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Abstract

We explore the optimal fertility age-pattern in a four-period OLG econ-
omy with physical capital accumulation. For that purpose, we �rstly com-
pare the dynamics of two closed economies, Early and Late Islands, which
di¤er only in the timing of births. On Early Island, children are born from
parents in young adulthood, whereas, on Late Island, children are born
from parents in older adulthood. We show that, unlike on Early Island,
there exists no stable stationary equilibrium on Late Island, which exhibits
cyclical dynamics. We also characterize the social optimum in each econ-
omy, and show that Samuelson�s Serendipity Theorem still holds. Finally,
we study the dynamics and social optimum of an economy with interior
fertility rates during the reproduction period. It is shown that various
fertility age-patterns are compatible with the social optimum, as long as
these yield the optimal cohort growth rate. The Serendipity Theorem
remains valid in that broader demographic environment.
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1 Introduction

The optimal fertility rate was �rstly studied by Samuelson (1975) in a two-
period overlapping generations (OLG) economy à la Diamond (1965). Samuel-
son showed that the optimal fertility rate is equal to the marginal rate of substi-
tution between consumptions at successive ages of life, and equal to the marginal
productivity of capital at the Golden Rule capital level. Samuelson emphasized
also the capacity of the fertility rate to allow for the decentralization of the so-
cial optimum. This is the Serendipity Theorem: if there exists a unique stable
stationary equilibrium, a perfectly competitive economy will converge towards
the social optimum when the optimal fertility rate is imposed.
Following Samuelson�s pioneer works, a particular attention has been paid

to the characterization of the optimal fertility rate. Deardor¤ (1976) showed
that an interior optimal fertility rate does not always exist in a two-period OLG
economy with Cobb-Douglas production and utility functions. In a more gen-
eral model with CES production function and preferences, Michel and Pestieau
(1993) emphasized that an interior optimal fertility rate requires a su¢ ciently
low substitutability between capital and labour in the production process, and
between �rst- and second-period consumptions in utility functions.1 Recently,
Jaeger and Kuhle (2009) and de la Croix et al (2011) examined the robustness
of the Serendipity Theorem to the introduction of debt and of risky lifetime.
Whereas the optimal (total) fertility rate has been widely studied, the opti-

mal timing of births has received less attention. There exist some recent studies
on childbearing ages, but these are descriptive rather than normative. In a pio-
neer study, Gustafsson (2001) examined the reasons why women have, over the
last decades, postponed the time of the �rst birth, and reviewed some empirical
and theoretical literature aimed at explaining that trend. More recently, Mo-
mota (2009) examined, in a three-period OLG model with �xed total fertility,
the impact of changes in the timing of births on the dynamics of the economy.
Furthermore, D�Albis et al (2010) studied, in a continuous time OLG model,
the joint dynamics of demography and economy under endogenous childbearing
ages, and proved that there exists a monetary steady-state if the average age of
consumers is larger than the average age of producers.
The goal of the present paper is to complement that literature, by charac-

terizing, in an OLG economy, the optimal timing of births. The motivation for
shifting from the study of the optimal total fertility rate to the optimal fertility
age-pattern is empirical. Actually, the timing of births has signi�cantly changed
during the last decades, with a rise of the average age of mothers at their �rst
child.2 For instance, in the United States, the average age of �rst-time mothers
increased by 3.6 years between 1970 and 2006, from 21.4 to 25.0 years. That
tendency is even stronger in Japan, where the average age of �rst-time mothers
has grown from 25.6 to 29.2 years over the same period.
Those changes in the timing of births raise several questions, concerning

1Moreover, Abio (2003) and Abio et al (2004) complemented those papers by studying the
optimal fertility rate under costly, endogenous fertility.

2Sources: NCHS (2009).
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their causes, as well as their e¤ects on the economy.3 One may also, following
Samuelson�s (1975) normative works, wonder whether the tendency towards
later motherhood is optimal from a social perspective. Is later motherhood
socially optimal, or does this con�ict with social welfare maximization in an
intergenerational context? One can expect that, for a given total fertility rate
(i.e. a given total number of children per women on her lifecycle), the timing
of births may not be neutral at all for the dynamics of population and capital
accumulation. If that conjecture is correct, the characterization of the social
optimum requires not only a study of the optimal total fertility, but also of the
optimal timing of births.
In order to explore the optimal timing of births, we will focus on a four-

period OLG model with physical capital accumulation, and where the repro-
duction period covers the second and third periods of life. Moreover, for the
sake of presentation, we will �rstly compare two closed economies, Early and
Late Islands, which di¤er only in the timing of births. On Early Island, children
are born from parents in young adulthood (second period), whereas, on Late Is-
land, children are born from parents in older adulthood (third period). We will
compare the dynamics of those economies and their social optimum. Then, in
a second stage, we will study a more general economy, with interior age-speci�c
fertility rates during the reproduction period.
Anticipating our results, we �rst show, by comparing Early and Late Islands,

that the timing of births matters strongly for the long-run dynamics. Whereas
there exists, under mild conditions, a stable stationary equilibrium on Early
Island, the same is not true on Late Island, which exhibits cyclical dynamics.
We also characterize the (stationary) social optimum of Early Island, and the
(non-stationary) social optimum on Late Island, and show that the Serendipity
Theorem remains valid in those economies. Then, we study the general econ-
omy with interior age-speci�c fertility rates, and show that it admits, under
mild conditions, a stable stationary equilibrium, so that the introduction of a
- possibly low - strictly positive fertility at young adulthood prevents cyclical
dynamics. We also show that the social optimum can be described in terms of
the optimal cohort growth rate, which di¤ers from the standard total fertility
rate. Finally, it is shown that a perfectly competitive economy converges to-
wards the social optimum provided the government imposes the optimal cohort
growth rate, which can be obtained under various fertility age-patterns.
The rest of the paper is organized as follows. Section 2 presents the long-run

dynamics of Early and Late Islands. We also characterize their social optimum,
and examine whether the Serendipity Theorem still holds there. Then, Section
3 considers a more general economy where all age-speci�c fertility rates are
positive during the reproduction period, and examines the social optimum and
the Serendipity Theorem in that context. Conclusions are drawn in Section 4.

3Various factors were proposed to explain that trend, such as the better earning oppor-
tunities for women, and their better educational achievements (Ermisch and Ogawa 1994,
Joshi 2002). Regarding its consequences, Ermisch and Pevalin (2005) showed that very early
motherhood (teen births) worsens later outcomes on the marriage market.
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2 A fable with two islands

This section compares two closed four-period OLG economies with distinct tim-
ings for births.

� In the �rst economy, Early Island, all children are born from young parents
(i.e. living their second period). All children will, during their childhood,
coexist with their (young) parents and grand-parents.

� In the second economy, Late Island, all children are born from older par-
ents (i.e. living their third period). All children will, during their child-
hood, coexist with their old parents (their grand-parents being dead).

2.1 Demography

Throughout this paper, we assume initial conditions insuring that the two
economies exhibit a non-zero number of births at any period: N�1 > 0, N0 > 0,
where Nt denotes the number of individuals born at period t.
On Early Island, all children are born from young parents, so that the num-

ber of births is (for t > 0):
Nt = n1Nt�1 (1)

where n1 is the number of children born from young parents, or, alternatively,
the fertility rate. The growth rate of cohort size, denoted by gt � Nt

Nt�1
, is:

gt �
Nt
Nt�1

= n1 (2)

As Nt

Nt�1
= n1 for all t, the cohort growth rate gt is constant over time.

All adult agents take part to the labour market during their second and third
periods of life, so that the total labour force, denoted by Lt, is:

Lt = L
y
t + L

o
t

where Lyt is the number of young workers, and L
o
t is the number of older workers.

The total labour force on Early Island can be rewritten as:

Lt = Nt�1 +Nt�2 = n1Nt�2 + n1Nt�3

Let us now consider Late Island. On Late Island, all children are born from
old parents, so that the number of births at time t is (for t > 0):

Nt = n2Nt�2 (3)

where n2 denotes the number of children born from old parents.4 Unlike on
Early Island, the cohort growth rate gt is not, on Late Island, constant over

4Hence, given that Nt
Nt�2

= n2 =
Nt
Nt�1

� Nt�1
Nt�2

, the (geometric) average of the growth rate

of cohort size gt on Late Island, denoted by �gt, is given by: �gt = Nt
Nt�1

= 2
p
n2.
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time. To see this, note that:

g1 =
N1
N0

=
n2N�1
N0

=
n2
g0

g2 =
N2
N1

=
n2N0
N1

=
n2
g1

g3 =
N3
N2

=
n2N1
N2

=
n2
g2

:::

gt =
Nt
Nt�1

=
n2Nt�2
Nt�1

=
n2
gt�1

Thus, for any two periods t and t+ 1, we have:

gt+1 =
n2
gt

(4)

In the particular case where N�1 = N0 > 0, the cohort growth rate follows
a simple pattern, i.e. a two-period cycle:5

1; n2; 1; n2; 1; n2:::

Given that all adult agents take part to the labour market in their second
and third periods of life, the labour force is:

Lt = Nt�1 +Nt�2 = n2Nt�3 + n2Nt�4

2.2 Production

For simplicity, the economies of Early and Late Islands are supposed to be
exactly identical on all dimensions except the timing of births. Thus production
takes place exactly in the same way in the two islands.
In each economy, the production of an output Yt involves capital Kt and

labour Lt, according to the function:6

Yt = F (Kt; Lt) = �F (Kt; Lt) + (1� �)Kt (5)

where � is the depreciation rate of capital. The production function �F (Kt; Lt)
is assumed to be homogeneous of degree one. Hence, the total production
function F (Kt; Lt) is also homogeneous of degree one, and, if one substitutes
for the labour force Lt, the production process as a whole can be rewritten as:

Yt = F

�
Kt; Nt�1

�
1 +

Nt�2
Nt�1

��
The production process can also be rewritten in intensive terms as:

yt = F

�
kt; 1 +

Nt�2
Nt�1

�
(6)

5 Indeed, when N�1 = N0, g1 = 1, g2 = n2, g3 =
n2
n2

= 1, etc.
6 It is assumed that the undepreciated units of capital are sold on the goods market.
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where yt = Yt
Lyt
= Yt

Nt�1
denotes output per young worker, and kt = Kt

Lyt
= Kt

Nt�1

denotes the capital per young worker.
The resource constraint of the economy, which states that what is produced

is either consumed or invested, is:

F (Kt; Lt) = ctNt�1 + dtNt�2 + btNt�3 +Kt+1

where ct, dt and bt are �rst-, second- and third-period consumptions.
Dividing that constraint by the young labour force Lyt = Nt�1, one gets:

F

�
kt; 1 +

Nt�2
Nt�1

�
= ct + dt

Nt�2
Nt�1

+ bt
Nt�3
Nt�1

+ kt+1
Nt
Nt�1

(7)

That resource constraint will take di¤erent forms in the two economies under
study, since the cohort size ratios are di¤erent, as we shall see.

2.3 The dynamics on Early Island

An adult agent living on Early Island at time t chooses �rst-, second- and third-
period consumptions, denoted respectively by ct, dt+1 and bt+2, in such a way
as to maximize his lifetime welfare subject to his budget constraint. We assume
a standard time-additive lifetime welfare:

U (ct; dt+1; bt+2) = u(ct) + �u(dt+1) + �
2u(bt+2) (8)

where u0(�) > 0 and u00(�) � 0, while � is a time preference factor (0 < � < 1).
The agent takes all prices, as well as the fertility rate, as given. The �rst-,

second- and third-period consumptions must satisfy the following constraints:

ct = wt � st
dt+1 = wt+1 +Rt+1st � zt+1
bt+2 = Rt+2zt+1

where wt and Rt denote, respectively, the wage and the return on savings at
period t, whereas st and zt+1 denote, respectively, the second- and third-period
savings. We consider a perfectly competitive economy, where factors are paid
at their marginal productivities:

wt =

�
F

�
kt

�
; 1 +

1

n1

��
� Fk

�
kt; 1 +

1

n1

��
n1

1 + n1
(9)

Rt = Fk

�
kt; 1 +

1

n1

�
(10)

The problem of the agent can be rewritten as:

max
ct;dt+1;bt+2

u(ct) + �u(dt+1) + �
2u(bt+2)

s:t:wt +
wt+1
Rt+1

= ct +
dt+1
Rt+1

+
bt+2

Rt+1Rt+2
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Resolving that optimization problem allows us to derive some solutions for
individual savings st and zt+1. Under perfect foresight, those optimal savings
can be rewritten as functions of current and future factor prices:7

st � s (Rt+1; Rt+2; wt; wt+1)

zt+1 � z (Rt+1;Rt+2; wt; wt+1)

Backwarding the second equation by one period gives us zt, i.e. the old worker�s
savings chosen at t� 1. Then, substituting for st and zt in the capital accumu-
lation equation Kt+1 = Nt�1st +Nt�2zt and dividing by the number of young
workers Lyt+1 = Nt, yields:

kt+1 =
s (Rt+1; Rt+2; wt; wt+1)

gt
+
z (Rt;Rt+1; wt�1; wt)

gt�1gt

Given that Rt = R(kt) and wt = w(kt), the dynamics of kt is described by
a di¤erence equation of order 3. The highest-order term kt+2 comes from the
interest factor at old adulthood for the young adult at t, i.e. Rt+2, whereas the
lowest-order term kt�1 comes from the wage faced by old adults at t when being
young workers at t� 1, i.e. wt�1.
As this was stressed by de la Croix and Michel (2001), the dynamics of cap-

ital under perfect foresight is quite complex when savings are made at several
periods. There exist only a few ways to overcome that complexity. A �rst ap-
proach consists of imposing particular functional forms for the individual utility
function and the production function. However, the robustness of the results
to the speci�c functional forms chosen is not guaranteed, and this may strongly
limitate the scope of the results. A second approach consists of keeping gen-
eral functional forms, but of relaxing the perfect foresight assumption. If, for
instance, one considers myopic anticipations, the number of lags in the laws
describing the dynamics of capital can be reduced.8 Such an assumption has a
cost, since it presupposes that agents tend to make mistakes when the economy
is not in a stationary equilibrium. Nevertheless, under that alternative assump-
tion, the dynamics of the economy can be studied without having to rely on
speci�c analytical examples. Therefore we will, when describing the dynamics
of our economies, assume myopic anticipations about factor prices.9

Under myopic anticipations on factor prices, the optimal savings st and zt+1
depend only on the current level of capital per worker, i.e. kt:

st = s (R(kt); R(kt); w(kt); w(kt)) � � (kt)
zt+1 = z (R(kt); R(kt); w(kt); w(kt)) � �(kt)

7See de la Croix and Michel (2001, pp. 64-66).
8 In our context, myopic anticipations mean that agents, when choosing their savings, take

the current wages and interest rates as a proxy for future wages and interest rates.
9Such a reliance will have no e¤ect on our normative analysis, which will rely on a stationary

environment, at which agents with myopic anticipations make no mistake (see below).

7



Backwarding the second equation by one period and substituting for st and
zt in the capital accumulation equation yields:

kt+1 =
� (kt)

gt
+
�(kt�1)

gt�1gt
=
� (kt)

n1
+
�(kt�1)

(n1)
2

since the cohort growth rate gt is a constant and equal to n1.
For the sake of analytical tractability, let us now introduce the variable 
t:


t �
�(kt�1)

(n1)
2

which is de�ned as the old workers�s savings per young worker at time t. For-
warding that expression by one period allows us to represent the dynamics of
the economy by the following two-dimensional system:

kt+1 � G(kt;
t) =
� (kt)

n1
+
t


t+1 � H(kt) =
�(kt)

(n1)
2 (11)

Whether there exists a stationary equilibrium or not on Early Island depends
on whether there exists a pair (kt;
t) such that kt = G(kt;
t) and 
t = H(kt).

Proposition 1 Assume myopic anticipations about factor prices. Assume that
� (0) = 0, �0(kt) > 0, � (0) = 0 and � 0(kt) > 0. If lim kt!0

h
1� �0(kt)

n1

i
<

lim kt!0

h
�0(kt)
(n1)2

i
and lim kt!1

h
1� �0(kt)

n1

i
> lim kt!1

h
�0(kt)

(n1)
2

i
, there exists,

on Early Island, a locally stable stationary equilibrium (k�;
�) with 
� = �(k�)

(n1)
2 .

Proof. See the Appendix.
The conditions guaranteeing the existence and the stability of a stationary

equilibrium have the following interpretation. These state that, at low capital
levels (i.e. low wages and high interest rates), the third-period savings are more
reactive to a rise in kt than the second-period savings, whereas the opposite
holds for high capital levels (i.e. high wages and low interest rates).

2.4 The dynamics on Late Island

Dividing the capital accumulation equation Kt+1 = Nt�1st + Nt�2zt by the
number of young workers, Lyt+1 = Nt, and assuming myopic anticipations, we
can rewrite the capital accumulation as:

kt+1 =
� (kt)

gt
+
�(kt�1)

gt�1gt

Contrary to what occurs on Early Island, the cohort growth rate is not a
constant here, but follows the dynamic law: gt+1 = n2

gt
, which implies that
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gt+1� gt = n2 for any t and t+1. Hence, the capital accumulation equation is:

kt+1 =
� (kt)

gt
+
�(kt�1)

n2

As a consequence of the variation of the cohort growth rate over time, the
analysis of the dynamics on Late Island requires, under myopic anticipations,
to study the following 3-dimensional dynamic system:

kt+1 � G(kt;
t; gt) =
� (kt)

gt
+
t


t+1 � H(kt) =
�(kt)

n2

gt+1 � I(gt) =
n2
gt

(12)

When the initial conditions are N�1 = N0 > 0 (i.e. g0 = 1) and when
the fertility rate is equal to the replacement rate (n2 = 1), Late Island exhibits,
under mild conditions, a locally stable stationary equilibrium. However, in other
cases, there exists no stable stationary equilibrium on Late Island.

Proposition 2 Assume myopic anticipations about factor prices.

� When N�1 = N0 > 0 and n2 = 1, and provided � (0) = 0, �0(kt) > 0,
as well as � (0) = 0, � 0(kt) > 0, we have that, if lim kt!0 [1� �0 (kt)] <
lim kt!0 �

0(kt) and lim kt!11 � �0(kt) > lim kt!1�
0(kt), there exists a

locally stable stationary equilibrium (k�; �(k�); 1) on Late Island.

� When N�1 6= N0 or n2 6= 1, there is no stable stationary equilibrium on
Late Island. Provided � (0) = 0, �0(kt) > 0, as well as � (0) = 0, �

0(kt) >

0, we have that, if limk!0 1 � �0(kt)
2
p
n2

< limk!0
�0(kt)
n2

and limk!+1 1 �
�0(kt)
2
p
n2

> limk!+1
�0(kt)
n2

, there exists an unstable stationary equilibrium�
k�; �(k�); 2

p
n2
�
on Late Island.

Proof. See the Appendix.
When g0 = 1 and n2 = 1, the cohort growth rate gt is constant and equal to

unity, so that the size of cohorts is the same over time. Hence, the Late Island
economy is not subject to �uctuations in the size of the labour force, and there
exists a level of capital per young worker that can be reproduced over time.
If, on the contrary, g0 6= 1, the cohort growth rate �uctuates over time, with

gt+1 =
n2
gt
. When n2 = 1, the cohort size also �uctuates between two levels,

since that fertility rate only insures the replacement of two successive cohorts
of unequal sizes. The resulting �uctuations in the labour supply prevent the
convergence towards a stationary equilibrium. When n2 6= 1, the �uctuations
in gt prevent also the convergence towards a steady-state: under mild conditions,
Late Island is then characterized by long-run cycles of length 2.

9



Proposition 3 Assume myopic anticipations about factor prices. Assume that
N�1 > 0; N0 > 0 and n2 6= 1. Assume that � (0) = 0, �0(kt) > 0, � (0) = 0, and
� 0(kt) > 0 for kt > 0. Let us denote by �
 the solution to 
t =

�(�(kt)+
t)
n2

when

kt ! +1, and by ~
 the solution to 
t =
�(

�(kt)
n2

+
t)

n2
when kt ! +1.

� If limkt!0�
0(kt) > n2 and limkt!+1�

�1 (n2kt � �(kt))� � (kt) > �
, and

if, limkt!+1�
0(kt) < n2 and limkt!+1�

�1
�
kt � �(kt)

n2

�
� �(kt)

n2
> ~
,

then the long-run dynamics of Late Island consists of a two-period cycle�
(k̂; 
̂; 1); (�k; �
; n2)

�
, with 
̂ = �(�k)

n2
and �
 = �(k̂)

n2
. The equilibrium cycle�

(k̂; 
̂; 1); (�k; �
; n2)
�
is unstable.

� Under N�1 = N0 > 0, the Late Island economy can converge from initial

conditions (k0;
0; 1) towards the long-run cycle
�
(k̂; 
̂; 1); (�k; �
; n2)

�
.

Proof. See the Appendix.
Proposition 3 describes conditions that are su¢ cient to guarantee, when

n2 6= 1, the existence of a two-period cycle in Late Island. Note, however,
that, if N�1 6= N0 > 0 (i.e. g0 6= 1), the equilibrium cycle is unstable. This
is the reason why we will, in the rest of this section, focus on the case where
initial conditions N�1 = N0 > 0 allow the (conditional) convergence towards
the equilibrium cycle.
To conclude, the major role played by the age-pattern of fertility along the

lifecycle could hardly be overemphasized. Whether births are located at young
adulthood (as on Early Island) or at old adulthood (as on Late Island) makes
a large di¤erence. In the former case, the long-run dynamics is, in general,
stationary, whereas, in the latter case, the dynamics is cyclical. Hence, even
under a given total fertility rate, i.e. n1 + n2 = �n, the two dynamics will
di¤er strongly. Thus the timing of births matters a lot when studying economic
dynamics, and the total fertility rate hides a big part of the picture.

2.5 The social optimum

Let us �rst characterize the social optimum on Early Island. For that purpose,
we assume that there exists, on Early Island, a unique locally stable stationary
equilibrium with a strictly positive capital level k.10 The social planner�s prob-
lem consists of choosing consumptions c, d and b, the capital k and the fertility
rate n1 in such a way as to maximize the lifetime welfare of a cohort alive at
the steady-state, subject to the resource constraint of the economy:

max
c;d;b;k;n1

u(c) + �u(d) + �2u(b)

s:t: F

�
k; 1 +

1

n1

�
= c+

d

n1
+

b

(n1)2
+ n1k

10Hence, we get rid of time indexes in the rest of this subsection.
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An interior optimum (c�; d�; b�; k�; n�1) satis�es the following FOCs:
11

u0(c�)

�u0(d�)
=

u0(d�)

�u0(b�)
= n�1

Fk (k
�; �) = n�1

k� + FL (k
�; �) 1

(n�1)
2 =

1

(n�1)
2

�
d� +

2b�

n�1

�
The marginal rate of substitution between consumptions at two successive ages
should be equal to the optimum fertility rate n�1. The second expression is the
Golden Rule for optimal capital accumulation. The third FOC characterizes
the optimal fertility rate n�1. A larger fertility has two negative e¤ects (on
the LHS), and one positive e¤ect (on the RHS), which must be equal at the
social optimum. The �rst negative e¤ect is the capital widening e¤ect: a larger
fertility puts more pressure on capital accumulation. The second negative e¤ect
concerns the e¤ect of additional workers on the marginal productivity of labour.
On the other hand, a higher fertility tends also to relax the resource constraint,
by making the consumption of the parent and grand-parents less constraining.

Proposition 4 Assume that a unique locally stable stationary equilibrium exists
on Early Island. The social optimum on Early Island (c�; d�; b�; k�; n�1) is such
that (1) the marginal rate of substitution between consumptions at two successive
ages of life is equal to the optimal fertility rate n�1; (2) the marginal productivity
of capital k� is equal to the optimal fertility rate n�1; (3) the optimal fertility
rate n�1 equalizes the marginal welfare losses from capital widening and labour
productivity loss and the marginal welfare gains from intergenerational transfers.

Proof. See the above FOCs.
Regarding the social optimum on Late Island, we will �rst consider the case

where N�1 = N0 > 0 and n2 = 1, under which a stable stationary equilibrium
can exist (Proposition 2), and, then, the case where N�1 = N0 > 0 and n2 6= 1,
under which there is no stable stationary equilibrium (Proposition 3).
Considering the case where N�1 = N0 > 0 and n2 = 1, and assuming that a

locally stable stationary equilibrium exists, the social planner�s problem is:

max
c;d;b;k

u(c) + �u(d) + �2u(b)

s:t: F (kt; 1 + 1) = c+ d+ b+ k

An interior optimum (c�; d�; b�; k�) satis�es the following FOCs:

u0(c�)

�u0(d�)
=

u0(d�)

�u0(b�)
= 1

Fk (k
�; �) = 1

11We assume that second-order conditions are satis�ed. Note that, in the light of Deardor¤
(1976), this is not a weak assumption.
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Thus, the social optimum on Late Island involves, under n2 = 1, a constant
marginal rate of substitution between the consumptions at di¤erent periods,
and equal to the cohort growth rate n2 = 1. Moreover, k should be such that
the marginal productivity of capital equals the cohort growth rate.
Turning now to the general case where the optimum fertility di¤ers from

replacement fertility (i.e. n2 6= 1), and assuming that there exists a stable
two-period equilibrium cycle ((k̂; 
̂; 1); (�k; �
; n2)), the social optimum consists
of the consumptions (ĉ�; �c�), (d̂�; �d�) and (b̂�;�b�), as well as capital (k̂�; �k�) and
fertility n�2 that maximize the lifetime welfare along the equilibrium cycle. The
resource constraint on Late Island is, in intensive terms:

F

�
kt; 1 +

1

gt�1

�
= ct +

dt
gt�1

+
bt

gt�2gt�1
+ kt+1gt

Given that the cohort size ratio gt follows a two-period cycle (n2; 1), the
resource constraint on Late Island is either:

F

�
kt; 1 +

1

n2

�
= ct + dt

1

n2
+ bt

1

n2
+ kt+1

or F (kt; 1 + 1) = ct + dt + bt
1

n2
+ kt+1n2

depending on the location on the cohort size cycle, those two conditions imposing
themselves successively.
Hence, the social planner�s optimization problem on Early Island is:

max
ĉ;d̂;b̂;k̂;�c; �d;�b;�k;n2

u(ĉ) + �u( �d) + �2u(b̂) + u(�c) + �u(d̂) + �2u(�b)

s:t: F
�
k̂; 1 + 1

�
= ĉ+ d̂+ b̂

1

n2
+ �kn2

s:t: F

�
�k; 1 +

1

n2

�
= �c+ �d

1

n2
+�b

1

n2
+ k̂

Denoting by � and � the Lagrange multipliers associated to the two re-

source constraints, the social optimum
�
ĉ�; d̂�; b̂�; k̂�; �c�; �d�;�b�; �k�; n�2

�
satis�es

the following �rst-order conditions:

u0(ĉ�) = �u0(d̂�) = n�2�
2u0(b̂�) = �

�Fk

�
k̂�; 1 + 1

�
= u0(�c�) = �

�u0( �d�) = �2u0(�b�) =
�

n�2

�Fk

�
�k�; 1 +

1

n�2

�
= �n�2

��k� + �
FL

�
�k�; 1 + 1

n�2

�
(n�2)

2
= �

b̂�

(n�2)
2
+ �

�d�

(n�2)
2
+ �

�b�

(n�2)
2
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Further simpli�cations yield, regarding consumptions:

u0(ĉ�)

�u0(d̂�)
= 1 =

u0( �d�)

�u0(�b�)

u0(d̂�)

�u0(b̂�)
= n�2 =

u0(�c�)

�u0( �d�)

Hence we have: ĉ� > d̂� ? b̂� and �c� 7 �d� > �b�. Consumption pro�les may
not be monotonic on the lifecycle, because of the equality of the MRS between
consumptions and the (�uctuating) cohort growth rate. The magnitude of con-
sumption �uctuations depends on how much n�2 di¤ers from 1.12

Regarding the optimal capital levels, we obtain, from the two FOCs:

Fk

�
k̂�; 1 + 1

�
� Fk

�
�k�; 1 +

1

n�2

�
= n�2

That condition, which di¤ers from the standard Golden Rule, states that the
product of the marginal productivities of capital at levels k̂� and �k� should be
equal to n�2, which equals the product of the cohort growth rates 1 and n

�
2.
13

Finally, regarding the optimal fertility rate n�2, we have, after substitutions:

�k� +
u0(�c�)

u0(ĉ�)

FL

�
�k�; 1 + 1

n�2

�
(n�2)

2
=
1

n�2

 
u0( �d�)

u0(d̂�)
�d� +

b̂�

n�2
+
u0(�b�)

u0(b̂�)

�b�

n�2

!
The LHS is the marginal welfare loss from raising the fertility rate n�2. As usual,
it includes the capital widening e¤ect (�rst term), and the marginal loss in terms
of the productivity of labour (second term). The RHS is the intergenerational
transfer e¤ect: a higher n�2 reduces the pressure put by the elderly�s consumption
on resources.
The FOC for optimal fertility n�2 depends on the shape of the temporal

utility function, through the ratios u0(�c�)
u0(ĉ�) ,

u0( �d�)

u0(d̂�)
and u0(�b�)

u0(b̂�)
, which capture the

sensitivity of welfare to the consumption cycle induced by the fertility cycle. To
understand the impact of welfare sensitivity on optimal fertility, let us take two
polar cases. Assume �rst that temporal utility is linear, so that lifetime welfare
is not very sensitive to the cycle. In that case, the FOC becomes:

�k� +
FL

�
�k�; 1 + 1

n�2

�
(n�2)

2
=
1

n�2

 
�d� +

b̂� +�b�

n�2

!
which is quite close to the FOC for optimal fertility on Early Island, but with
(n�1)

2 = n�2. On the basis of that FOC, the optimal fertility rate on Late Island
should be close to the square of the optimal fertility rate on Early Island.
12 If n�2 equals 1, we are back to a constant MRS, implying monotonic consumption paths.
13 If n�2 was equal to 1, the two resource constraints would coincide, and so would k̂

� and �k�.
As a consequence, the socially optimal capital level k� should then satisfy: Fk (k�; 1 + 1) =
2
p
n�2 = 1 in conformity with the standard Golden Rule.
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Alternatively, suppose that the temporal utility function is not linear, and
that ratios of marginal utilities are strongly sensitive to little variations in con-
sumption. Then, consumption �uctuations due to the demographic �uctuations
have large welfare e¤ects, and these a¤ect the optimal fertility rate. To see this,
take, for instance, the case where a larger fertility implies lower consumption at
the young age, but higher consumptions at the old ages:

�k� +
u0(�c�)

u0(ĉ�)| {z }
>1

FL

�
�k�; 1 + 1

n�2

�
(n�2)

2
=
u0( �d�)

u0(d̂�)| {z }
<1

�d�

n�2
+

b̂�

(n�2)
2
+
u0(�b�)

u0(b̂�)| {z }
<1

�b�

(n�2)
2

The second term of the LHS is increased, leading to a higher marginal welfare
loss. The lower ratios of marginal utilities reduce two terms on the RHS, and,
thus, reduce also the marginal welfare gains from a higher fertility. Hence, if the
LHS is increased and the RHS reduced, the optimal fertility rate n�2 must di¤er.
We expect, in that case, that, ceteris paribus, the larger sensitivity of temporal
welfare to the cycle supports the selection of a lower fertility rate: n�2 < (n

�
1)
2.14

Proposition 5 Assume that N�1 = N0 > 0, and that a unique stable two-
period cycle exists on Late Island. The social optimum on Late Island�

ĉ�; d̂�; b̂�; k̂�; �c�; �d�;�b�; �k�; n�2

�
is such that (1) the marginal rate of substi-

tution between consumptions at two successive ages of life is equal either to 1 or
to the optimal fertility rate n�2; (2) the product of the marginal productivities of
capital at k̂� and �k� equals the optimal fertility n�2; (3) the optimal fertility n

�
2

equalizes the marginal welfare losses from capital widening and labour produc-
tivity loss, and the marginal welfare gains from intergenerational transfers.

Proof. See the above FOCs.
Finally, let us make some welfare comparisons across islands. When N�1 =

N0 > 0, and when the optimal fertility rates are equal to the replacement
ratio (i.e. n�1 = n�2 = 1), the two economies are equivalent in welfare terms.
The reason is that, in that case, initial conditions guarantee that a constant
number of children is born at any period on the two islands, implying a constant
equal labour supply in both economies. Given that the two economies are
similar on all other aspects, these must also be equivalent in welfare terms. In
other cases, where n�1 6= n�2 6= 1, it is impossible to draw unambiguous welfare
conclusions, because of the uncertain impact of fertility on welfare. Fertility
dilutes capital and lowers the marginal productivity of labour, but this also
weakens the resource constraint thanks to larger intergenerational transfers.
Those three e¤ects are at work in the determination of the optimal fertility rate
on Early and Late Islands, and there is no unambiguous conclusion.15

14Note that this conclusion could vary if we made other assumptions on the relative con-
sumption levels at the down and the top of the cycle.
15Actually, to be able to make further comparisons of the two islands in welfare terms, it

would be necessary to impose functional forms for the production and utility functions.
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Proposition 6 Assume that N�1 = N0 > 0.

� When the optimal fertility rate on Early Island n�1 and on Late Island n�2
are equal to 1, the lifetime welfare is, at the social optimum, exactly equal
on the two islands.

� When the optimal fertility rates on the two islands di¤er, whether aver-
age lifetime welfare on one island is larger than on the other island is
ambiguous, and depends on the welfare e¤ects induced by cohort growth.

Proof. See the above FOCs. The FOCs characterizing the social optimum on
Late Island when n�2 = 1 correspond exactly to the FOCs characterizing the
social optimum on Early Island when n�1 = 1. As a consequence, the maximum
lifetime welfare is the same in the two economies.

2.6 The Serendipity Theorem

Let us now examine whether Samuelson�s (1975) Serendipity Theorem remains
valid in our environment. The question is the following. Assume that agents
on Early and Late Islands behave like price-takers on competitive markets, and
take fertility rates as given. Is the economy going to converge towards the social
optimum when the optimum fertility is imposed?
Consider �rst an agent living on Early Island. That agent chooses second-

and third-period savings, in such a way as to maximize his lifetime welfare.
He takes factor prices and the fertility rate as given. Assuming a perfectly
competitive economy, factors are paid at their marginal productivities, which,
at the steady-state, can be written as:

w =

�
F

�
k

�
; 1 +

1

n1

��
� Fk

�
k; 1 +

1

n1

��
n1

1 + n1

R = Fk

�
k; 1 +

1

n1

�
The problem of the agent is thus:

max
c;d;b

u(c) + �u(d) + �2u(b)

s:t: w +
w

R
= c+

d

R
+

b

R2

The FOCs are
u0(c)

�u0(d)
=
u0(d)

�u0(b)
= R

Hence, if the social planner �xes the fertility rate n1 at a level such that
n�1 = Fk (k

�; �) where k� is the optimal level of capital per young worker, then
individuals, being price-takers, will choose their savings optimally, since the two
above FOCs will then coincide with the FOCs for optimal intergenerational al-
locations of resources. This is the Serendipity Theorem: provided the social
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planner imposes the optimal fertility rate, the perfectly competitive economy
converges towards the social optimum (i.e. the optimum optimorum).
Turning now to agents living on Late Island, we need here to consider two

cases: n�2 = 1 and n
�
2 6= 1.16 In the former case, the problem of the agent is

max
c;d;b

u(c) + �u(d) + �2u(b)

s:t: w +
w

R
= c+

d

R
+

b

R2

where

w = [F (k; 1 + 1)� Fk (k; 1 + 1)]
1

2
R = Fk (k; 1 + 1)

The FOCs are
u0(c)

�u0(d)
=
u0(d)

�u0(b)
= R

Imposing n2 = n�2 = 1 = Fk (k
�; �) su¢ ces to decentralize the social optimum,

in conformity with Samuelson�s Serendipity Theorem.
However, when n�2 di¤ers from 1, the Serendipity Theorem in its standard

form cannot apply, since it requires the existence of a unique stable stationary
equilibrium, which is not possible here (see Proposition 2). On Late Island,
when N�1 = N0 > 0, the economy will, under mild conditions, exhibit a two-
period equilibrium cycle (see Proposition 3). Hence, we can investigate whether
the decentralized Late Island economy converges towards its (non-stationary)
social optimum when the optimal fertility n�2 is imposed one period out of two.
When the economy exhibits a two-period cycle ((k̂; 
̂; 1); (�k; �
; n2)), factor

prices oscillate between two values. If we consider an individual who is a young
adult at a period where gt = 1, factor prices are

ŵ =
h
F
�
k̂ (; 1 + 1)

�
� k̂Fk

�
k̂; 1 + 1

�i 1
2

R̂ = Fk

�
k̂; 1 + 1

�
Whereas, when gt = n2, factor prices are:

�w =

�
F

�
�k

�
; 1 +

1

n2

��
� �kFk

�
�k; 1 +

1

n2

��
n2

1 + n2

�R = Fk

�
�k; 1 +

1

n2

�
16We restrict ourselves here to N�1 = N0 > 0.
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Hence the problem of an agent who is a young worker when gt = 1 is:17

max
ĉ; �d;b̂

u(ĉ) + �u( �d) + �2u(b̂)

s:t: ŵ +
�w
�R
= ĉ+

�d
�R
+

b̂

R̂ �R

The FOCs are
u0(ĉ)

�u0( �d)
= �R and

u0( �d)

�u0(b̂)
= R̂

The problem of the agent who is a young worker when gt = n2 is:18

max
�c;d̂;�b

u(�c) + �u(d̂) + �2u(�b)

s:t: �w +
ŵ

R̂
= �c+

d̂

R̂
+

�b

R̂ �R

The FOCs are
u0(�c)

�u0(d̂)
= R̂ and

u0(d̂)

�u0(�b)
= �R

Combining the two sets of FOCs, we have:

u0(ĉ)

u0( �d)
=
u0(d̂)

u0(�b)
and

u0( �d)

u0(b̂)
=
u0(�c)

u0(d̂)

whereas the social optimum requires:

u0(ĉ�)

u0(d̂�)
=

u0( �d�)

u0(�b�)
() u0(ĉ�)

u0( �d�)
=
u0(d̂�)

u0(�b�)

u0(d̂�)

u0(b̂�)
=

u0(�c�)

u0( �d�)
() u0( �d�)

u0(b̂�)
=
u0(�c�)

u0(d̂�)

Hence the slopes of the consumption paths in the decentralized economy coincide
with the one at the social optimum. Regarding the decentralization of the

17The intertemporal budget constraint is obtained from:

ĉ = ŵ � ŝ
�d = �w + �Rŝ� �z
b̂ = R̂�z

18The intertemporal budget constraint is obtained from:

�c = �w � �s
d̂ = ŵ + R̂�s� ẑ
�b = �R�z
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optimal capital levels, we have, in the decentralized economy:

u0(ĉ)

�u0( �d)
= Fk

�
�k; 1 +

1

n2

�
and

u0( �d)

�u0(b̂)
= Fk

�
k̂; 1 + 1

�
whereas the social optimum requires:

u0(ĉ�)

�u0(d̂�)
= 1

u0(d̂�)

�u0(b̂�)
= Fk

�
k̂�; 1 + 1

�
� Fk

�
�k�; 1 +

1

n�2

�

We know that, at the optimum, u0(ĉ�)

�u0( �d�)
=

�n�2
� and �

� =
Fk

�
�k�;1+ 1

n�2

�
n�2

. There-

fore u0(ĉ�)

�u0( �d�)
= Fk

�
�k�; 1 + 1

n�2

�
. Moreover, we have u0( �d�)

�u0(b̂�)
= �

� = Fk

�
k̂�; 1 + 1

�
.

Hence, we have, at the optimum:

u0(ĉ�)

�u0( �d�)
= Fk

�
�k�; 1 +

1

n�2

�
and

u0( �d�)

�u0(b̂�)
= Fk

�
k̂�; 1 + 1

�
In the light of this, the Serendipity Theorem still holds when n�2 6= 1. Indeed,
imposing the optimal fertility rate n�2 = Fk

�
k̂�; 1 + 1

�
� Fk

�
�k�; 1 + 1

n�2

�
al-

lows us to deduce, from the FOCs describing the agents�savings decisions in a
competitive economy, all FOCs characterizing the social optimum.

Proposition 7 Assume that N�1 = N0 > 0.

1. Assume that there exists a unique stable stationary equilibrium on Early
Island. Then the perfectly competitive economy will converge towards the
(stationary) social optimum if the optimal fertility rate n�1 is imposed.

2. Assume that n2 = 1 is the optimum fertility rate n�2 on Late Island. Then
the perfectly competitive economy will converge towards the (stationary)
social optimum if the optimal fertility rate n�2 is imposed.

3. Assume that n2 = 1 is not the optimum fertility rate n�2 on Late Island.
Then the perfectly competitive economy will converge towards the (non-
stationary) social optimum if the optimal fertility rate n�2 is imposed.

Proof. The proof follows from the comparison of FOCs for the social planner�s
optimization problem and for the individual�s utility maximization problem.
Proposition 7 emphasizes the signi�cant robustness of the Serendipity Theo-

rem to assumptions on the timing of births. Samuelson�s result is indeed robust
to the number of time-periods after births (point 1.) or before births (points
2. and 3.). More importantly, point 3. suggests that the Serendipity Theorem
applies not only to stationary environments (as in Samuelson�s initial result),
but also holds in the context of a non-stationary social optimum.
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3 The general model

The fable with Early and Late Islands allowed us to contrast two economies that
di¤er only regarding the timing of births, and to discuss the social optimum in
that context. However, in reality, all economies exhibit some aspects of Early
Island, and some aspects of Late Island, since some children are born from
young parents, and others from older parents. Therefore we will consider here
an economy where all age-speci�c fertility rates are strictly positive during the
reproduction period (n1 > 0 and n2 > 0), to complement the cases of Early
Island (n1 > 0 and n2 = 0) and Late Island (n1 = 0 and n2 > 0).
As above, we still consider here a four-period OLG model, where households

supply one unit of labour in the second and in the third period. We assume, as
usual, N�1 > 0 and N0 > 0. The di¤erence with respect to Section 2 is that
individuals now have n1 > 0 children in the second period, and n2 > 0 children
in the third period. Therefore, the total fertility rate is here equal to n1 + n2.
Hence, the number of individuals born at time t is now:

Nt = n1Nt�1 + n2Nt�2 (13)

where the �rst term of the RHS consists of children born from young parents,
whereas the second term consists of children born from older parents. Hence
the growth rate of cohort size gt is given by:

gt �
Nt
Nt�1

= n1 + n2
Nt�2
Nt�1

The cohort growth rate gt follows thus the dynamic law:

gt = n1 +
n2
gt�1

(14)

That expression obviously encompasses the cases of Early Island (where n2 = 0),
and of Late Island (where n1 = 0).
Given that all agents alive in the second and third periods take part to the

labour market, the total labour force Lt = Nt�1 +Nt�2 can be written as:

Lt = n1Nt�2 + n2Nt�3 + n1Nt�3 + n2Nt�4

The �rst two terms consist of the young workers, who can have either young
parents (�rst term) or older parent (second term), while the last two terms
consist of the old workers, who can also have young or old parents. Thus the
total labour force follows the dynamic law:

Lt = n1Lt�1 + n2Lt�2

When all children are born from young parents (i.e. n2 = 0), we are back
to the standard dynamic law Lt = n1Lt�1 prevailing on Early Island. When all
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children are born from old parents (i.e. n1 = 0), we get the law Lt = n2Lt�2,
which prevails on Late Island. Note that the labour force growth rate is:

Lt+1
Lt

= n1 + n2
Lt�1
Lt

Thus, in the case where all children are born from young parents, the labour
force grows at a period rate n1, whereas in the case where all children have old
parents, the labour force grows at a rate n2 over two periods.
The production process is the same as on Early and Late Islands, and the

resource constraint of the economy is, in intensive terms:

F

�
kt; 1 +

Nt�2
Nt�1

�
= ct + dt

Nt�2
Nt�1

+ bt
Nt�3
Nt�2

+ kt+1
Nt
Nt�1

(15)

3.1 The dynamics

Given that the capital stock comes from the savings of the adults in the second
and third periods of their life, i.e. Kt+1 = Nt�1st + Nt�2zt, we obtain, by
dividing this by the number of young workers, Lyt+1 = Nt:

kt+1 =
st
gt
+

zt
(gt�1) (gt)

We know that

gt = n1 +
n2
gt�1

() gt�1 =
n2

gt � n1

Hence the capital accumulation equation can be rewritten as:

kt+1 =
st
gt
+

�
1� n1

gt

�
zt
n2

As on Early and Late Islands, the savings st depends, under perfect foresight,
on factor prices at periods t, t+1, and t+2, while the savings zt depends, under
perfect foresight, on factor prices at periods t � 1, t and t + 1. Such a high
number of time lags makes the dynamic study quite complex. Hence, to study
the long-run dynamics of the general economy, we will, as above, rely on myopic
anticipations regarding factor prices. Under such myopic anticipations, second-
period savings st are a mere function � (kt), whereas the third-period savings zt
are a mere function � (kt�1). Hence the capital accumulation equation becomes:

kt+1 =
� (kt)

gt
+

�
1� n1

gt

�
�(kt�1)

n2

If one de�nes the old adults savings as the variable 
t � �(kt�1)
n2

, the dynam-
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ics of the economy is summarized by the three-dimensional system:

kt+1 � G(kt;
t; gt) =
� (kt)

gt
+

�
1� n1

gt

�

t


t+1 � H (kt) =
�(kt)

n2

gt+1 � I(gt) = n1 +
n2
gt

(16)

Proposition 8 characterizes the long-run dynamics of that economy.

Proposition 8 Assume N�1 > 0 and N0 > 0 and n1 > 0 and n2 > 0. Denote
2
p
n21 + 4n2 by 	.

� If �(0) = 0, �(0) = 0, limk!0
	+n1
	�n1

h
1� 2�0(kt)

n1+	

i
< limk!0

�0(kt)
n2

and

limk!+1
	+n1
	�n1

h
1� 2�0(kt)

n1+	

i
> limk!+1

�0(kt)
n2

,

there exists a stationary equilibrium (k�;
�; g�) with 
� = �(k�)
n2

and g� =
n1+

2
p
(n1)

2+4n2
2 .

� Provided the conditions: 4�0(k�)(	�n1)
(	+n1)

3 < 1;
2�0(k�)� �0(k�)

n2
(	�n1)

	+n1
> �1 and

2�0(k�)+
�0(k�)
n2

(	�n1)
	+n1

< 1 ,

as well as: 1 +
�0(k�)
n2

(	�n1)
(	+n1)

+
8�0(k�)(n2+�0(k�))

(	+n1)
3 +

32(�0(k�))
2
n1(	�n1)

(	+n1)
6 >

16� 0 (k�)
n1�

0(k�)+�0(k�)+n2
(	�n1)
(	+n1)

(	+n1)
4

are satis�ed, that stationary equilibrium is locally stable. Starting from any
initial conditions (k0;
0; g0), the economy will converge non-monotonically
towards the stationary equilibrium (k�;
�; g�).

Proof. See the Appendix.
Hence, once we consider an economy with interior age-speci�c fertility rates

during the reproduction period, there exists a locally stable stationary equilib-
rium under mild conditions. In the light of our study of the dynamics of Late
Island (where n1 = 0), we see how the introduction of early births, i.e. n1 > 0,
su¢ ces to imply a stationary long-run dynamics, in contrast with the economy
of Late Island where no stable equilibrium exists.
One could hardly overemphasize the distinct dynamic corollaries of early

and late motherhoods. Some positive - even extremely small - fertility at young
adulthood su¢ ces to make the economy escape from the cyclical dynamics of
Late Island. Once again, if we only look at the total fertility rate n1 + n2, we
miss a central dimension of the dynamics, since the qualitative properties of the
dynamics of the economy - stationary or cyclical - depend on n1 > 0 or n1 = 0,
whatever the total fertility n1 + n2 is.
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3.2 The social optimum

Let us now assume that the conditions of Proposition 8 are satis�ed, so that
there exists a unique stable stationary equilibrium. Given that, at the steady-

state, the cohort growth factor gt is constant and equal to
n1+

2
p
n21+4n2
2 , the

resource constraint of the economy can be written as:

F

 
k;
n1 +

2
p
n21 + 4n2 + 2

n1 +
2
p
n21 + 4n2

!
� kn1 +

2
p
n21 + 4n2
2

= c+ d
2

n1 +
2
p
n21 + 4n2

+ b

 
2

n1 +
2
p
n21 + 4n2

!2
where k denotes the steady-state capital level.
The social planner chooses all consumptions, the capital level and the age-

speci�c fertility rates in such a way as to maximize the lifetime welfare of a
cohort alive at the steady-state. The planner�s optimization problem is thus:

max
c;d;b;k;n1;n2

u(c) + �u(d) + �2u(b)

s:t: F

 
k;
n1 +

2
p
n21 + 4n2 + 2

n1 +
2
p
n21 + 4n2

!
� kn1 +

2
p
n21 + 4n2
2

= c+ d
2

n1 +
2
p
n21 + 4n2

+ b

 
2

n1 +
2
p
n21 + 4n2

!2
An interior optimum (c�; d�; b�; k�; n�1; n

�
2) satis�es the following FOCs:

u0(c�)

�u0(d�)
=

u0(d�)

�u0(b�)
=
n�1 +

2
p
n�21 + 4n�2
2

Fk (k
�; �) =

n�1 +
2
p
n�21 + 4n�2
2

The �rst expression implies that the MRS between consumptions at two
successive periods is, at the optimum, equal to the optimal cohort growth ratio,
(n�1+

2
p
n�21 + 4n�2)=2. Thus, from the point of view of the optimal consumption

pro�le, it is not the total fertility rate n�1 + n
�
2 that matters, but the cohort

growth rate.
The second expression is the Golden Rule: the optimal stock of capital per

young worker k� is such that the marginal productivity of capital is equal to
the cohort growth rate. Here again, for a given total fertility rate n�1 + n

�
2, the

optimal capital will vary greatly with the optimal timing of births.
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Regarding the FOCs for optimal n�1 and n
�
2, we have:

FL (k
�; �) 2

1 + n�1
�
n�21 + 4n�2

��1=2�
n�1 +

2
p
n�21 + 4n�2

�2 + k�
1 + n�1

�
n�21 + 4n�2

��1=2
2

= 2
1 + n�1

�
n�21 + 4n�2

��1=2�
n�1 +

2
p
n�21 + 4n�2

�2
 
d� +

4b�

n�1 +
2
p
n�21 + 4n�2

!

and

FL (k
�; �) 4

�
n�21 + 4n�2

��1=2�
n�1 +

2
p
n�21 + 4n�2

�2 + k� �n�21 + 4n�2
��1=2

= 4

�
n�21 + 4n�2

��1=2�
n�1 +

2
p
n�21 + 4n�2

�2
 
d� +

4b�

n�1 +
2
p
n�21 + 4n�2

!

Those FOCs include the standard determinants of optimal fertility. On the
LHS, we have the negative e¤ects of fertility on the marginal productivity of
labour (�rst term), as well as the capital widening e¤ect (second term). On the
RHS, we �nd the gains from intergenerational redistribution. To interpret those
FOCs, note that these can be written as:

g�n1

�
�FL (k�; �)

g�2
� k� + d�

g�2
+
2b�

g�3

�
= 0

g�n2

�
�FL (k�; �)

g�2
� k� + d�

g�2
+
2b�

g�3

�
= 0

where g�n�1 and g
�
n�2
denote the derivatives of the optimal cohort growth rate with

respect to the optimal age-speci�c fertility rates n�1 and n
�
2 respectively. Those

derivatives are given by:

g�n�1 =
1 + n�1

�
n�21 + 4n�2

��1=2
2

=
1

2
+
n�1
2

1
2
p
n�21 + 4n�2

> 0

g�n�2 =
�
n�21 + 4n�2

��1=2
=

1
2
p
n�21 + 4n�2

> 0

As we consider here the case of interior optimal age-speci�c fertility rates,
i.e. n�1 > 0, n�2 > 0, it follows that g�n�1 is always di¤erent from 0. The same
is also true for g�n�2 . Therefore, in order to have the two above FOCs satis�ed
simultaneously, it must be the case that the following equality holds:

k� +
FL (k

�; �)
g�2

=
d�

g�2
+
2b�

g�3
(17)

That equation characterizes the optimal cohort growth rate g�. At the social
optimum, the marginal welfare loss from a higher cohort growth rate (the LHS)
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are equal to the marginal welfare gain from a higher cohort growth rate (the
RHS). The negative welfare e¤ects due to a higher cohort growth rate are the
capital widening e¤ect (1st term of the LHS) and the negative productivity e¤ect
(2nd term of the LHS), whereas the positive welfare e¤ects are the intergenera-
tional redistribution e¤ects (1st and 2nd terms of the RHS). That condition for
optimal cohort growth rate can be rewritten as:

g�3 +
(FL (k

�; �)� d�)
k�

g� � 2b
�

k�
= 0

In the Appendix, we solve that cubic equation, and derive the optimal co-
hort growth rate g�. That variable is the key variable characterizing the social
optimum, since this determines both the optimal consumption paths and capital
level k�. Moreover, we know from above that, as long as g takes its optimum
level g�, the two FOCs characterizing the optimal age-speci�c fertility rates n�1
and n�2 are also satis�ed. Hence the characterization of the social optimum re-
quires, above all, a characterization of the optimal cohort growth rate g�, rather
than of the age-speci�c fertility rates, which a¤ect optimal consumption paths
and capital only through the optimal cohort growth rate.

Proposition 9 Assume that a unique stable stationary equilibrium exists. The
social optimum (c�; d�; b�; k�; n�1; n

�
2) is such that:

� the marginal rate of substitution between consumptions at two successive
ages of life is equal to the optimal cohort growth rate g�;

� the capital k� is such that the marginal productivity is equal to the optimal
cohort growth rate g�;

� the optimal age-speci�c fertility rates n�1 and n�2 are such that
n�1+

2
p
n�21 +4n�2
2

is equal to the optimal cohort growth rate g�;

� the optimal cohort growth rate g� is characterized as follows:
- if 4b

�2

k�2 +
4�3

27k�3 > 0 at the optimum, we have:

g� =
3

r
2b�
k� +

2
q

4b�2
k�2 +

4�3

27k�3
2 +

3

r
2b�
k� �

2
q

4b�2
k�2 +

4�3

27k�3
2

- if 4b
�2

k�2 +
4�3

27k�3 = 0 at the optimum, we have:

g� = 3

r
b�

k� �
2

q
b�2

k�2 +
�3

27k�3 �
�

3k�
3

r
b�
k��

2
q

b�2
k�2+

�3

27k�3

- if 4b
�2

k�2 +
4�3

27k�3 < 0 at the optimum, we have:

g� =
3

r
� 2b�

k� �
2
q

4b�2
k�2 +

4�3

27k�3+
2b�i 2

p
3

k� +i 2
p
3 2
q

4b�2
k�2 +

4�3

27k�3
4

+
3

r
� 2b�

k� +
2
q

4b�2
k�2 +

4�3

27k�3�
2b�i 2

p
3

k� +i 2
p
3 2
q

4b�2
k�2 +

4�3

27k�3
4

where � � (FL (k�; �)� d�).
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Proof. See the Appendix.
The social optimum depends on age-speci�c fertility rates n�1 and n

�
2 only

insofar as these must yield the optimal cohort growth rate g�. However, as long
as n�1 and n

�
2 are such that (n

�
1 +

2
p
n�21 + 4n�2)=2 is equal to the optimal cohort

growth rate g�, the precise levels of n�1 and n
�
2 do not matter. It follows from

this that there is not one, but several social optima (c�; d�; b�; k�; n�1; n
�
2), since

various pairs (n�1; n
�
2) can yield the optimal cohort growth rate g

�.
To illustrate this, suppose that the optimal cohort growth rate g� equals

1 (i.e. the replacement rate). Then, the social optimum involves u0(c�)
�u0(d�) =

u0(d�)
�u0(b�) = 1 and k

� such that Fk (k�; �) = 1. That social optimum only requires

that n�1 and n
�
2 satisfy the condition: (n

�
1 +

2
p
n�21 + 4n�2)=2 = 1, which can

be true for various pairs (n�1; n
�
2).

19 Thus Proposition 9 states that, as long as
the cohort growth rate takes its optimal level, the precise levels of age-speci�c
fertility rates do not matter.20

When g� equals 1, the formula (n1+ 2
p
n21 + 4n2)=2 = 1 can be simpli�ed to

n1 + n2 = 1, so that the total fertility rate n1 + n2 is relevant from the point of
view of social optimality. However, in all other cases where the optimal cohort
growth rate g� di¤ers from 1, the total fertility rate n1 + n2 is irrelevant, since
a pair (n1; n2) of age-speci�c fertility rates is optimal only insofar as these yield
the optimal cohort growth rate g�, which di¤ers from the mere sum n1 + n2.
Hence, here again, an exclusive emphasis on the total fertility rate that ignores
the timing of births may be quite misleading. The timing of births de�nitely
matters for the de�nition of the social optimum.

3.3 The Serendipity Theorem

To investigate whether the Serendipity Theorem still holds here, we will �rst
consider the problem faced by an agent living at the steady-state, who chooses
second- and third-period savings, in such a way as to maximize his lifetime
welfare. He takes all prices and the age-speci�c fertility rates as given.
Assuming a perfectly competitive economy, we have:

w =

�
F

�
k

�
; 1 +

1

g

��
� Fk

�
k; 1 +

1

g

��
g

1 + g

R = Fk

�
k; 1 +

1

g

�
where g denotes the steady-state cohort growth rate.

19We could thus have a total fertility equally spread on the reproduction period (i.e. n�1 =
0:5 and n�2 = 0:5), but, also, a higher early fertility and a lower late fertility (i.e. n�1 = 0:9
and n�2 = 0:1), or the opposite (i.e. n

�
1 = 0:1 and n

�
2 = 0:9).

20Note, however, that, although there exist various pairs
�
n�1; n

�
2

�
leading to the optimum

cohort growth rate, it remains that the strength of the constraint (n�1 +
2
q
n�21 + 4n�2)=2 = g

�

should not be underestimated, in particular when the optimum cohort growth rate g� di¤ers
strongly from the replacement rate.
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The problem of the agent can be written as:

max
c;d;b

u(c) + �u(d) + �2u(b)

s:t:w +
w

R
= c+

d

R
+

b

R2

The FOCs are
u0(c)

�u0(d)
=
u0(d)

�u0(b)
= R

Hence, if the social planner �xes the fertility rates n1 and n2 at levels such
that Fk (k�; �) = (n1 + 2

p
n21 + 4n2)=2 = g

� where k� takes its socially optimal
level, then individuals, being price-takers, will choose their savings optimally,
since the above FOC will then coincide with the FOC for optimal intergener-
ational allocations of resources. Thus the Serendipity Theorem holds in that
economy. Provided the social planner imposes the optimal cohort growth rate,
the perfectly competitive economy will converge towards the social optimum.

Proposition 10 Assume that there exists a unique stable stationary equilib-
rium. Then the perfectly competitive economy will converge towards the (sta-
tionary) social optimum provided the optimal cohort growth rate g� is imposed.
This amounts to impose age-speci�c fertility rates n1 and n2 such that (n1 +
2
p
n21 + 4n2)=2 equals to optimal cohort growth rate g

�.

Proof. The proof follows from comparing the FOCs of the agent�s problem and
of the social planner�s problem.
Proposition 10 extends Samuelson�s Serendipity Theorem to the case of a

period of reproduction longer than one period. Actually, the "happy coinci-
dence" result derived by Samuelson is robust to the introduction of di¤erent
ages of motherhood. Provided the social planner can impose optimal fertility,
all other variables will, in a perfectly competitive economy, take their optimal
values at the steady-state. But Proposition 10 goes also beyond that result:
having not one, but two possible periods of reproduction gives now two instru-
ments - instead of one - to the social planner. The social planner has here an
additional degree of freedom, since only the cohort growth rate matters for the
decentralization of the social optimum, and age-speci�c fertility rates matter
only insofar as these yield the optimal cohort growth.
Note also that, here again, the relevant fertility concept is not the total

fertility rate n1 + n2, but the cohort growth rate. Hence given that what mat-
ters for the Serendipity result is to impose the cohort growth rate - whatever
age-speci�c fertility rates n1 and n2 are - the happy coincidence result can be
obtained under various total fertility rates, as long as these are compatible with
the optimal cohort growth rate g�.

4 Conclusions

Whereas the study of the optimal total fertility rate has received a lot of atten-
tion since Samuelson�s (1975) pioneer work, the characterization of the optimal
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timing of births along the lifecycle has remained so far largely neglected. The
goal of the present paper was to explore that issue. For that purpose, we focused
on a four-period OLG economy with physical capital accumulation. We explored
the long-run dynamics of economies with di¤erent age-patterns for fertility, and
their consequences for the social optimum. We proceeded in two stages. We
�rst looked at a fable with two islands - Early and Late Islands - which di¤er
only in the timing of births (young adulthood and older adulthood).
We showed that, unlike on Early Island, there exists no stable stationary

equilibrium on Late Island, which exhibits cyclical dynamics. Hence, even for
a given total fertility rate (n1 = n2), the dynamics of the economy di¤ers
signi�cantly, depending on the timing of births. Thus the timing of births is
not a detail for long-run dynamics, but matters as much as the total number of
births. We also characterized the social optimum on each economy, and showed
that, on each island, Samuelson�s Serendipity Theorem remains valid.
In a second stage, we considered a more general economy with interior fer-

tility rates during the reproduction period. We showed that there exists, un-
der mild conditions, a locally stable stationary equilibrium in that economy.
We also characterized the associated social optimum, and showed that various
age-speci�c fertility rates are compatible with the social optimum, as long as
these yield the optimal cohort growth rate. We also showed that Samuelson�s
Serendipity Theorem remains valid in that broader demographic environment,
but with more degrees of freedom for the social planner: as long as the age-
speci�c fertility rates yield the optimal cohort growth rate, the perfectly com-
petitive economy will converge towards the social optimum, whatever the precise
pair of age-speci�c fertility rates is.
In sum, this paper highlights that, besides the total number of births, the

timing of births is a major characteristic of an economy. Considering the to-
tal fertility rate is not su¢ cient for the study of the long-run dynamics, since
the timing of births determines the form - stationary or cyclical - of long-run
dynamics. Moreover, when characterizing the social optimum, the central vari-
able is not the total fertility rate, but the cohort growth rate. Hence focusing
only on the total fertility rate while ignoring the timing of births is also most
damageable from a normative perspective.
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6 Appendix

6.1 Proposition 1

Existence of a stationary equilibrium The dynamics of Early Island
economy can be summarized by the following two-dimensional dynamic system:

kt+1 � G(kt;
t) =
� (kt)

n1
+
t


t+1 � H(kt) =
�(kt)

(n1)
2
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The existence of a stationary equilibrium amounts to �nd a pair (k�;
�)
such that k� = G(k�;
�) and 
� = H(k�). Note that, provided �(0) = 0 and
� 0(kt) > 0 for any kt > 0, the second expression coincides with an increasing
curve on the (kt;
t) space. Regarding the �rst expression, we know that, if a
steady-state exists, it must be the case that:


t = kt �
� (kt)

n1

That expression describes the sustainable level of capital for a given 
t. The
derivative of that expression with respect to kt is:


0(kt) = 1�
�0 (kt)

n1
< 1

If one imposes that:

limk!0 1�
�0 (kt)

n1
< limk!0

� 0(kt)

(n1)2

we then know, given �(0) = 0 and �0(kt) > 0 and �(0) = 0 and �
0(kt) > 0 for

kt > 0, that the G(kt;
t) curve lies below the H(kt) curve in the neighbourhood
of 0. Furthermore, if one assumes that:

limk!+1 1� �
0 (kt)

n1
> limk!+1

� 0(kt)

(n1)2

then the G(kt;
t) curve lies above the H(kt) curve at high capital levels.
Thus, given that the G(kt;
t) curve lies below the H(kt) curve in the neigh-

bourhood of 0, but lies above it for high capital levels, it must be the case, by
continuity of G(kt;
t) and H(kt), that these intersect for some pair (k�;
�).21

Stability of a stationary equilibrium To study the stability of (k�;
�),
let us look at the properties of the Jacobian matrix. The Jacobian matrix is:

J �
 

@G(kt;
t)
@kt

@G(kt;
t)
@
t

@H(kt)
@kt

@H(kt)
@
t

!
21Note that the above existence proof relies on the limits when kt takes extreme values.

Hence, it says nothing on the number of intersections of the two curves G(kt;
t) and H(kt).
Thus uniqueness is not guaranteed. Actually, given that �(0) = 0 and �(0) = 0, it is also the
case that (0; 0) is a stationary equilibrium. But even beyond that trivial steady-state, other
intersections of the two curves G(kt;
t) and H(kt) may exist.
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When computing the entries of that matrix, we have:

@G(kt;
t)

@kt
=

�0 (kt)

n1
> 0

@G(kt;
t)

@
t
= 1

@H(kt)

@kt
=

� 0(kt)

(n1)2
> 0

@H(kt)

@
t
= 0

Thus the determinant and the trace of the Jacobian matrix are:

det(J) = ��
0(kt)

(n1)
2 < 0; tr(J) =

�0 (kt)

n1
> 0

The characteristic equation associated to dynamic system is:

�2 � tr(J)�+ det (J) = 0

Note that � � (tr(J))2 � 4det(J) is here�
�0 (kt)

n1

�2
� 4

 
��

0(kt)

(n1)
2

!
> 0

Thus the eigenvalues are:

�1;2=
tr(J)� 2

p
(tr(J))2 � 4det(J)
2

Hence it is straightforward to deduce that the eigenvalues are:

�1 =

�0(kt)
n1

+
2

r�
�0(kt)
n1

�2
+ 4 �

0(kt)

(n1)
2

2
> 0

�2 =

�0(kt)
n1

� 2

r�
�0(kt)
n1

�2
+ 4 �

0(kt)

(n1)
2

2
< 0

We are thus in a case where � > 0, and where the two eigenvalues are
of opposite signs. Note that the hyperbolicity of the stationary equilibrium
requires that all eigenvalues are smaller than 1 in modulo: j�1j < 1, j�2j < 1.
Otherwise, the equilibrium is not hyperbolic, with the consequence that the local
stability of the linearized system does not inform us about the local stability of
the actual, non-linear, system.
The condition for j�1j < 1 is:

2

s�
�0 (kt)

n1

�2
+ 4

� 0(kt)

(n1)
2 < 2�

�0 (kt)

n1
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The above condition can be rewritten as:

� 0(kt)

(n1)
2 < 1�

�0 (kt)

n1

We know that, at the stationary equilibrium, the G(kt;
t) curve intersects
the H(kt) curve from below, which means that:

1� �
0 (k�)

n1
>
� 0(k�)

(n1)2

Hence the condition for j�1j < 1 is satis�ed at the stationary equilibrium.
Regarding the condition for j�2j < 1, this can be rewritten as:

� 0(kt)

(n1)
2 < 1 +

�0 (kt)

n1

Here again, given that, at the equilibrium, the G(kt;
t) curve intersects the
H(kt) curve from below, we have that:

1� �
0 (k�)

n1
>
� 0(k�)

(n1)2

Hence the condition for j�2j < 1 is also satis�ed at our equilibrium. Note
that, while stability is guaranteed, the convergence towards the stationary equi-
librium takes a non-monotonic form, due to the opposite signs of the eigenvalues.

6.2 Proposition 2

Existence of a stationary equilibrium The dynamics of the Late Island
economy can be summarized by the following three-dimensional system:

kt+1 � G(kt;
t; gt) =
� (kt)

gt
+
t


t+1 � H(kt) =
�(kt)

n2

gt+1 � I(gt) =
n2
gt

Imposing kt+1 = kt in the former equation, and isolating 
t de�nes the kk
locus, along which kt is constant:


t = kt �
� (kt)

gt

Imposing 
t+1 = 
t in the second equation de�nes the 

 locus, along
which 
t is constant:


t =
�(kt)

n2
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Imposing gt+1 = gt in the third equation, and isolating gt de�nes the gg
locus, along which the cohort growth rate is constant:

g = 2
p
n2

It is not obvious to study whether the three loci intersect. But the analysis
is straightforward for the case where N0 = N1 > 0 and n2 = 1. The reason is
that, in that case, the cohort growth factor gt is:

gt =
Nt
Nt�1

=
n2Nt�2
Nt�1

=
Nt�2
Nt�1

=
Nt
Nt+1

=
1

gt+1

Hence, under initial conditions N0 = N1 > 0, it must be the case that the
cohort growth factor is constant and equal to 1: gt+1 = gt = 1. Hence, in that
case, the dynamic system becomes two-dimensional, as on Early Island:

kt+1 � �G(kt;
t) = � (kt) + 
t


t+1 � H(kt) =
�(kt)

n2

where �G(kt;
t) � G(kt;
t; 1).
Hence, provided � (0) = 0, �0(kt) > 0, as well as � (0) = 0, � 0(kt) > 0,

and provided limk!0 1 � �0 (kt) < limk!0
�0(kt)
n2

and limk!+1 1 � �0 (kt) >
limk!+1

�0(kt)
n2

, the �G(kt;
t) curve lies below the H(kt) curve in the neigh-
bourhood of 0, but lies above it for high capital levels, so that it must be the
case, by continuity of �G(kt;
t) and H(kt), that these intersect for some pair
(k�;
�). Hence, under N�1 = N0 > 0, there exists a stationary equilibrium on
Late Island. Moreover, given that �G(kt;
t) curve crosses the H(kt) from below,
that stationary equilibrium is locally stable (the proof is similar to the proof of
stability for the steady-state on Early Island).
However, if we abstract from that case, the dynamics of Late Island remains

three-dimensional. We have that the gg locus is a horizontal plan at gt = 2
p
n2

in the (kt;
t; gt) space.
Let us consider the conditions under which a stationary equilibrium exists.

That problem can be formulated as whether the kk locus and the 

 locus
intersect at some point on the gg locus. On the gg locus, the kk locus can be
rewritten as: 
t = kt � �(kt)

2
p
n2
. Moreover, the 

 locus is such that: 
t =

�(kt)
n2
.

Hence, provided limk!0 1 � �0(kt)
2
p
n2

< limk!0
�0(kt)
n2

and limk!+1 1 � �0(kt)
2
p
n2

>

limk!+1
�0(kt)
n2

, the kk locus lies below the 

 locus for low capital levels,
but lies above it for high capital level. Hence, by continuity, the two loci must
intersect. That intersection is a stationary equilibrium (k�;
�; g�), which can

be rewritten as:
�
k�; �(k

�)
n2

; 2
p
n2

�
.
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Stability of the stationary equilibrium Let us now show that this
stationary equilibrium is unstable. The Jacobian matrix is:

J �

0B@
@G(kt;
t;gt)

@kt

@G(kt;
t;gt)
@
t

@G(kt;
t;gt)
@gt

@H(kt)
@kt

@H(kt)
@
t

@H(kt)
@gt

@I(gt)
@kt

@I(gt)
@
t

@I(gt)
@gt

1CA
When computing the entries of that matrix, we have:

@G(kt;
t; gt)

@kt
=

�0 (kt)

gt
> 0

@G(kt;
t; gt)

@
t
= 1

@G(kt;
t; gt)

@gt
=

��(kt)
(gt)

2 < 0

@H(kt)

@kt
=

� 0(kt)

n2
> 0

@H(kt)

@
t
=

@H(kt)

@gt
=
@I(gt)

@kt
=
@I(gt)

@
t
= 0

@I(gt)

@gt
=

�n2
(gt)

2 < 0

Thus the determinant and trace of the Jacobian matrix are:

det(J) =
� 0 (kt)

n2

n2

(gt)
2 =

� 0 (kt)

(gt)
2 > 0; tr(J) =

�0 (kt)

gt
� n2

(gt)
2 ? 0

At the equilibrium, we have gt = 2
p
n2, so that:

det(J) =
� 0 (kt)

n2
; tr(J) =

�0 (kt)
2
p
n2

� 1

Following Brooks�s (2004) study of stability of �rst-order three-dimensional
dynamic systems, we know that all eigenvalues of a 3x3 Jacobian matrix are
lower than 1 in modulo (implying stability) provided the following three condi-
tions are satis�ed:
(i) jdet(J)j < 1
(ii) 1 > [

P
Mi(J)]� [tr(J)] [det(J)] + [det(J)]2

(iii) � [
P
Mi(J) + 1] < tr(J) + det(J) < [

P
Mi(J) + 1]

where det(J), tr(J) and
P
Mi(J) denote respectively the determinant, the

trace and the sum of the principal minors of the Jacobian matrix. Those con-
ditions are necessary and su¢ cient for the stability of the linearized dynamic
system.
Condition (iii) can be written here as:

�1 + �
0 (kt)

n2
+
�0 (kt)
2
p
n2

<
�0 (kt)
2
p
n2

� 1 + �
0 (kt)

n2
< ��

0 (kt)

n2
� �

0 (kt)
2
p
n2

+ 1
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That condition is not satis�ed here, as the � [
P
Mi(J) + 1] = tr(J) + det(J).

As a consequence, the stationary equilibrium on Late Island is not stable.

6.3 Proposition 3

Existence of cycles on Late Island To study the conditions under which
a stable cycle arises, let us rewrite the variables as a function of their lagged
past values. This gives us the following three-dimensional dynamic system:

kt+2 � G(kt+1;
t+1; gt+1) = gt
�
�
�(kt)
gt

+
t

�
n2

+
�(kt)

n2
� � (kt;
t; gt)


t+2 � H(kt+1) =
�(�(kt)gt

+
t)

n2
� �(kt;
t; gt)

gt+2 � I(gt+1) =
n2
gt+1

= gt � � (gt)

Given that gt+2 = gt for all t, any level of gt can constitute a stationary
cohort growth rate for the two-lagged dynamic system. As such, the equilibrium
is degenerate, as there is a continuum of equilibrium values for gt. However, if
we focus on the case where initial conditions are N�1 = N0 > 0, so that g0 = 1,
we have that gt can only take two values: 1 or n2. As a consequence, the gg
locus takes, in that case, the form of two horizontal planes in the (kt;
t; gt)
space, at gt = 1 and gt = n2.
The kk locus consists of all combinations (kt;
t) such that:

kt = gt
�
�
�(kt)
gt

+
t

�
n2

+
�(kt)

n2

The 

 locus consists of all combinations (kt;
t) such that:


t =
�(�(kt)gt

+
t)

n2

At a stationary equilibrium, it must be the case that those two loci intersect.
Moreover, we know that the equilibrium cohort growth rate is either gt = 1 or
gt = n2. Hence, at gt = 1, the two loci become:

kt =
� (� (kt) + 
t)

n2
+
�(kt)

n2


t =
�(� (kt) + 
t)

n2

On the basis of the �rst expression, we can isolate 
t and get the expression:

t = �

�1 (n2kt � �(kt))�� (kt). We know that, as kt tends towards 0, we have
that 
t tends also towards 0, since � (0) = 0 and �0 (�) > 0. Hence the kk locus
goes through (0; 0) in the (kt;
t) space.
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On the basis of the second expression, we know that, as kt tends towards 0,

t satis�es the expression 
t =

�(�(0)+
t)
n2

= �(
t)
n2

. Assuming that �(0) = 0 and
� 0(�) > 0, we know that, provided lim
!0�

0(
t) > n2 and lim
!+1�
0(
t) <

n2, there exists a solution 
+ to the equation 
t =
�(
t)
n2

. Moreover, still given

� 0(�) > 0, we know that the solution 
++ to 
t = �(�(kt)+
t)
n2

is increasing with

kt. Indeed, once kt > 0, it is impossible to have 
++ = 0, since
�(�(kt)+0)

n2
> 0

when kt > 0. Thus 
++ is increasing in kt, so that the 

 locus is increasing
in the (kt;
t) space.
If one denotes by �
 the solution to 
t =

�(�(kt)+
t)
n2

when kt ! +1, the
condition

limkt!+1�
�1 (n2kt � �(kt))� � (kt) > �


insures that the kk locus lies above the 

 locus for high capital levels.
Hence, given that the kk locus lies strictly below the 

 locus for low levels

of capital, but lies, under the above condition, strictly above the 

 locus, we
know that the two loci must intersect. Hence, there must exist an intersection�

̂; k̂

�
. Thus, taking the associated cohort growth rate g = 1, we have the

equilibrium
�
k̂; 
̂; 1

�
.

Moreover, at the equilibrium cohort growth rate g = n2, the two loci become:

kt = �

�
� (kt)

n2
+
t

�
+
�(kt)

n2


t =
�(�(kt)n2

+
t)

n2

On the basis of the �rst expression, we can isolate 
t and get the expression:


t = �
�1
�
kt � �(kt)

n2

�
� �(kt)

n2
. We know that, as kt tends towards 0, we have

that 
t tends also towards 0, since � (0) = 0 and �0 (�) > 0. Hence the kk locus
has (0; 0) as a starting point in the (kt;
t) space.
On the basis of the second expression, we know that, as kt tends towards 0,


t satis�es the expression 
t =
�(

�(0)
n2

+
t)

n2
= �(
t)

n2
. Assuming that �(0) = 0 and

� 0(�) > 0, we know that, provided lim
!0�
0(
t) > n2 and lim
!+1�

0(
t) <

n2, there exists a solution 
+ to the equation 
t =
�(
t)
n2

. Moreover, still given

� 0(�) > 0, we know that the solution 
++ to 
t =
�(

�(kt)
n2

+
t)

n2
is increasing with

kt. Indeed, once kt > 0, it is impossible to have 
++ = 0, since
�(

�(kt)
n2

+0)

n2
> 0

when kt > 0. Thus 
++ is increasing in kt, so that the 

 locus is increasing
in the (kt;
t) space.

If one denotes by ~
 the solution to 
t =
�(

�(kt)
n2

+
t)

n2
when kt ! +1, the

condition

limkt!+1�
�1
�
kt �

�(kt)

n2

�
� � (kt)

n2
> ~
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insures that the kk locus lies above the 

 locus for high capital levels.
Hence, given that the kk locus lies strictly below the 

 locus for low levels

of capital, but lies, under the above condition, strictly above the 

 locus, we
know that the two loci must intersect. Hence, there exists an intersection of the
two loci at a point

�
�
; �k

�
. This gives us another equilibrium, i.e.

�
�k; �
; n2

�
.

It follows from all this that the dynamic system with one additional lag

admits two equilibria
�
k̂; 
̂; 1

�
and

�
�k; �
; n2

�
.

Stability of the cycle Let us now consider whether the two equilibria�
k̂; 
̂; 1

�
and

�
�k; �
; n2

�
are stable. The Jacobian matrix is:

J �

0B@
@�(kt;
t;gt)

@kt

@�(kt;
t;gt)
@
t

@�(kt;
t;gt)
@gt

@�(kt;
t;gt)
@kt

@�(kt;
t;gt)
@
t

@�(kt;
t;gt)
@gt

@�(gt)
@kt

@�(gt)
@
t

@�(gt)
@gt

1CA
When computing the entries of that matrix, we have:

@�(kt;
t; gt)

@kt
= gt

�0
�
�(kt)
gt

+
t

�
n2

�0 (kt)

gt
+
� 0(kt)

n2
> 0

@�(kt;
t; gt)

@
t
= gt

�0
�
�(kt)
gt

+
t

�
n2

> 0

@�(kt;
t; gt)

@gt
=

�
�
�(kt)
gt

+
t

�
n2

+ gt
�0
�
�(kt)
gt

+
t

�
n2

��(kt)
(gt)

2 ? 0

@�(kt;
t; gt)

@kt
=

� 0(�(kt)gt
+
t)

n2

�0(kt)

gt
> 0

@�(kt;
t; gt)

@
t
=

� 0(�(kt)gt
+
t)

n2
> 0

@�(kt;
t; gt)

@gt
=

� 0(�(kt)gt
+
t)

n2

��(kt)
(gt)

2 < 0

@�(gt)

@kt
=

@�(gt)

@
t
= 0

@�(gt)

@gt
= 1

Thus the determinant of the Jacobian matrix is:

det(J) =
� 0(kt)

n2

� 0(�(kt)gt
+
t)

n2
> 0
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while the trace of the Jacobian matrix is:

tr(J) =

0@gt�0
�
�(kt)
gt

+
t

�
n2

�0 (kt)

gt
+
� 0(kt)

n2

1A+ � 0(�(kt)gt
+
t)

n2
+ 1

We now derive Brooks�s (2004) conditions (i), (ii) and (iii), which are nec-
essary and su¢ cient for the stability of the linearized dynamic system.

Condition (i) is satis�ed only if
�0(

�(kt)
gt

+
t)�
0(kt)

(n2)
2 < 1.

Regarding condition (ii), note that
P
Mi(J) is here

� 0(�(kt)gt
+
t)

n2
+
�0
�
�(kt)
gt

+
t

�
�0 (kt)

n2
+
� 0(kt)

n2
+
� 0(kt)

n2

� 0(�(kt)gt
+
t)

n2

Hence condition (ii) requires:

1 >
� 0(�(kt)gt

+
t)

n2

 
1�

�
� 0(kt)

n2

�2!
+
�0
�
�(kt)
gt

+
t

�
�0 (kt)

n2
+
� 0(kt)

n2

�
�0
�
�(kt)
gt

+
t

�
�0 (kt) �

0(kt)�
0(�(kt)gt

+
t)

(n2)
3

+

"
� 0(�(kt)gt

+
t)

n2

#2
� 0(kt)

n2

�
� 0(kt)

n2
� 1
�

Condition (iii) requires:

�

24� 0(�(kt)gt
+
t)

n2
+
�0
�
�(kt)
gt

+
t

�
�0 (kt)

n2
+
� 0(kt)

n2
+
� 0(kt)

n2

� 0(�(kt)gt
+
t)

n2
+ 1

35
<

�0
�
�(kt)
gt

+
t

�
�0 (kt)

n2
+
� 0(kt)

n2
+
� 0(�(kt)gt

+
t)

n2
+ 1 +

� 0(kt)

n2

� 0(�(kt)gt
+
t)

n2

<

24� 0(�(kt)gt
+
t)

n2
+
�0
�
�(kt)
gt

+
t

�
�0 (kt)

n2
+
� 0(kt)

n2
+
� 0(kt)

n2

� 0(�(kt)gt
+
t)

n2
+ 1

35
The �rst inequality is satis�ed, but the second inequality is not, since here
tr(J) + det(J) = [

P
Mi(J) + 1].

As a consequence of this, the two equilibria
�
k̂; 
̂; 1

�
and

�
�k; �
; n2

�
are

not stable. Thus nothing insures, from any initial conditions (k0;
0; g0), the
convergence towards that two-period cycle.
That negative result motivates us to restrict the set of initial conditions, to

explore whether stability could arise conditionally on some initial conditions.
To do this, let us now assume that N�1 = N0 > 0, so that g0 = 1. Under that
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assumption, the initial cohort growth rate is already at an equilibrium value,
and gt will only exhibit two di¤erent values over time: either 1 or n2. Hence we
can use that information to derive some conditional stability results.
Let us now investigate whether, under initial conditions (k0;
0; 1), the con-

vergence towards the equilibrium cycle
��
k̂; 
̂; 1

�
;
�
�k; �
; n2

��
arises. For that

purpose, we will rely on geometric analysis and discuss the direction of dynamic
arrows around the equilibrium cycle. Remind that the kk locus and 

 locus
can be written as:

kt =
� (� (kt) + 
t)

n2
+
�(kt)

n2
() � (� (kt) + 
t)

n2
= kt �

�(kt)

n2


t =
�(� (kt) + 
t)

n2

For any kt that lies below the level corresponding to the kk locus, we know,
for a given 
t, that kt <

�(�(kt)+
t)
n2

+ �(kt)
n2
, so that kt must grow over time, as

kt+1 > kt. Inversely, for any kt that lies above the level corresponding to the kk
locus, we know, for a given 
t, that kt >

�(�(kt)+
t)
n2

+ �(kt)
n2
, so that kt must fall

over time, as kt+1 < kt. Regarding the 

 locus, we know that, for any given
kt, if 
t lies below the level de�ned by the 

 locus, we have 
t <

�(�(kt)+
t)
n2

,
so that 
t will tend to grow over time, as 
t+1 > 
t. Inversely, for any given
kt, if 
t lies above the level de�ned by the 

 locus, we have 
t >

�(�(kt)+
t)
n2

,
so that 
t will tend to grow over time, as 
t+1 < 
t.
From the above discussion, it appears that, if we focus on the (kt;
t) space

under gt = 1, the dynamic arrows that can be drawn on all sides of the two

loci point towards the equilibrium
�
k̂; 
̂

�
. This is not a proof of convergence

towards
�
k̂; 
̂

�
, but at least it is not inconceivable that, at each period when

gt = 1 (i.e. each period out of two), the economy converges towards
�
k̂; 
̂; 1

�
.

The same kind of argument can be developed on the basis of the kk locus
and the 

 locus when gt takes its other value: gt = n2. The two loci are:

kt = �

�
� (kt)

n2
+
t

�
+
�(kt)

n2
() �

�
� (kt)

n2
+
t

�
= kt �

�(kt)

n2


t =
�(�(kt)n2

+
t)

n2

Here again, if we draw the dynamic arrows in the two-dimensional space
(kt;
t), the convergence towards the equilibrium

�
�k; �


�
is conceivable. Hence,

here again, it is not impossible that, at each period when gt = n2 (i.e. each
period out of two), the economy converges towards the equilibrium

�
�k; �
; n2

�
.

Therefore, provided the economy starts initially with an equilibrium cohort
growth rate (i.e. g0 = 1), the convergence towards the two-period equilibrium
cycle is not rejected by geometrical analysis.

38



6.4 Proposition 8

Existence of a stationary equilibrium The dynamic system:

kt+1 � G(kt;
t; gt) =
� (kt)

gt
+

�
1� n1

gt

�

t


t+1 � H (kt) =
�(kt)

n2

gt+1 � I(gt) = n1 +
n2
gt

From the �rst equation, we can de�ne the kk locus, along which kt is con-
stant. Imposing kt+1 = kt yields:


t =

�
gt

gt � n1

��
kt �

� (kt)

gt

�
From the second equation, we can de�ne the 

 locus, along which 
t is

constant:


t =
�(kt)

n2

From the third equation, we can de�ne the gg locus, along which gt is con-
stant. Actually, there is only one level of constant cohort growth rate:

gt = n1 +
n2
gt

() gt =
n1 +

2
p
n21 + 4n2
2

As a consequence, the gg locus is a horizontal plan in the (kt;
t; gt) space, at

a level gt = g� =
n1+

2
p
n21+4n2
2 .

Let us study under which conditions the kk locus and the 

 locus intersect

with each others at the cohort growth rate g� =
n1+

2
p
n21+4n2
2 .

The kk locus can, at that cohort growth rate, be rewritten as


t =

 
n1 +

2
p
n21 + 4n2

2
p
n21 + 4n2 � n1

!"
kt �

2� (kt)

n1 +
2
p
n21 + 4n2

#

The 

 locus can be rewritten as:


t =
�(kt)

n2

Note that, as �(0) = 0 and �(0) = 0, the two loci intersect at kt = 0.
Moreover, assuming that

limk!0
n1 +

2
p
n21 + 4n2

2
p
n21 + 4n2 � n1

"
1� 2�0 (kt)

n1 +
2
p
n21 + 4n2

#
< limk!0

� 0(kt)

n2
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and

limk!+1
n1 +

2
p
n21 + 4n2

2
p
n21 + 4n2 � n1

"
1� 2�0 (kt)

n1 +
2
p
n21 + 4n2

#
> limk!+1

� 0(kt)

n2

we know that the kk locus lies below the 

 locus for low capital levels, but lies
above it for high capital level. As a consequence, and by continuity, we know
that the kk and 

 loci must necessarily intersect at some point along the gg
locus. That intersection is a stationary equilibrium (k�;
�; g�), which can be

rewritten as:
�
k�; �(k

�)
n2

;
n1+

2
p
n21+4n2
2

�
.

Stability of a stationary equilibrium The Jacobian matrix is:

J �

0B@
@G(kt;
t;gt)

@kt

@G(kt;
t;gt)
@
t

@G(kt;
t;gt)
@gt

@H(kt)
@kt

@H(kt)
@
t

@H(kt)
@gt

@I(gt)
@kt

@I(gt)
@
t

@I(gt)
@gt

1CA
When computing the entries of that matrix, we have:

@G(kt;
t; gt)

@kt
=

�0 (kt)

gt
> 0

@G(kt;
t; gt)

@
t
= 1� n1

gt
> 0

@G(kt;
t; gt)

@gt
=

��(kt)
(gt)

2 +
n1

(gt)
2
t 7 0

@H(kt)

@kt
=

� 0(kt)

n2
> 0

@H(kt)

@
t
=

@H(kt)

@gt
=
@I(gt)

@kt
=
@I(gt)

@
t
= 0

@I(gt)

@gt
=

�n2
(gt)

2 < 0

Thus the determinant of the Jacobian matrix is:

det(J) =

�
1� n1

gt

�
� 0 (kt)

(gt)
2 > 0

since at gt = g� =
n1+

2
p
n21+4n2
2 > n1.

The trace of the Jacobian matrix is:

tr(J) =
�0 (kt)

gt
� n2

(gt)
2 ? 0

In that economy, Brooks�s (2004) conditions (i), (ii) and (iii) impose the
following restrictions.
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Condition (i) is satis�ed only if

4� 0 (k�)
�

2
p
n21 + 4n2 � n1

�
�
n1 +

2
p
n21 + 4n2

�3 < 1

Regarding Condition (ii), note that
P
Mi(J) is here

��
0 (kt)

n2

�
1� n1

gt

�
� n2�

0 (kt)

(gt)
3

Hence condition (ii) amounts to:�
gt

gt � n1

�2
+
� 0 (kt)

n2

�
gt

gt � n1

�
+

n2�
0 (kt)

(gt) (gt � n1)2
+

� 0 (kt)�
0 (kt)

(gt)
2
(gt � n1)

� � 0 (kt)n2

(gt)
3
(gt � n1)

>

�
� 0 (kt)

�2
(gt)

4

That condition can, at the equilibrium, be rewritten as:

1 +

�0(k�)
n2

�
2
p
n21 + 4n2 � n1

�
�
n1 +

2
p
n21 + 4n2

� +
8�0 (k�)

�
n2 + �

0 (k�)
��

n1 +
2
p
n21 + 4n2

�3 +
32
�
� 0 (k�)

�2
n1

�
2
p
n21 + 4n2 � n1

�
�
n1 +

2
p
n21 + 4n2

�6
> 16� 0 (k�)

264n2
�

2
p
n21 + 4n2 � n1

�
+
�
n1�

0 (k�) + � 0 (k�)
� �
n1 +

2
p
n21 + 4n2

�
�
n1 +

2
p
n21 + 4n2

�5
375

Condition (iii) amounts to:�
1� n1

gt

�
� 0 (kt)

n2
+
�0 (kt)

gt

n2

(gt)
2 � 1

<

�
1� n1

gt

�
� 0 (kt)

n2

n2

(gt)
2 +

�0 (kt)

gt
� n2

(gt)
2

< 1�
�
1� n1

gt

�
� 0 (kt)

n2
� �

0 (kt)

gt

n2

(gt)
2

The �rst inequality can, at the equilibrium, be rewritten as:

�1 <
2�0 (k�)� �0(k�)

n2

�
2
p
n21 + 4n2 � n1

�
n1 +

2
p
n21 + 4n2
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The second inequality can, at the equilibrium, be rewritten as:

2�0 (k�) + �0(k�)
n2

�
2
p
n21 + 4n2 � n1

�
n1 +

2
p
n21 + 4n2

< 1

6.5 Proposition 9

As shown above, the equation:

g3 +
(FL (k; �)� d)

k
g � 2b

k
= 0

characterizes the interior optimal cohort growth rate g. Given that this equa-
tion takes the form of a so-called "depressed cubic" equation, we can use the
resolution method develop by Cardano (1545). That method consists in �rst
introducing two new variables, whose sum equals g:

s+ t = g

We substitute in the depressed cubic equation, and we get:

(s+ t)
3
+ (

FL (k; �)� d
k

)(s+ t)� 2b
k

= 0

s3 + t3 + (
FL (k; �)� d

k
+ 3st)(s+ t)� 2b

k
= 0

Then, imposing the constraint

FL (k; �)� d
k

+ 3st = 0

we get:

s3 + t3 =
2b

k

st = �FL (k; �)� d
3k

=) s3t3 = � (FL (k; �)� d)
3

27k3

Thus s3 and t3 are the roots of the equation:

m2 +m

�
�2b
k

�
� (FL (k; �)� d)

3

27k3
= 0

Note that

� �
�
�2b
k

�2
+
4
�
FL(k;�)�d

k

�3
27

=
4b2

k2
+
4 (FL (k; �)� d)3

27k3
? 0

That equation can then be solved following the usual procedures for �nding
roots.
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If � > 0, we have the two roots:

m1 = s
3 =

2b
k +

2

q
4b2

k2 +
4(FL(k;�)�d)3

27k3

2
;m2 = t

3 =

2b
k �

2

q
4b2

k2 +
4(FL(k;�)�d)3

27k3

2

Hence it follows that the optimal g is given by:

g = s+ t =
3

vuut 2b
k +

2

q
4b2

k2 +
4(FL(k;�)�d)3

27k3

2
+

3

vuut 2b
k �

2

q
4b2

k2 +
4(FL(k;�)�d)3

27k3

2

If � = 0, we need to choose a cubic root for s3. As there is no direct
way to choose the corresponding cubic root of t3, we need to use the relation
t = �FL(k;�)�d

3ks , which yields:

s =
3

vuut b

k
� 2

s
b2

k2
+
(FL (k; �)� d)3

27k3

Hence it follows that the optimal cohort growth rate g = s+ t is:

g =
3

vuut b

k
� 2

s
b2

k2
+
(FL (k; �)� d)3

27k3
� FL (k; �)� d

3k
3

r
b
k �

2

q
b2

k2 +
(FL(k;�)�d)3

27k3

Finally, if � < 0, one can obtain the complex cubic roots by multiplying one
of the two above cubic roots by �1

2 + i
2p3
2 , and the other by

�1
2 � i

2p3
2 . This

yields the two roots:

m1 = s3 =
� 2b

k �
2

q
4b2

k2 +
4(FL(k;�)�d)3

27k3

4
+ i

2
p
3

2b
k +

2

q
4b2

k2 +
4(FL(k;�)�d)3

27k3

4

m2 = t3 =
� 2b

k +
2

q
4b2

k2 +
4(FL(k;�)�d)3

27k3

4
� i 2
p
3

2b
k �

2

q
4b2

k2 +
4(FL(k;�)�d)3

27k3

4

Hence g = s+ t is:

g =
3

vuut� 2b
k �

2

q
4b2

k2 +
4(FL(k;�)�d)3

27k3 + 2bi 2
p
3

k + i 2
p
3

2

q
4b2

k2 +
4(FL(k;�)�d)3

27k3

4

+
3

vuut� 2b
k +

2

q
4b2

k2 +
4(FL(k;�)�d)3

27k3 � 2bi 2
p
3

k + i 2
p
3

2

q
4b2

k2 +
4(FL(k;�)�d)3

27k3

4
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