 1 2L -n -m -1 L -1 and |n -m| 2L -n -m -2 which implies |a n-m | = |a |n-m| | > |a 2L-n-m-1 | = |a n+m+1 |.In both cases, it results that (-1) n+m (a n-m + a n+m+1 ) = |a n-m | -|a n+m+1 | > 0.

  • F 0,2L of the coupling operator C ,2L defined in R Z 2L by (C ,2L x) s = (1 -)x s + 2 (x s-1 + x s+1 ) ∀s ∈ Z 2L
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Now, using [START_REF] Jiang | Equilibrium measures for coupled map lattices: Existence, uniqueness and finite-dimensional approximations[END_REF] we have

from where the desired inequality immediately follows.

It remains to show that the original configuration {

n,2L } n∈Z 2L possesses the desired properties. To that goal we shall use the following explicit expression of the entries [START_REF] Afraimovich | Topological properties of linearly coupled expanding map lattices[END_REF] n of the inverse C -1 of the coupling operator acting in ∞ (Z)

Now, the expression of

n,2L = m∈Z (1) n+2mL

from which the properties

-n,2L =

n,2L and (-1) n (1) n,2L > 0 easily follow. In addition, together with [START_REF] Jost | Spectral properties and synchronization in coupled map lattices[END_REF], this expression provides an explicit formula for the coefficients, namely

where e 0 = {1} s∈Z 2L is the eigenvector associated with the eigenvalue ĉ( , 0) = 1.

Claim A.3. For all k 0, we have

n,2L | converges for every < e . Proof. According to Lemma A.1, we have

where e L = {(-1) s } s∈Z 2L is the eigenvector associated with the eigenvalue ĉ( , 1/2) (i.e. k = L in the expression ĉ( , k 2L ) above). The desired expression then immediately follows from the relation ĉ( , 1/2) = 1 -2 . Furthermore, the series

n,2L | converges when a(1 -2 ) > 1 i.e. exactly when < e .

Finally the expression of the (k) n,2 is recalled from [START_REF] Fernandez | Route to chaotic synchronisation in coupled map lattices: rigorous results[END_REF] (k)

The entries

of the inverse powers C -k of the coupling operator acting in ∞ (Z) (see proof of Lemma 3.3) have similar properties to the ones in Lemma A.1. In particular, using the definition (14) of the