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Abstract: The automatic detection of road cracks is important in a lot of countriesaotiy the quality of road surfaces
and to determine the national roads that have to be improved. Many nséihwe been proposed to automat-
ically detect the defects of road surface and, in particular, cracks: tadtls of mathematical morphology,
neuron networks or multiscale filter. These last methods are the mosipajepe ones and our work con-
cerns the validation of a wavelet decomposition which is used as the initialigdtiosegmentation based on
Markovian modelling. Nowadays, there is no tool to compare and to aesfwacisely the peformances and
the advantages of all the existing methods and to qualify the efficiency eftsothcompared to the state of the
art. In consequence, the aim of this work is to validate our method and ¢alslefiow to set the parameters.

1 INTRODUCTION First, existing methods are resumed before describing
our approach. Then, we introduce the evaluation pro-
In many countries, the quality of roads is evalu- tocol that enables us to validate the new approach and

ated by taking into account numerous characteristics: e 9ive the details of the parameter settings.
adherence, texture and defects. Since 1980, many

efforts have been spent for making this task more

comfortable, less dangerous for employees and also,2 DETECTION OF ROAD

more efficient and less expensive by using an acquisi- CRACKS

tion system of road images and by introducing semi-

automatic defect detection, in particular crack detec-

tion. Nowadays, a lot of acquisition systems are pro- For this task, three steps can be distinguished: image
posed, see (Schmidt, 2003), but, as far as we are con-acquisition, data storage and image processing. In this
cerned, even if a lot of automatic crack detections had paper, even if the choices for the two first steps are
been proposed, no method had been widely applied.important, we focus on the image processing step.

In fact, this problem is difficult because road cracks Four different kinds of methods exist, see Table 1.
represent a small part of the images (less th&%al  Thethresholding methodsre the oldest ones and also
of the image) and is very low contrasted (the signal the most popular. They are based on histogram analy-
of the crack is mixed with the road texture). Actu- sis (Acosta etal., 1992), on adaptive thresholding (EI-
ally, there is no evaluation protocol to compare and to behiery et al., 2005), or on Gaussian modelling (Kout-
highlight methods that are well dedicated to this task sopoulos and Downey, 1993). These techniques are
and we propose to introduce such a protocol. More- simple but not very efficient: the results show a lot of
over, our second aim is to introduce and to validate false detections. Some methods are basedanpho-

our contributions about a multi-scale approach basedlogical tools (Elbehiery et al., 2005; lyer and Sinha,
on two steps: a binarization with adapted filtering and 2005; Tanaka and Uematsu, 1998). The results con-
a refinement of the binarization by a Markov model- tain less false detections but they are highly depen-
based segmentation. dent on the choice of the parameterleuron net-



worksbased methods have been proposed to alleviatesegmentation, step 4,. In the first part, a photometric
the problems of the two first categories (Kaseko and hypothesis is used: a crack is darker than the back-
Ritchie, 1993). However, they need a learning phase ground (the rest of the road pavement) whereas, in
which is not well appropriate to the taslEiltering the second part, a geometric hypothesis is exploited:
methods are the most recent. At the beginning, a con-a crack is composed of a set of connected segments
tour detection has been used but the major drawbackswith different orientations. The number of scales for
lie on using a constant scale, supposing that the width the adapted filtering has to be chosen and depends on
of the crack is constant and that we suppose that thethe resolution of the image. By supposing a resolution
background is not as noisy (or textured) as a road sur-of 1 mm per pixel, by choosing 5 scales, a crack with a
face. This is not realistic and this is why, most of the width from 2 mm to 1 cm can be detected. Moreover,
filtering methods are based on a wavelet decomposi-the number of directions (for the filtering) also has
tion (Delagnes and Barba, 1995; Subirats et al., 2006;to be chosen and, it seems natural to take these four
Wang et al., 2007; Zhou et al., 2005) or on partial dif- directions: [0, 7, 7, 37"] that correspond to the four
ferential equations (Augereau et al., 2001). We can usual directions used for crack classification. Adapted
also notice an auto-correlation method (Lee and Os- filtering is applied in each scale, each directions and
hima, 1994) (the authors estimate a similarity coeffi- then all the results are merged (mean of the coeffi-
cient between patterns that represent simulated cracksients). The results of this filtering is used to initialize
and patterns inside the images). Some methods alsahe Markov model.

use texture decomposition (Petrou et al., 1996; Song
etal., 1992) (the goal is to find a noise, i.e. the crack, |L.NPUt.
inside a known texture). Road i mages

Initialization

Table 1: State of the art about road crack detection — In
Nurmber of scal es and angl es

brackets, we give the years of publication.

: St eps
THRESHOLD (Acosta et. al., 1992; Cheng p |
(1992-1999) | ©t al., 1999; Koutsopoulos and 1. For each scale do Estinmate adapted
Downey, 1993) filter (AF)
Mo?l';'gg;om (Tanaka and Uematsu, 1998 2. For each direction do Apply AF
NEURAL (Bray et al., 2006; Chou et al. 3. Merge AF in all the directions
NETWORK 1995; Kaseko and Ritchie, 4. For each scal e do

(1991-2006) 1993; Ritchie et al., 1991)
(Chambon et al., 2009;

(a) Initialize the sites (Mrkov)

I\QEIA‘I:E Delagnes and Barba, 1995; (b) While not (S.t op condition) do
(1990_2009) | Fukuhara et al., 1990; Subirats Update the sites
etal., 2006; Zhou et al., 2005 Figure 1: Algorithm with adapted filter and Markovian

modelling (AFMM) — Steps 1 to 3 lead to a binary image
using adapted filtering, while step 4 refines this result with
a Markovian modelling.

3 AFMM Method
3.2 Adapted filtering

First, we present the general algorithm of the method:

Adapted Filtering and Markov Model-based segmen- They € £2(IR?) function is a wavelet if:

tation (AFMM) and, second, our contributions in each lW(x)[2

of the parts of this algorithm. /|R2 X2

3.1 Algorithm whereW is the Fourier transform of). The equa-

tion (1) induces tha%R2 W(x)dx = 0. The wavelet

The goal of this algorithm, presented in Figure 1, is family is defined for each scakeand for each posi-
to obtain, steps 1 to 3, a binarization (black pixels tionu, by :

for background and white pixels for the crack) and 1

a refinement of this detection by using a Markovian Wxae(X) = éllJ(Re((X— u)/s)), (2)

dx < co,avecx = (i, ), (1)



wherey € R? andR® is a rotation of angl®. One improvements about the initialization of sites and the
of the main difficulties to apply a wavelet decompo- updating of the Markov Random Field.

sition is the choice of the mother wavelgt Nu- For the first step of segmentation (initialization),
merous functions are used in the literature: Haar in (Subirats et al., 2006), the sites are of size 3,
wavelet, Gaussian derivatives, Mexican hat filter, consequently, a regular grid is considered in the im-
Morlet wavelet. It is very hard to determine which age. The four configurations that are possible, are rep-
one is the best for a given application. In the case of resented in Figure 2. The initialization of the sites is
crack detection, two elements are present: the crackbased on the configuration that maximizes the wavelet
(if there is a crack) and the background (the road coefficients. More formally, if we denoteg o, v, m
surface can be viewed as a repetitive texture). The Y25 andy2 an, see in the bold rectangle in F|gure 2,
goal of the crack detection is to recognize a signal, ihe four conflguratlons the best configuratiggsis:

i.e. the shape is known up to a factor, mixed with

a noise whose its characteristics are known. Con- Yoest= argmaxmy g, (6)
sequently, adapted filtering is well designed for the aco. 5]

problem: extracting singularities in coefficients esti- wheremy 4 is the mean of wavelet coefficients on the
mated by a wavelet transform. dfis a discrete and  considered configuratiop . These four configura-
deterministic signal with values stored in the vector tions do not represent all the possible and are not re-
s= (st ... sn), N the number of samples, and alistic configurations. In fact, all these four config-
zZ= (zl zN), is a noisy observation & supposed  urations are centered, whereas, it is possible to have
to be an additive noise = s+ b. The main hypothe- ~ some non-centered configurations. Consequently, we
sis is that this second-order noise is centered and stause a set of configurations that includes this aspect
tionary, with auto-correlation functiom,,, of terms and we employ a set of sixteen configurations illus-

@b ;) = Pon;_;» independent from the signal The trated in Figure 2. By modifying the number of con-
adapted f||teh of sis defined by: figurations, we need to adapt the initialization of sites,
B i.e. equation (6).
= (pnb S. 3)
The crack signal depends on the definition of the Yo Y20 Y30
crack. In this paper, like most of the papers of this
domain, crack pixels correspond to black pixels sur- #
rounded by background pixels (road pixels). This is [T 1]
why, in (Subirats et al., 2006), a crack is a piecewise Yo.n yim Yo.n Y3 m Ya.n
j ]H |

constant function: . )
_ T H.t
f(X):{ a |fXE[ 2’2} (4)

0 Elsewhere,

Y1 I
) 2
where the factoa and the threshold@ have to be de-
termined. It does not correspond to a realistic rep-
resentation of the crack. Because of sub-sampling,
lights, orientation of the camera, the signal is more 3 3 3 3 3
g g V07 3n y]_, L y2, L yg,7 3 y47 3n

like a Gaussian function with zero mean: u
x\2
109 = —aedl8), ®) H :.: EI O

wherea is the size of the crack and depends @mn
the deviation of the Gaussian law, i.e.= 1 Figure 2: The sixteen configurations of the Markov model
o

. V(@ (initialization) — The sites are represented with dark gray
Consequently, the terra allows to fix the width of levels.

the crack (like threshold in equation (4)).

The image is considered as a finite sesitdsdenoted

3.3 Contribution to segmentation S ={s1,...,sn}. For each site, thaeighborhoods

The goal of this part is to extract shapes, i.e. cracks, defined by: V= {5 Is¢ Ty & s € Vs=s¢€ ‘VS/}
using the detection maps estimated at the first stageA clique cis defined as a subset of sites§nwhere
of the algorithm. The MRF (Markov Random Field) every pair of distinct sites are neighbors.
principle is introduced before the presentation of the The random fields considered are:



1. The observation fieldl = {ys} with s€ 5. Here, Y20 | V2.1 | Y21 | Your
ys is the mean of wavelet coefficients on the site. Yoo | BL | B2 | Bs | B2
2. The descriptor field = {Is} with s€ $. For this Yor | B2 | B | B2 | Bs
work, if there is a cracks = 1 elsewherés = 0. Yor | Ba | B2 | B1 B2
MRF model is well suited to take into account spatial Voo | B2 | Bs | PBe B

dependencies between the variables. Each iteration

a global cost, or a sum giotentials that depends on Table 2: Functioru, — This table represents the values of

the values of the sites and the links between neigh' the fUnCtionUZ(S/,S) for the four initial configurations of
the sites. In the experiments we have taken the values of the

borhoods, !S Updat,ef’- This global cost takes into ac- parameters proposed by the authors (Subirats et al., 2006)
count the site coefficients (computed from the wavelet nd that give the best resulf; = —2, B, = —1 andBs = 2.

coefficients estimated during the first part of the al-

gorithm: adaptive filtering) and the relation between

each site and the sites in its neighborhood (in this pa- sjtes (there are 16 16 possibilities) and position of
per, it corresponds to the eight neighbors). More for- he two sites (there is eight possibilities because of 8-
mally, the global cost is the sum of all the potentials connexion). Consequently, the new potential function

of the sites and contains two terms: us follows these two important rules:
Us(S) = aqus(S) + a2 Z u(s, s’), (7) (R1) The lower the difference of orientations between
e, two sites, the lower the potential.

(R2) The lower the distance between two sites, the
lower the potential (in this case, distance means
the minimal distance between the extremities of
the two segments).

More formally, if d denotes the Euclidean distance

where 7 is the neighborhood of site The choice
of the valuesi; anda, depends on the importance of
each part of the equation (7).

The functionuy is given by:

galk¥9? |f yo >k between the two closest extremities of the sites, with
(s ls=1) =/ Elsewhere® d € [0,0mad (dmax = 5v/2), 81 and By, the ori-
onic? (8) entations of respectivelg = {s}i—1.n, ands =
U (ye,ls = 0) = {eZz Yo7 If ys <k {S/j}j:j_“NS, and 8, the angle between the two sites,
1 Elsewhere, theus function is defined by:

The parameterg;, & andk have to be fixel For Ux(S,s) = a2 (W) +
the definition ofuz, we have to determine the num- J(NbC) mini 1 (d(s.8,))
ber of cliques. In (Subirats et al., 2006), four cliques (1-ay) W ©)
are possible. As there is four configurations in the _Lm)
previous approach, there is sixteen possibilities. A 3/

8-neighborhood is considering but the potential func- Where NbC indicates the number of elements of the
tion proposed in the precedent work only considers two sitessands andJ(x) equals 1 if NoC= 0 and 0
the difference of orientations between two neighbor- €lsewhere. The first term is induced by the rule about
hoods and not the position between the two sites of the orientations, rule (B, it is zero when the sites
the clique, see Table 2. have the same orientation and this orientation is the
Some cases are not penalized with the old config- Same as the orientation between the sites, fe=
uration. For example, these two unfavorable cases are2 = 61. It gives bad costs to configurations where
not penalized: two sites with the same orientation but the sites do not have the same orientation but also the
with no connection between them, two sites with the particular case where they are parallel, see example
same orientation but their position makes them par- (a) in Figure 3. The second and third terms express
allel. This is why, with the sixteen possible config- the rule (R) about the distances. Two aspects have
urations presented in Figure 2, the new variant takesto be distinguished: the number of connected pixels,

into account differences of orientations between two when the sites are connected, and, on the contrary,

BT T ) ) the distance between the sites. It allows to give low
_ “The choice ofk is related to the maximal number of inf ence to disconnected sites and also to increase

pixels that belong to a crack (it depends on the resolution of the cost of sites that are parallel but connected. see

images and hypothesis about the size and configuration of A P . ;

cracks). We have chosérin order to consider at most 5%  €x@mple (b) in Figure 3. To study the influence of all

of the image as a crack. Moreover, our experimentations these terms, the equation has been normalized and the

have brought us to takg =£,=100. different terms have been weighted.



(b) allow to propose an exact evaluation and to well illus-
A B trate the behavior of the method in theoretical cases
whereas the last kind of images allows to validate the
work on real images with a "pseudo” ground truth.

=2 = Real image +
Synthetlc Ground truth simulated Ground truth
image
defect

Real image manually segmented

Bp=01=6=63=7
ee]_:O,eez:eeg:g
Fors;:up=m—3+0
Fors;:up,=0-1+0
Forsz:up=0-0+2

Fors;:up=02-0+2
Fors,:up=0-1+0
Forsg:up=%—-1+40

Figure 3: lllustration of functionu, — These two examples
of sites with their respective neighborhoods show the be-
havior of potentiali, with the two considered aspects: ori- : ——

entation and distance. In example (a), with the help of the ~ Reference segmentation or pseudo ground truth
orientation term, the configuratican is penalized andg is segmentation
less penalized thas . In example (b), with the help of the
two terms on distance, the sigis penalized, compared to
sp. On the contrary, the particular casespfs favorable and
it equilibrates the penalty given by the orientations.

4 EVALUATION PROTOCOL Figure 4: Tested images.

For the evaluation of automatic crack detection, there
is no evaluation and comparison protocol proposed in
the community. However, in all the countries, for es-
timating the quality of the road surface, it is impor-

4.2 Reference segmentation

tant to know exactly the size and the width of the de- For real Images, we briefly explain how the manu.al
segmentation is validated. Four experts manually give

fects, i.e. to detect precisely the defect. This is why, 2 seamentation of the imaaes with the same tools and
it seems important to characterize quantitatively the . egme 0 g€ € € tools

performance of the methods. For building this kind in the same conditions. Then, the_ four segmentations
of protocaol, it is necessary, first, to choose the tested are merged, following these rules:

images, second, to choose how to build reference seg-1. A pixel marked as a crack by more than two ex-
mentations, and, third, to determine the criteria used  perts is considered as a crack pixel;

for the quantitative analysis. 2. Every pixel marked as a crack and next to a pixel

. kept by step 1 or 2 is also considered as a crack.
4.1 Tested images N .
The second rule is iterative and stops when no pixel

The most difficult is to propose images with a refer- is added. Th'en, the result is dilated with a structuring
ence segmentation or a "ground truth" segmentation.elem,ent of size &,3'_ , ,

On the first hand, we create synthetic images with a N this part, we distinguish two datasets of real im-
simulated crack. As shown in figure 4, the result is 29€S- First, we have work with 10 images, in order to
not enough realistic and, on the second hand, we havevalldate our manual segmentation and to determine
taken a real image with no defect and we have addedOW 10 fix the parameters of the proposed method.
a simulated defect. The result is more realistic but the 1 NS first dataset is callethitial dataset The sec-
shape of the crack (which is randomly chosen) does °"d One contains 32 images to complete the evalua-
not seem enough realistic. This is why, it appears im- 0N and we called it theomplementary dataset

portant to propose a set of real images with manual

segmentations that are enough reliable to be consid-Initial dataset To evaluate the reliability of the ref-
ered as reference segmentations or "ground truth" seg-erence segmentations, we estimate, first, the percent-
mentations. To resume, the two first kinds of images age of covering between each operator, and, second,



the mean distance between each pixel (detected by4.3 Evaluation Criteria
only one expert and not kept in the reference image)
and the reference segmentation. Table 3 compares thgy, iis section, we introduce how the reference seg-
results for these 10 firstimages. We can notice that the j,antation and the estimated segmentation are com-
first 4 images are the most reliable because the Meaared. In Figure 5, we present common evaluation
error is less than 2 pixels. On the contrary, the last cyieria that are used for segmentation evaluation. We
6 images are less reliable but they are also the mosty 5.6 added the principle of "accepted” detection that
difficult to extract a segmentation. tolerates a small error on the localization of crack pix-
els. This criterion is needed because perfect detection
Complementary dataset The same technique is seems, for the moment, difficult to reach, see the re-
used for establishing the reference segmentationssults in Table 3, that illustrate this aspect. In conse-
with 32 images. By analyzing the results for criteria quence, these "accepted" pixels have been included in
D., presented in Table 3, we decided to classify the 42 the estimation of the similarity coefficient or DICE.
tested images in 3 categories: The threshold for accepted pixels equals 0 for syn-

1. Reliable: Allthe images have obtaindd<2and  thetic images whereas it depends on the mean dis-
it means that all the operators have selected areagances, see D. in table 3, for the real images.
that are quite close to each other and the segmen-
tation is reliable. True positives (TP)

2. Quite reliable: All the images have obtained Positives (P)
2 < D < 8, it means that some parts of the crack /4 Accepted

are not easy to segment and there are locally big False Negatives (FN) - -

errors. ’ False positives (FP)
/

3. Ambiguous: All the images have obtaindd > 8. =

It clearly show that the images are really difficult True negatives (TN)

to segment and in most of the cases, it means that — - Proportion of good

some parts are detected as a crack whereas they| Sensitivity | ey detections

are not a crack and reversely. specificity ™ Proportion of

TN+FP non-detected pixels

Table 3: Manual segmentation comparison for establishing Similarity — Ratio between good
the reference segmentations — For each image, we give the | Coefficientor | egtspp detections and
percentage of pixels that are preserved in the final reference | Dice similarity non-detections

segmentation compared to the size of the image (F), the per-

centage of covering between 2, 3 and 4 segmentations (overFigure 5: Evaluation criteria — In this figure, it corresponds
all the pixe|s marked as crack by the 4 experts) and the sumto two simulated segmentations of the same crack: the black
of them (S). For all the crack pixels not preserved in the One is manual (or the reference) and the red one is esti-
final reference segmentation, the mean distance to this seg-mated. The goal is to evaluate the quality of the estimated

mentation is given, noted D. segmentation, that corresponds to the Positives (P). All the
non-selected pixels that do not correspond to the crack are

Images 1E (%)2 (9)3 (%) 4 (%)S (%) D (pix called the True Negatives (TN). Piece of crack with the two
; g‘ ()2 (%)}3 (%)}4 (%)}S (%) D (pix) colors (red and black) are the correct detections or True Pos-
0.45/28.879.79| 1.59/40.29 1.48 itives (TP). In the table, the criteria are resumed and in this

work, we have used the DICE because this coefficient well
represents what we want to measure: the quality of the de-
tection against the percentage of the crack that is detected,

or, how to reduce false detections and to increase the den-
0.72|27.5311.66 2.33|41.52 1.41 sity.

27

0.4 126.6914.59 4.2 |45.48 1.45

0.44]34.3|19.01 5.87(59.18 1.03
463 M| 0.17(23.46 5.95(/0.39|29.8| 1.4
O36 k4l 0.41(23.52 7.41| 0.9 |31.83 7.05
41 lsisid| 0.33|22.64 7.31|1.33|31.28 3.56
23 widid| 0.6 (24.12 9.41| 2.45|36.58 2.23

352 wmami| 1.01(25.6911.52 2.15(39.36 4.75 o
88 M| 1.44|22.74 8.23| 1.23| 32.2| 2.76 For the proposed method, we want to determine, first,

how to fix the different parameters, second, the pre-
processing steps that are necessary, and, finally, which

5 Experimental results




variant is the most efficient. In consequence, we have
tested different:

e Parameter values -The weightsa1, equation (7),
andoaz, equation (9), are tested from 0 to 1 with a
step of 0.1.

e Pre-processings —These pre-processings have

equation (9), i.ea, = 0.5. However, better results are
obtained when the weight of the orientation is greater
than the distance one instead of the reverse.

5.2 Pre-processing

These tests have been done with real images, be-

been experimented to reduce noises induced bycause, a priori, synthetic images do not need pre-

texture, to increase the contrast of the defect and,
to reduce the light halo in some images (like the
last six ones presented in Table 3):

1. Threshold —Each pixel over a given threshold

is replaced by the local average gray levels.
Smoothing —A 3 x 3 mean filter is applied.
Erosion — An erosion with a square structuring
element of size X% 3 is applied.

Restoration — It tries to combine the ad-
vantages of all the previous methods in three
steps: histogram equalization, thresholding
(like Threshold, and erosion (likderosion).

2.
3.

4.

e Algorithm variants —Four variants are compared:

1. Init — This is the initial method proposed
in (Subirats et al., 2006).

Gaus — This variant considers the crack as a
Gaussian function, see section 3.2.

INMM — This is the initial version with an im-
provement of the Markov model (new defini-
tion of the sites and of the potential function),
see section 3.3.

GaMM — This is theGausversion with the new
Markov model.

2.

3.

4.

e Comparison — We have compared this method
with a method based on morphological tools and
that is quite similar to (Tanaka and Uematsu,
1998) notedviorph.

5.1 Parameter influence

Among the results, two conclusions can be done. For

each variant and each pre-processing, the weights be

tween the term for adapted filtering and the term for
the Markovian modelling should be the same, see
equation (7), i.e.a; = 0.5. However, when more
weight is given to adapted filtering , the quality of the
results is lower than when more weight is given to the
Markovian segmentation. It means that in this kind
of application, the geometric information is more re-

processings. The results are given by:

InMM
Threshold

GaMM
Erosion

Gaus
Restoration

Init
Restoration

However, for the four first images (acquired with
lighting conditions more comfortable than the light-
ing conditions of the next 6 ones), the pre-processing
is not significant for increasing the quality of the re-
sults. Moreover, with the new Markov model, the pre-
processing step increases a little the quality.

5.3 Variants

The results are separated in two cases: with synthetic
images and with real images. In Figure 6, the evolu-
tion of the similarity coefficient, or DICE, for the 11
synthetic images and the 10 real images is presented.
With synthetic imagesGaMM is clearly the best for
most of the images. However, for one image (the
fifth), the results are worse than witBausbut they

are still correct (DICE=0.72). On the contrary, for the
most difficult images (the 3 first ones that contain a
real road backgroundizaMM obtains acceptable re-
sults (DICE> 0.5) whereas the other methods are not
efficient at all. An illustration is given in Figure 7: it
shows howGaMM can reduce false detections.

The results with real images, see graph (b) in Fig-
ure 6, are coherent with those obtained with synthetic
images. The new Markov model allows the best im-
provements, compared to the initial method. The
methodGaMM obtains the best results, except on few
images, see an example in figure 8, whi&lM is

the best. HoweveGaMM gives results that are quite

similar and the differences are not significant.

5.4 Complementary dataset and
comparison

Finally, we have compared the result G&EMM on
each of the complementary dataset (32 images) with

liable than the photometric one and it seems coherentthe results obtained with a classic method based

with the difficulties of the acquisition.
For the new Markov model, we have noticed that the

on morphological tools, like (Tanaka and Uematsu,
1998). The mean DICE is 0.6 witBaMM whereas

results are the best when the weights are the same beit is 0.49 with theMorphologymethod, see Figure 9.
tween the orientation term and the distance term, seelt shows how this new method outperforms this kind



Image Ground truth Init

Similarity coefficient

Figure 7: Segmentation results (synthetic images presented
in Figure 4) — These are the results obtained with the four
variants and it shows ho@aMM gives the clearest result.
We can also notice the good resultioMM.

Init

Similarity coefficient

01 I I I L I I | |

Real images

Figure 6: Variation of the similarity coefficient, see fig-
ure 5 — The first graph shows the results for synthetic im-
ages (the 3 first ones are obtained from real images with
simulated defect) and the second graph presents the results
with real images. Good performances of methaugM
andGaMM can be noticed.

Figure 8: Segmentation results (real images) — These are the
results obtained with the real images presented in figure 4.
MethodInMM obtains the clearest detection (i.e. with less
false detection) but we can also noticed the good quality of
the detection map witaMM.

of method. However, if we compare image per image,

the results show that in 50% of the ca@aMMisthe 6 CONCLUSIONS

best, see illustrations of these results in Figures 10 and

11. More precisely, it seems more performant with In a first time, we have introduced new methods for
Ambiguousmages, whereas thdorphologymethod the detection of road cracks. In a second time, we
is the best wittReliableimages, see § "Complemen- have presented a new evaluation and comparison pro-
tary dataset". tocol for automatic detection of road cracks and the
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Figure 9: Comparison witMorph— The dotted lines illustrate the five different kinds of images tested. Forgt®fie (that
corresponds to real images with good illumination), the results are mixedeah for the other oneGaMM is the best.

Syntheti i Real image

age "Ground truth" segmentation

Reference segmentation

Real image

Figure 11: Differences betweéviorph and GaMM — Ex-
amples with real images acquired on a vehicule. The detec-
tion with GaMM is more complete than witklorph.
Figure 10: Differences betweéviorph and GaMM — Ex-
amples with synthetic and real imagégorph outperforms
GaMM with simple synthetic images where@aMM gives
better detection with real images.
munity in order to have a larger comparison. Then, we
want to increase our data set by taking into account
the different qualities of road surface or road tex-
new methods are validated by this protocol. As far ture (because for the moment, each proposed method
as we are concerned, we proposed real images withseems very dependent on the road texture). Finally,
ground truth for the first time in the community. Our we want to refine our evaluation criteria by using (Ar-
next work is to propose our ground truth to the com- belaez et al., 2009).
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