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We combine both amplitude and texture statistics of the Synthetic Aperture Radar (SAR) images for classification purpose. We use Nakagami density to model the class amplitudes and a non-Gaussian Markov Random Field (MRF) texture model with t-distributed regression error to model the textures of the classes. A non-stationary Multinomial Logistic (MnL) latent class label model is used as a mixture density to obtain spatially smooth class segments. The Classification Expectation-Maximization (CEM) algorithm is performed to estimate the class parameters and to classify the pixels. We resort to Integrated Classification Likelihood (ICL) criterion to determine the number of classes in the model. We obtained some classification results of water, land and urban areas in both supervised and unsupervised cases on TerraSAR-X, as well as COSMO-SkyMed data.

Introduction

The aim of image classification is to assign each pixel of the image to a class with regard to a feature space. These features can be the basic image properties as intensity or amplitude. Moreover, some more advance abstract image descriptors as textures can also be exploited as feature. In remote sensing, image classification finds many applications varying from crop and forest classification to urban area extraction and epidemiological surveillance. Radar images are preferred in remote sensing because the acquisition of the images are not affected by light and weather conditions. First use of the radar images can be found in vegetation classification [START_REF] Ulaby | Crop classification using airbone radar and landsat data[END_REF], [START_REF] Hoogeboom | Classification of agricultural crops in radar images[END_REF] for instances. By the technological developments, we are now able to work with high resolution SAR images. The scope of this study is high resolution SAR image classification and we follow the model-based classification approach. To model the statistics of SAR images, both empirical and theoretical probability density functions (pdfs) have been proposed [START_REF] Oliver | Understanding Synthetic Aperture Radar Images[END_REF]. Basic theoretical multi-look models are the Gamma and the Nakagami densities for intensity and amplitude images respectively. A recent review on the densities used in intensity and amplitude based modelling can be found in [START_REF] Krylov | Modeling the statistics of high resolution SAR images[END_REF]. In this study, we work with SAR image amplitudes and consequently use the Nakagami density in model-based classification. Finite Mixture Model (FMM) is a suitable statistical model to represent SAR image histogram and to perform a model-based classification [START_REF] Titterington | Statistical Analysis of Finite Mixture Disributions[END_REF]. One of the first uses of FMM in SAR image classification may be found in [START_REF] Masson | SEM algorithm and unsupervised statistical segmentation of satellite images[END_REF]. In [START_REF] Nicolas | Gamma mixture modeled with "second kind statistics": application to SAR image processing[END_REF] mixture of Gamma densities is used in SAR image processing. A combination of different probability density functions into a FMM has been used in [START_REF] Moser | Dictionary-based stochastic expectation-maximization for SAR amplitude probability density function estimation[END_REF] for medium resolution and in [START_REF] Krylov | Dictionary-based probability density function estimation for high resolution SAR data[END_REF] for high resolution SAR images. In mixture models, generally, a single model density is used to represent only one feature of the data, e.g. in SAR images, mixture of Gamma densities models the intensity of the images. To exploit different features in order to increase classification performance, we may combine different feature densities into a single classifier. There are some methods to combine the outcomes of the different and independent classifiers [START_REF] Kittler | On combining classifiers[END_REF]. There are some feature selective mixture models [START_REF] Grim | Multivariate statistical pattern recognition with nonreduced dimentionality[END_REF], [START_REF] Novovicova | Divergence based feature selection for multimodal class densities[END_REF], [START_REF] Law | Simultaneous feature selection and clustering using mixture models[END_REF] to combine different features in a FMM. In this study, rather than pixel-based mixture model, we use a block-based FMM which assembles both the SAR amplitudes and the texture statistics into a FMM simultaneously. In this approach, we factorize the block density using the Bayes rule in two parts which are 1) the amplitude density based on the central pixel of the block and 2) texture density based on the conditional density of the surrounding pixels given the central pixel.

Several texture models are used in image processing. We can list some of them as follows: Correlated K-distributed noise is used to capture the texture information of the SAR images in [START_REF] Oliver | The interpretation and simulation of clutter textures in coherent images[END_REF]. In [START_REF] Voisin | Classification of very high resolution SAR images of urban areas by dictionarybased mixture models, copulas and Markov random fields using textural features[END_REF], Gray Level Co-occurrence Matrix (GLCM) [START_REF] Haralick | Textural features for image classification[END_REF] and semivariogram [START_REF] Chen | Automatic variogram parameter extraction for textural classification of the panchromatic IKINOS imagery[END_REF] textural features are resorted to classify very high resolution SAR images (in particular urban areas). Markov Random Fields (MRFs) are proposed for texture representation and classification in [START_REF] Hassner | The use Markov random field as models of texture[END_REF] and [START_REF] Cross | Markov random field texture models[END_REF]. A Gaussian MRF model which is a particular 2D Auto-Regressive (AR) model with Gaussian regression error is proposed for texture classification in [START_REF] Chellappa | Classification of textures using Gaussian Markov random fields[END_REF]. MRF based texture models are used in optical and SAR aerial images for urban area extraction [START_REF] Lorette | Texture analysis through Markov random fields: Urban area extraction[END_REF], [START_REF] Rellier | A Gauss-Markov model for hyperspectral texture analysis of urban areas[END_REF], [START_REF] Rellier | Texture feature analysis using a Gauss-Markov model for hyperspectral image classification[END_REF]. In [START_REF] Melas | Double Markov random fields and Bayesian image segmentation[END_REF] and [START_REF] Wilson | Segmentation of textured satellite and aerial images by Bayesian inference and Markov random fields[END_REF], Gaussian AR texture model is resorted for radar image segmentation. In this study, we use
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a non-Gaussian MRF model for texture representation. In this AR model, we assume that the regression error is an independent and identically distributed (iid) Student's t-distribution. The t-distribution is a convenient model for robust regression and it has been used in inverse problems in image processing [START_REF] Higdon | Spatial Applications of Markov Chain Monte Carlo for Bayesian Inference[END_REF], [START_REF] Chantas | Variational Bayesian image restoration based on a product of t-distributions image priors[END_REF], [START_REF] Kayabol | Adaptive Langevin sampler for separation of t-distribution modelled astrophysical maps[END_REF] and image segmentation [START_REF] Sfikas | Robust image segmentation with mixtures of Student's t-distributions[END_REF] as a robust statistical model.

The secondary target in land cover classification from SAR images is to find spatially connected and smooth class label maps. To obtain smooth and segmented class label maps, a post-processing can be applied to roughly classified pixels, but a Bayesian approach allows us to include smoothing constraints to classification problems. Potts-Markov image model is introduced in [START_REF] Geman | Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images[END_REF] for discrete intensity images. In [START_REF] Derin | Bayes smoothing algorithms for segmentation of images modeled by Markov random fields[END_REF] and [START_REF] Derin | Modeling and segmentation of noisy and textured images using Gibbs random fields[END_REF], some Bayesian approaches are exploited for SAR image segmentation. Hidden Markov chains and random fields are used in [START_REF] Fjortoft | Unsupervised classification of radar using hidden Markov chains and hiddden Markov random fields[END_REF] for radar image classification. [START_REF] Borges | Bayesian hyperspectral image segmentation with discriminative class learning[END_REF] exploits a Potts-Markov model with MnL class densities in hyperspectral image segmentation. A double MRFs model is proposed in [START_REF] Melas | Double Markov random fields and Bayesian image segmentation[END_REF] for optical images to model the texture and the class labels as two different random fields. In [START_REF] Du | Unsupervised segmentation of multi-polarization SAR images based on amplitude and texture characteristic[END_REF], amplitude and texture characteristics are used in two successive and independent schemes for SAR multipolarization image segmentation. In our spatial smoothness model, we assign a binary class map for each class which indicates the pixels belonging to that class. We introduce the spatial interaction within each binary map adopting multinomial logistic model [START_REF] Krishnapuram | Sparse multinomial logistic regression: Fast algorithms and generalization bounds[END_REF]. In our logistic regression model, the probability of a pixel label is proportional to the linear combination of the surrounding binary pixels. If we compare the Potts-Markov image model [START_REF] Geman | Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images[END_REF] with ours, we may say that we have K different probability density functions for binary random fields of each class, instead of a single multi-level Gibbs distribution. The final density of the class labels is constituted by combining K probability densities into a multinomial density.

Defining a latent multinomial density function along with the amplitude and the texture models, we are able to incorporate both the class probabilities and the spatial smoothness into a single mixture model. Single models and algorithms may be preferred to avoid the propagation of the error between different models and algorithms.

Since our latent model is varying adaptively with respect to pixels, we obtain a non-stationary FMM. Non-stationary FMMs have been introduced for image classification in [START_REF] Sanjay-Gopal | Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm[END_REF] and used for edge preserving image segmentation in [START_REF] Sfikas | Spatially varying mixtures incorporating line processes for image segmentation[END_REF], [START_REF] Kanemura | Edge-preserving Bayesian image superresolution based on compound Markov random fields[END_REF]. Using hidden MRFs model, a non-stationary latent class label model incorporated with finite mixture density is proposed in [START_REF] Zhang | Segmentation of brain MR images through a hidden Markov random field model and the expectationmaximization algorithm[END_REF] for the segmentation of brain MR images. A non-stationary latent class label model is proposed in [START_REF] Nikou | A Bayesian framework for image segmentation with spatially varying mixtures[END_REF] by defining a Gaussian MRF over the parameters of the Dirichlet Compound Multinomial (DCM) mixture density and in [START_REF] Diplaros | A spatially constrained generative model and an EM algorithm for image segmentation[END_REF] by defining a MRF over the mixture proportions. DCM density is also called multivariate Polya-Eggenberger density and the related process is called as Polya urn process [START_REF] Eggenberger | Über die statistik verketter vorgänge[END_REF], [START_REF] Frigyik | Introduction to the Dirichlet disribution and related processes[END_REF]. The Polya urn process is proposed to model the diffusion of a contagious disease over a population. The idea proposed in [START_REF] Eggenberger | Über die statistik verketter vorgänge[END_REF] has been already used in image segmentation [START_REF] Banerjee | Image segmentation and labeling using the Polya urn model[END_REF] by assuming that each pixel label is related to an urn which contains all the neighbor labels of the central pixel. In this way, a non-parametric density estimation can be obtained for each pixel.

Besides the model-based classification approaches, there are also variational approaches proposed for optical [START_REF] Samson | A level set model for image classification[END_REF], [START_REF] Ben Ayed | Unsupervised variational image segmentation/classification using a Weibull observation model[END_REF] and SAR image classification [START_REF] Ben Ayed | Multiregion level set partitioning of synthetic aperture radar images[END_REF]. These level set approaches are based on the well-known Mumford-Shah [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] for-RR n°7700 malism in which the image pixels are fitted to a multilevel piecewise constant function while penalizing the length of the region boundaries [START_REF] Vese | A multiphase level set framework for image segmentation using the Mumford and Shah model[END_REF]. These approaches work well in the segmentation of the smooth images but may fail if the images contain some strong textures and noise.

Since we utilize a non-stationary FMM for SAR image classification, we resort to a kind of EM algorithm to fit the mixture model to the data. The EM algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF], [START_REF] Redner | Mixture densities, maximum likelihood and the EM algorithm[END_REF] and its stochastic versions [START_REF] Celeux | On stochastic versions of the EM algorithm[END_REF] have been used for parameter estimation in latent variable models. We use a computationally less expensive version of EM algorithm, namely Classification EM (CEM) [START_REF] Celeux | A classification EM algorithm for clustering and two stochastic versions[END_REF], for both parameter estimation and classification, using the advantage of categorical random variables. In classification step, CEM uses the Winner-Take-All principle to allocate each data pixel to the related class according to the posterior probability of latent class label. After the classification step of CEM, we estimate the parameters of the class densities using only the pixels which belong to that class.

Determining the necessary number of classes to represent the data and initialization are some drawbacks of the EM type algorithms. Running EM type algorithms several times for different model orders to determine the model order based on a criterion is a simple approach to reach a parsimonious solution. In [START_REF] Fraley | Model-based clustering, discriminant analysis, and density estimation[END_REF], a combination of hierarchal agglomeration [START_REF] Ward | Hierarchical groupings to optimize an objective function[END_REF], EM and Bayesian Information Criterion (BIC) [START_REF] Schwarz | Estimating the dimension of a model[END_REF] is proposed to find necessary number of classes in the mixture model. [START_REF] Figueiredo | Unsupervised learning of finite mixture models[END_REF] performs a similar strategy with Component-wise EM [START_REF] Celeux | A component-wise EM algorithm for mixtures[END_REF] and Minimum Message Length (MML) criterion [START_REF] Wallace | An information measure for classification[END_REF][START_REF] Wallace | Estimation and inference by compact coding[END_REF]. In this study, we combine hierarchical agglomeration, CEM and ICL [START_REF] Biernacki | Using the classification likelihood to choose the number of clusters[END_REF][START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF] criterion to get rid of the drawbacks of CEM.

In Section 2 and 3, the MnL mixture model and CEM algorithm are given. The simulation results are shown in Section 5. Section 6 presents the conclusion and future work.

Multinomial Logistic Mixture of Amplitude and Texture Densities

We assume that the observed amplitude s n ∈ R + at the nth pixel, where n ∈ R = {1, 2, . . . , N } represents the lexicographically ordered pixel index, is free from any noise and instrumental degradation. We denote s to be the vector representation of the entire image and s n to be the vector representation of the d × d image block located at nth pixel. Every pixel in the image has a latent class label. Denoting by K the number of classes, we encode the class label as a K dimensional categorical vector z n whose elements z n,k , k ∈ {1, 2, . . . , K} have the following properties: 1) z n,k ∈ {0, 1} and 2)

K k=1 z n,k = 1.
We may write the probability of s n as the marginalization of the joint probability density

p(s n , z n |Θ, π n ) = p(s n |z n , Θ)p(z n |π n ), [5], as p(s n |Θ) = zn p(s n |z n , Θ)p(z n |π n ) = zn K k=1 [p(s n |θ k )π n,k ] z n,k (1) 
where π n,k = p(z n,k = 1) represent the mixture proportions and ensure that K k=0 π n,k = 1. θ k are the parameters of the class densities and Θ = {θ 1 , . . . , θ K } is the set of the parameters. By taking into consideration that z n is a categorical random vector distributed as a multinomial, and assuming that π n = {π n,1 , . . . , π n,K } is spatially invariant, ( 1) is reduced to classical FMM as follow

p(s n |Θ) = K k=1 p(s n |θ k )π n,k (2) 
We prefer to use the notation in (1) to show the contribution of the multinomial density of class label, p(z n ), into finite mixture model more explicitly. We give the details of the class and the mixture densities in the following two sections.

Class Amplitude and Texture Densities

Our aim is to use the amplitude and the texture statistics together to classify the SAR images. We may write the density of an image block as a joint density of the central pixel and the surrounding pixels as p(s n |θ k ) = p(s n , s ∂n |θ k ). Using Bayes rule, we factorize the density of the image block as

p(s n |θ k ) = p A (s n |θ k )p T (s ∂n |s n , θ k ) (3) 
In this last expression, the first and the second terms represent the amplitude and the texture densities. We model the class amplitudes using Nakagami density, which is a basic theoretical multi-look amplitude model for SAR images [START_REF] Oliver | Understanding Synthetic Aperture Radar Images[END_REF]. We express the class amplitude density as

p A (s n |µ k , ν k ) = 2 Γ(ν k ) ν k µ k ν k s 2ν k -1 n e -ν k s 2 n µ k . ( 4 
)
We introduce a t-MRF texture model to use the contextual information for classification. We write the t-MRF texture model using the neighbors of the pixel in N (n)

s n = n ∈N (n) α k,n s n + t k,n (5) 
where α k,n is the regression coefficient and the regression error t k,n is an iid t-distributed zero-mean random variable with degree of freedom parameter β k and scale parameters δ k . In this way, we may write the class texture density as a t-distribution such that

p T (s ∂n |s n , α k , β k , δ k ) = Γ((1 + β k )/2) Γ(β k /2)(πβ k δ k ) 1/2 1 + (s n -s T ∂n α k ) 2 β k δ k - β k +1 2 (6) 
where the vector α k contains the regression coefficients α k,n . The t-distribution can also be written in implicit form using both of a Gaussian and a Gamma densities [START_REF] Liu | ML estimation of the t distribution using EM and its extensions, ECM and ECME[END_REF] p(s

∂n |s n , α k , β k , δ k ) = p(s ∂n |s n , α k , τ n,k , δ k )p(τ n,k |β k )dτ n,k = N s n s T ∂n α k , δ k τ n,k G τ n,k β k 2 , β k 2 dτ n,k . ( 7 
)
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We use the representation in [START_REF] Nicolas | Gamma mixture modeled with "second kind statistics": application to SAR image processing[END_REF] for calculation of the parameters using EM method nested in CEM algorithm.

Mixture Density -Class Prior

The prior density p(z n |π n ) of the categorical random variable z n is naturally an iid multinomial density with parameters π n as introduced in (1) as

p(z n |π n ) = Mult(z n |π n ) = K k=1 π z n,k n,k (8) 
We are not able to obtain a smooth class label map if we use an iid multinomial. We need to use a density which models the spatial smoothness of the class labels. We can define a prior on π n to introduce the spatial interaction. If we define a conjugate Dirichlet prior on π n and integrate out π n from the model, we reach the DCM density [START_REF] Banerjee | Image segmentation and labeling using the Polya urn model[END_REF]. The DCM density is the density of the Polya urn process and gives us a non-parametric density estimation in a defined window. In case that the estimated probabilities are almost equal in that window, Polya urn model may fail to make a decision to classify the pixels. [START_REF] Nikou | A Bayesian framework for image segmentation with spatially varying mixtures[END_REF] proposes a MRF model over the spatially varying parameter of DCM density. We use a contrast function called Logistic function [START_REF] Krishnapuram | Sparse multinomial logistic regression: Fast algorithms and generalization bounds[END_REF] which emphasizes the high probabilities while attenuating the low ones. The logistic function allows us to make an easier decision by discriminating the probabilities closed to each other.

We can introduce the spatial interactions of the categorical random field by defining a binary spatial auto-regression model for each binary class map (or mask). Consequently, the probability density function of this multiple binary class maps model is a Multinomial Logistic. If we substitute the logistic model with parameter η in place of π n,k , we obtain MnL density for the problem at hand as

p(z n |Z ∂n , η) = K k=1 exp(ηv k (z n,k )) K j=1 exp(ηv j (z n,j )) z n,k (9) where v k (z n,k ) = 1 + m∈M(n) z m,k . ( 10 
)
and

Z ∂n = {z m : m ∈ M(n), m = n} is the set which contains the neighbors of z n in a window M(n) defined around n. The function v k (z n,k
) returns the number of labels which belong to class k in a given window. The mixture density in ( 9) is spatially-varying with given function v k (z n,k ) in [START_REF] Oliver | The interpretation and simulation of clutter textures in coherent images[END_REF].

Classification EM Algorithm

Since our purpose is to cluster the observed image pixels by maximizing the marginal likelihood given in (1) such as

{ Θ, η} = max {Θ,η} N n=1 zn p(s n |z n , Θ)p(z n |Z ∂n , η) (11) 
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we use an EM type algorithm to deal with the summation. The EM loglikelihood function is written as

Q EM (Θ|Θ t-1 ) = N n=1 K k=1 log{p(s n |z n,k , θ k )p(z n,k |Z ∂n , η)}p(z n,k |s n , Z ∂n , Θ t-1 ) (12)
where

θ k = {α k , β k , δ k , µ k , ν k } and Θ = {θ 1 , . . . , θ K , η}.
If we used the exact EM algorithm to find the maximum of Q(Θ|Θ t-1 ) with respect to Θ, we would need to maximize the parameters for each class given the expected value of the class labels. Instead of this, we use the advantage of working with categorical random variables and resort to Classification EM algorithm [START_REF] Celeux | A classification EM algorithm for clustering and two stochastic versions[END_REF]. We can partition the pixel domain

R into K non-overlapped regions such that R = K k=1 R k and R k R l = 0, k = l.
We can write the classification log-likelihood function as

Q CEM (Θ|Θ t-1 ) = K k=1 m∈R k log{p(s m |z m,k , θ k )p(z m,k |Z ∂m , η)}p(z m,k |s n , Z ∂n , Θ t-1 ) (13)
The CEM algorithm incorporates a classification step between the E-step and the M-step which performs a simple Maximum-a-Posteriori (MAP) estimation to find the highest probability class label. Since the posterior p(z n,k |s n , Z ∂n , Θ t-1 ) is a discrete probability density function of a finite number of classes, we can perform the MAP estimation by choosing the maximum class probability. We summarize the CEM algorithm for our problem as follows:

E-step: For k = 1, . . . , K and n = 1, . . . , N , calculate the posterior probabilities

p(z n,k |s n , Z ∂n , Θ t-1 ) = p(s n |θ t-1 k ) z n,k exp(η t-1 v k (z n,k )) K j=1 exp(η t-1 v j (z n,j )) (14) 
given the previously estimated parameter set Θ t-1 using (4), ( 6) and (3). C-step: For n = 1, . . . , N , classify the nth pixel into class j as z n,j = 1 by choosing j which maximizes the posterior

p(z n,k |s n , Z ∂n , Θ t-1 ) over k = 1, . . . , K as j = arg max k p(z n,k |s n , Z ∂n , Θ t-1 ) (15) 
M-step: To find a Bayesian estimate, maximize the classification log-likelihood in [START_REF] Chanussot | Classification of remote sensing images from urban areas using a fuzzy model[END_REF] and the log-prior functions log p(Θ) together with respect to Θ as

Θ t-1 = arg max Θ {Q CEM (Θ|Θ t-1 ) + log p(Θ)} ( 16 
)
To maximize this function, we alternate among the variables µ k , ν k , α k , β k and δ k . We only define an inverse Gamma prior with mean 1 for

β k ∼ IG(β k |N k , N k )
where N k is the number of pixels in class k. We choose this prior among some positive densities by testing their performance in the simulations. We have obtained better results with small values of β k . This prior ensures β k to take a value around 1. We assume uniform priors for the other parameters. The functions of the amplitude parameters over all pixels are written as follows

Q(µ k ; Θ t-1 ) = -N k ν k log µ k - ν k µ k n∈R k s 2 n ( 17 
)
Q(ν k ; Θ t-1 ) = N k ν k log ν k µ k -N k log Γ(ν k )+ (2ν k -1) n∈R k log s n -ν k µ k n∈R k s 2 n (18)
We estimate the texture parameters using another sub-EM algorithm nested within CEM. The nested EM algorithm has already been studied in [START_REF] Van Dyk | Nesting EM algorithms for computational efficiency[END_REF]. We can express the t-distribution as a Gaussian scale mixture of gamma distributed latent variables τ n,k . Thereby, the EM log-likelihood functions of the t-distribution in ( 6) are written as [START_REF] Liu | ML estimation of the t distribution using EM and its extensions, ECM and ECME[END_REF], [START_REF] Kayabol | Adaptive Langevin sampler for separation of t-distribution modelled astrophysical maps[END_REF] 

Q(α k ; Θ t-1 ) = - n∈R k (s n -s T ∂n α k ) 2 2δ k τ n,k (19) 
Q(δ k ; Θ t-1 ) = - N k 2 log δ k - n∈R k (s n -s T ∂n α k ) 2 2δ k τ n,k (20) 
Q(β k ; Θ t-1 ) = -N k log Γ( β k 2 ) + N k β k 2 log β k 2 - N k β k - n∈R k τ n,k β k 2 1 + (s n -s T ∂n α k ) 2 2δ k β k + n∈R k β k 2 log τ n,k -(N k + 1) log β k ( 21 
)
where τ n,k is the posterior expectation of the gamma distributed latent variable and calculated as

τ n,k = β k + 1 β k 1 + (s n -s T ∂n α k ) 2 β k δ k -1 (22)
For simplicity, we use . to represent the posterior expectation . τ n,k |Θ t-1 . The solutions to [START_REF] Hassner | The use Markov random field as models of texture[END_REF], ( 19) and ( 20) can be easily found as

µ k = 1 N k N k n=1 s 2 n ( 23 
)
α k = (S T ∂ S ∂ ) -1 S T ∂ s ( 24 
)
δ k = N k n=1 (s n -φ T n α k ) 2 N k τ n,k (25) 
where S ∂ is N × d 2 -1 matrix whose columns are s ∂n 's. For ( 18) and ( 21), we use a zero finding method to determine their maximum [START_REF] Forsythe | Computer Methods for Mathematical Computations[END_REF] by setting their first derivatives to zero

log ν k µ k -ψ 1 (ν k ) + 2 N k N k n=1 log s n = 0 ( 26 
) RR n°7700 log β k 2 -ψ 1 ( β k 2 ) + 1 + 1 N k N k n=1 log τ n,k -τ n,k - N k + 1 β k + N k β 2 k = 0 (27)
The parameter η of the MnL class label is found by maximizing the following function

Q(η; Θ t-1 ) = N n=1   ηv k (z n,k ) -log K j=1 e ηvj (zn,j )   (28) 
We use a Newton-Raphson iteration to fit η as

η t = η t-1 - 1 2 ∇Q(η; Θ t-1 ) ∇ 2 Q(η; Θ t-1 ) (29) 
where the operators ∇• and ∇ 2 • represent the gradient and the Laplacian of the function with respect to η.

Algorithm

In this section, we present the details of the unsupervised classification algorithm. Our strategy follows the same general philosophy as the one proposed in [START_REF] Ward | Hierarchical groupings to optimize an objective function[END_REF] and developed for mixture model in [START_REF] Fraley | Model-based clustering, discriminant analysis, and density estimation[END_REF][START_REF] Figueiredo | Unsupervised learning of finite mixture models[END_REF]. We start the CEM algorithm with a large number of classes, K = K max , and then we reduce the number of classes to K ← K -1 by merging the weakest class in probability to the one that is most similar to it with respect to a distance measure. The weakest class may be found using the average probabilities of each class as

k weak = arg min k 1 N k n∈R k p(z n,k |s n , Z ∂n , Θ t-1 ) (30) 
Kullback-Leibler (KL) type divergence criterions are used in hierarchical texture segmentation for region merging [START_REF] Scarpa | Hierarchical multiple Markov chain model for unsupervised texture segmentation[END_REF]. We use a symmetric KL type distance measure called Jensen-Shannon divergence [START_REF] Lin | Divergence measures based on the Shannon entropy[END_REF] which is defined between two probability density functions, i.e. p k weak and p k , k = k weak , as

D JS (k) = 1 2 D KL (p k weak ||q) + 1 2 D KL (p k ||q) (31) 
where q = 0.5p k weak + 0.5p k and

D KL (p||q) = k p(k) log p(k) q(k) ( 32 
)
We find the closest class to k weak as

l = arg min k D JS (k) (33) 
and merge these two classes to constitute a new class R l ← R l R k weak . We repeat this procedure until we reach the predefined minimum number of classes K min . We determine the necessary number of classes by observing the ICL criterion explained in Section 4.3. The details of the initialization and the stopping criterion of the algorithm are presented in Section 4.1 and 4.2. The summary of the algorithm can be found in Table 1 Table 1: Unsupervised CEM algorithm for classification of amplitude and texture based mixture model.

Initialize the classes defined in Section 4.1 for K = K max . While K ≥ K min , do η = c, c ≥ 0 While the number of changes > N × 10 -3 , do E-step: Calculate the posteriors in ( 14) C-step: Classify the pixels regarding to (15) M-step: Estimate the parameters of amplitude and texture densities using [START_REF] Rellier | Texture feature analysis using a Gauss-Markov model for hyperspectral image classification[END_REF][START_REF] Melas | Double Markov random fields and Bayesian image segmentation[END_REF][START_REF] Wilson | Segmentation of textured satellite and aerial images by Bayesian inference and Markov random fields[END_REF][START_REF] Higdon | Spatial Applications of Markov Chain Monte Carlo for Bayesian Inference[END_REF][START_REF] Grim | Multivariate statistical pattern recognition with nonreduced dimentionality[END_REF][START_REF] Novovicova | Divergence based feature selection for multimodal class densities[END_REF] Update the smoothness parameter η using [START_REF] Chantas | Variational Bayesian image restoration based on a product of t-distributions image priors[END_REF] Find the weakest class using [START_REF] Kayabol | Adaptive Langevin sampler for separation of t-distribution modelled astrophysical maps[END_REF] Find the closest class to the weakest class using (31-33) Merge these two classes

R l ← R l R k weak K ← K -1

Initialization

The algorithm can be initialized by determining the class areas manually in case that there are a few number of classes. We suggest to use an initialization strategy for completely unsupervised classification. It removes the user intervention from the algorithm and enables to use the algorithm in case of large number of classes. First, we run the CEM algorithm for one global class. Using the cumulative distribution of the fitted Nakagami density g = F A (s n |µ 0 , ν 0 ) where g ∈ [0, 1] and dividing [0, 1] into K equal bins, we can find our initial class parameters as µ k = F -1 A (g k |µ 0 , ν 0 ), k = 1, . . . , K where g k 's are the centers of the bins. We initialize the other parameters using the estimated parameters of the global class. We reset the parameter η to a constant c after reducing the number of classes.

Stopping Criterion

We observe the number of changes in the updated pixel labels after classification step to decide the convergence of the CEM algorithms. If the number of change is less then a threshold, i.e. N × 10 -3 , the CEM algorithm is stopped.

Choosing the Number of Classes

The SAR images which we used have a small number of classes. We aim at validating our assumption on small number of classes using the Integrated Classification Likelihood (ICL) [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF]. Even though BIC is the most used and the most practical criterion for large data sets, we prefer to use ICL because it is developed specifically for classification likelihood problem, [START_REF] Biernacki | Using the classification likelihood to choose the number of clusters[END_REF], and we have obtained better results than BIC in the determination of the number of classes.
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In our problem, the ICL criterion may be written as

ICL(K) = N n=1 K k=1 log{p(s n | θk ) ẑn,k p(ẑ n,k | Ẑ∂n , η)} - 1 2 d K log N + P (K) (34)
where d K is the number of free parameters. In our case, it is

d K = 12 * K + 1.
The term P (K) is formed by the logarithm of the prior distribution of the parameters. In our case, it is

P (K) = K k=1 log IG( βk |N k , N k ).
We also use the BIC criterion for comparison. It can be written as

BIC(K) = N n=1 log K k=1 p(s n | θk )p(z n,k |Z ∂n , η) - 1 2 d K log N + P (K) (35)

Simulation Results

This section presents the high resolution SAR image classification results of the proposed method called ATML-CEM (Amplitude and Texture density mixtures of MnL with CEM), compared to the corresponding results obtained with other methods. The competitors are Dictionary-based Stochastic EM (DSEM) [START_REF] Krylov | Dictionary-based probability density function estimation for high resolution SAR data[END_REF],

Copulas-based DSEM with GLCM (CoDSEM-GLCM) [START_REF] Voisin | Classification of very high resolution SAR images of urban areas by dictionarybased mixture models, copulas and Markov random fields using textural features[END_REF], Multiphase Level Set (MLS) [START_REF] Vazquez | Image segmentation as regularized clustering: a fully global curve evolution method[END_REF], [START_REF] Mitiche | Variational and Level Set Methods in Image Segmentation[END_REF] and K-MnL. We have also tested three different versions of ATML-CEM method. One of them is supervised ATML-CEM [START_REF] Kayabol | SAR image classification with nonstationary multinomial logistic mixture of amplitude and texture densities[END_REF] where training and testing sets are determined by selecting some spatially disjoint class regions in the image, and we run the algorithm twice for training and testing. We implement the other two versions by considering only Amplitude (AML-CEM) or only Texture (TML-CEM) statistics. MLS method is based on the piecewise constant multiphase Chan-Vese model [START_REF] Vese | A multiphase level set framework for image segmentation using the Mumford and Shah model[END_REF] and implemented by [START_REF] Vazquez | Image segmentation as regularized clustering: a fully global curve evolution method[END_REF], [START_REF] Mitiche | Variational and Level Set Methods in Image Segmentation[END_REF]. In this method, we set the smoothness parameter to 2000 and step size to 0.0002 for all data sets. We tune the number of iteration to reach the best result. The K-MnL method is the sequential combination of K-means clustering for classification and Multinomial Logistic label model for segmentation to obtain a more fair comparison with K-means clustering since K-means does not provide a segmented map. The weak point of the K-means algorithm is that it does not converge to the same solution every time, since it starts with random seed. Therefore, we run the K-MnL method 20 times and select the best result among them.

We tested the algorithms on the following four SAR image patches: SYN: 200 × 200 pixels, synthetic image constituted by collating 4 different 100 × 100 patches from TSX1 image. The small patches are taken from water, urban, land and forest areas (see Fig. 2(a)).

TSX1: 1200 × 1000 pixels, HH polarized TerraSAR-X Stripmap (6.5 m ground resolution) 2.66-look geocorrected image which was acquired over Sanchagang, China (see Fig. 4(a)). ©Infoterra.

TSX2: 900 × 600 pixels, HH polarized, TerraSAR-X SpotLight (8.2 m ground resolution) 4-look image which was acquired over the city of Rosenheim in Germany (see Fig. 6(a)). ©Infoterra. For all real SAR images (TSX1, TSX2 and CSK1) classified by ATML-CEM versions, we use the same setting for model and initialization. The sizes of the windows for texture and label models are selected to be 3×3 and 13×13 respectively by trial and error. For synthetic SAR image (SYN), we utilize a 21×21 window in MnL label model and a 3×3 window in texture model. We initialize the algorithm as described in Section 4.1 and estimate all the parameters along the iterations.
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We produce SYN image to test the performance of the unsupervised ATML-CEM algorithm in the estimation of the number of classes, because the real images may contain more classes than our expectations and choosing different classes by eyes to construct a ground-truth is very hard if the number of classes is high. From Fig. 1(a), we can see that the ICL and BIC plots have their first peaks at 4. The outcomes of the algorithm for different number of classes can be seen in Fig. 3. The numerical results are listed in Table 2. For supervised case, we allocate 25% of the data for training and 75% for testing. The similar results of AML-CEM and ATML-CEM show that the contribution of texture information is very weak in this data set. From Fig. 2, we can see that the classification map of ATML-CEM is obviously better than those of K-MnL, MLS and TML-CEM.

For TSX1 image in Fig. 4(a), the full ground-truth map (Courtesy of V. Krylov) is manually generated. Fig. 4 shows the classification results where the red colored regions indicate the misclassified parts according to 3-classes ground-truth map. We can see the plotted ICL and BIC values with respect to the number of classes in Fig. 1(b). The plots are increasing, but the increments in both ICL and BIC start to slow down at 3. Fig. 5 shows several classification maps found for different numbers of classes. Since we have the 3-classes ground-truth map, we compare our results numerically in the 3-classes case. The numerical accuracy results are given in Table 3. While supervised ATML-CEM gives the better result in average, unsupervised ATML-CEM and supervised DSEM-MRF follow it. Among the semi-supervised and unsupervised methods, the performance of ATML-CEM is better than the others in average, but results of K-MnL and AML-CEM are close to its results.

From the experiment with TSX1 image, we realize that if the image does not have strong texture, we cannot benefit from including texture statistics into the model. To reveal the advantage of using texture model, we exploit the ATML-RR n°7700 CEM algorithm for urban area extraction problem on TSX2 image in Fig. 6(a). Table 4 lists the accuracy of the classification in water, urban and land areas and average according to a groundtruth class map (Courtesy of A. Voisin). We include the result of CoDSEM-GLCM [START_REF] Voisin | Classification of very high resolution SAR images of urban areas by dictionarybased mixture models, copulas and Markov random fields using textural features[END_REF] which is the extended version of the DSEM method by including texture information. In both supervised and unsupervised cases, ATML-CEM provides better results than the others. The combination of the amplitude and the texture features helps to increase the We have tested ATML-CEM on another patch called CSK1 (see Fig. 9(a)). Tab. 5 lists the numerical results. Among the supervised methods, ATML-CEM is very successful. Since this SAR image is a single-look observation, the noise level is higher than in the other images. We can obtain some good unsupervised classification results after applying a denoising process. Among the Lee, Frost and Wiener filters, we prefer using a 2D adaptive Wiener filter with 3 × 3 window proposed in [START_REF] Lim | Two-Dimensional Signal and Image Processing[END_REF], because we obtain better classification results. In Fig. 8, we show the histogram of the intensity of the CSK1 image before and after RR n°7700 CEM provides significantly better results in overall, see Fig. 9 and Table 5. The results in Fig. 9 are found for 3-classes case, since we have the 3-classes groundtruth map. The optimum number of classes is found as 5 according to ICL criterion, see Fig. 1(d). Fig. 10 shows some classification maps for different numbers of classes. The simulations were performed on MATLAB platform on a PC with Intel Xeon, Core 8, 2.40 GHz CPU. The number of iterations and total required time in minutes for the algorithm are shown in Table 6. We also present the required time in seconds for a single iteration in case of the number of classes 

Conclusion and Future Work

We have proposed a Bayesian model which uses amplitude and texture features together in a FMM along with nonstationary latent class labels. Using these two features together in the model, we obtain better high resolution SAR image classification results, especially in the urban areas. Furthermore, using an agglomerative type unsupervised classification method, we eliminate the negative effect of the latent class label initialization. According to our experiments, the larger number of classes we start the algorithm with, the more initial value independent results we obtain. Consequently, the computational cost is increased as a by-product. The ICL criterion which we prefer over BIC does not always indicate the number of classes noticeably. In some cases it has several peaks very close to each others. In these cases, since we search the smallest number of classes, we can observe the first peak of ICL to take a decision on the number of classes. More complicated approaches may be investigated for model order selection for a future study. Variational Bayesian approach can be investigated defining some hyper-priors and tractable densities for the parameters of the Nakagami and t-distribution. Monte Carlo based non-parametric density estimation methods can be also exploited in order to determine the optimum number of classes.

The speckle type noise has impaired the algorithm especially in single-look observation case. The statistics of the speckle noise may be included to the proposed model in order to obtain better classification/segmentation in case of low signal to noise ratio. 

Figure 1 :

 1 Figure 1: ICL and BIC values of the classified (a) SYN (b) TSX1, (c) TSX2 and (d) CSK1 images for several numbers of sources.

Figure 2 :

 2 Figure 2: (a) SYN image, (b), (c) and (d) classification maps obtained by K-MnL, MLS, supervised and unsupervised ATML-CEM methods. Dark blue, light blue, yellow and red colors represent class 1 (water), class 2 (urban), class 3 (trees) and class 4 (land), respectively.

Figure 3 :

 3 Figure 3: Classification maps of SYN image obtained with unsupervised ATML-CEM method for different numbers of classes K = {3,4,5,10}.

Figure 4 :Figure 5 :

 45 Figure 4: (a) TSX1 image, (b), (c) and (d) classification maps obtained by K-MnL, MLS, supervised and unsupervised ATML-CEM methods. Dark blue, light blue, yellow and red colors represent water, wet soil, dry soil and misclassified areas, respectively.

Figure 6 :

 6 Figure 6: (a) TSX2 image, (b), (c) and (d) classification maps obtained by K-MnL, MLS, supervised ATML-CEM and unsupervised ATML-CEM methods. Blue, red and green colors represent water, urban and land areas, respectively.

Figure 7 :

 7 Figure 7: Classification maps of TSX2 image obtained with unsupervised ATML-CEM method for different numbers of classes K = {3,5,7,12}.

Figure 8 :

 8 Figure 8: Histograms of the intensity of the CSK1 image (a) before and (b) after denoising.

Figure 9 :

 9 Figure 9: (a) CSK1 image, (b), (c) and (d) classification maps obtained by K-MnL, supervised and unsupervised ATML-CEM methods. Blue, red and green colors represent water, urban and land areas, respectively.

Figure 10 :

 10 Figure 10: Classification maps of CSK1 image obtained with unsupervised ATML-CEM method for different numbers of classes K = {3,5,6,12}.

  Nous combinons les statistiques fondées sur l'amplitude et la texture d'images Radar à Synthése d'Ouverture (RSO) à des fins de classification. Nous utilisons la densité de Nakagami afin de modéliser les amplitudes des classes et un champ de Markov non-gaussien pour modéliser la texture, en utilisant l'erreur de régression t-distribuée afin de modéliser les textures des classes. Un modéle non-stationnaire Logistique Multinomial (LMn) d'étiquettes de structure latente est utilisé comme densité du mélange afin d'obtenir des segments de classe lissés spatialement. L'algorithme de Classification Espérance-Maximisation (CEM) est utilisé pour estimer les paramétres des classes et classer les pixels. Nous avons recours au critère ICV (Integrated Classification Vraisemblance) pour déterminer le nombre de classes dans le modèle. Nous avons obtenu des résultats de classification pour l'eau, les sols et les zones urbaines dans les cas supervisé ou non-supervisé sur des données TerraSAR-X ainsi que COSMO-SkyMed.

	Classification non supervisée d'images RSO
	fondée sur l'amplitude et la texture à l'aide
	d'une modèle multinomial latent

Résumé :

Table 2 :

 2 Accuracy (in %) of the supervised (S), semi-supervised (Ss) and unsupervised (U) classification of SYN image for 4 classes and in average.

		water	urban	trees	land	average
	ATML-CEM (S)	99.02	99.46	99.28	99.30	99.27
	K-MnL (Ss)	96.58	80.18	99.60	90.32	91.92
	MLS (Ss)	100.00	60.46	1.13	42.55	51.03
	AML-CEM (U)	97.53	97.89	97.72	94.57	96.93
	TML-CEM (U)	98.18	81.10	85.79	88.72	88.45
	ATML-CEM (U)	97.74	97.61	97.73	94.81	96.97
	CSK1: 672 × 947 pixels, HH polarized COSMO-SkyMed Stripmap (2.5 m
	ground resolution) single-look image which was acquired over Lombriasco,
	Italy (see Fig. 9(a)). ©ASI.				

Table 3

 3 

	: Accuracy (in %) of the supervised (S), semi-supervised (Ss) and unsu-
	pervised (U) classification of TSX1 image in water, wet soil and dry soil areas
	and average.				
		water wet soil dry soil average
	DSEM-MRF (S)	90.00	69.93	91.28	83.74
	ATML-CEM (S)	89.88	76.38	87.33	84.53
	K-MnL (Ss)	89.71	86.13	72.42	82.92
	MLS (Ss)	87.90	66.19	42.48	65.53
	AML-CEM (U)	88.24	62.99	96.39	82.54
	TML-CEM (U)	51.61	65.89	91.90	69.80
	ATML-CEM (U)	87.93	65.58	95.55	83.02

Table 4 :

 4 

		water	urban	land	average
	CoDSEM-GLCM (S)	91.28	98.82	93.53	94.54
	DSEM (S)	92.95	98.32	81.33	90.87
	ATML-CEM (S)	98.60	97.56	94.78	96.98
	K-MnL (Ss)	100.00	79.03	80.33	86.45
	MLS (Ss)	89.47	35.62	84.71	69.93
	AML-CEM (U)	92.36	98.29	80.97	90.54
	TML-CEM (U)	89.88	96.18	72.32	86.12
	ATML-CEM (U)	94.17	98.76	80.93	91.29
	denoising to justify that our Nakagami/Gamma density assumption is still valid
	after denoising. CSK1 is an 8-bits image and we plot its intensity histogram
	between 0 and 254 to demonstrate two histograms in a comparable case. ATML-
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Accuracy (in %) of the supervised (S), semi-supervised (Ss) and unsupervised (U) classification of TSX2 image in water, urban and land areas and overall.

Table 5 :

 5 Accuracy (in %) of the supervised (S), semi-supervised (Ss) and unsupervised (U) classification of CSK1 image in water, urban and land areas and overall. Note that unsupervised classification results are obtained after denoising.

		water urban	land	average
	CoDSEM-GLCM (Sup.)	95.28	98.67	98.50	97.48
	DSEM (Sup.)	97.74	98.90	81.80	92.82
	ATML-CEM (Sup.)	99.76 99.96 99.62	99.78
	K-MnL (Unsup.)	99.99	63.39	52.14	71.84
	MLS (Semi-sup.)	99.97	26.04	80.42	68.81
	AML-CEM (Unsup.)	99.06	47.08	27.66	57.93
	TML-CEM (Unsup.)	98.88	96.69	77.84	91.14
	ATML-CEM (Unsup.)	99.64	93.00	92.04	94.89

Table 6 :

 6 The number of pixels of TSX1, TSX2 and CSK1; Corresponding required time in seconds for a single iteration in case of K = {2, 4, 6, 8}; Total required time in minutes; and Total number of iterations.

	TSX1	1200e+3	7.04	6.18	4.62	3.55	5.07	57
	TSX2	540e+3	2.83	2.31	1.89	1.58	3.97	110
	CSK1	636e+3	3.52	3.42	2.65	2.13	2.42	50

# of pixels K = 8 K = 6 K = 4 K = 2 Total [min.] Total it.
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