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Abstract: We combine both amplitude and texture statistics of the Synthetic
Aperture Radar (SAR) images using Products of Experts (PoE) approach for
classification purpose. We use Nakagami density to model the class ampli-
tudes and a non-Gaussian Markov Random Field (MRF) texture model with
t-distributed regression error to model the textures of the classes. A non-
stationary Multinomial Logistic (MnL) latent class label model is used as a
mixture density to obtain spatially smooth class segments. The Classification
Expectation-Maximization (CEM) algorithm is performed to estimate the class
parameters and to classify the pixels. We resort to Integrated Classification
Likelihood (ICL) criterion to determine the number of classes in the model. We
obtained some classification results of water, land and urban areas in both su-
pervised and unsupervised cases on TerraSAR-X, as well as COSMO-SkyMed
data.

Key-words: High resolution SAR, TerraSAR-X, COSMO-SkyMed, classifi-
cation, texture, multinomial logistic, Classification EM, Products of Experts,
Jensen-Shannon criterion
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Classification non supervisée d’images RSO

fondée sur l’amplitude et la texture à l’aide

d’une modèle multinomial latent

Résumé : Nous combinons les statistiques fondées sur l’amplitude et la tex-
ture d’images Radar à Synthése d’Ouverture (RSO) en utilisant une approche
fondée sur des Produits d’Experts (PdE) à des fins de classification. Nous uti-
lisons la densité de Nakagami afin de modéliser les amplitudes des classes et un
champ de Markov non-gaussien pour modéliser la texture, en utilisant l’erreur
de régression t-distribuée afin de modéliser les textures des classes. Un modéle
non-stationnaire Logistique Multinomial (LMn) d’étiquettes de structure latente
est utilisé comme densité du mélange afin d’obtenir des segments de classe lissés
spatialement. L’algorithme de Classification Espérance-Maximisation (CEM)
est utilisé pour estimer les paramétres des classes et classer les pixels. Nous
avons recours au critère ICV (Integrated Classification Vraisemblance) pour
déterminer le nombre de classes dans le modèle. Nous avons obtenu des résultats
de classification pour l’eau, les sols et les zones urbaines dans les cas supervisé
ou non-supervisé sur des données TerraSAR-X ainsi que COSMO-SkyMed.

Mots-clés : RSO haute résolution, TerraSAR-X, COSMO-SkyMed, classi-
fication, texture, modèle logistique multinomial, Classification EM, Produits
d’Experts, critére de Jensen-Shannon
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1 Introduction

The aim of image classification is to assign each pixel of the image to a class with
regard to a feature space. In remote sensing, image classification finds many
applications varying from crop and forest classification to urban area extraction
and epidemiological surveillance. Radar images are preferred in remote sens-
ing because the acquisition of the images are not affected by light and weather
conditions. The radar images have taken a place in vegetation classification [2],
[3] for instances. The scope of this study is high resolution SAR image classifi-
cation. To model the statistics of SAR images, both empirical and theoretical
probability density functions (pdfs) have been proposed [1]. Basic theoretical
multi-look models are the Gamma and the Nakagami densities for intensity and
amplitude images respectively. A recent review on densities used in intensity
and amplitude based modeling can be found in [4].

The texture which represents the context of the image can also be used as
a feature in SAR images. Correlated K-distributed noise is used to capture
the texture information of the SAR images in [10]. In [11], Gray Level Co-
occurrence Matrix (GLCM) [15] and semivariogram [16] textural features are
resorted to classify very high resolution SAR images (in particular urban ar-
eas). Markov Random Fields (MRFs) are proposed for texture representation
and classification in [17] and [18]. A Gaussian MRF model which is a particu-
lar 2D Auto-Regressive (AR) model with Gaussian regression error is proposed
for texture classification in [19]. MRF based texture models are used in op-
tical and SAR aerial images for urban area extraction [20], [21], [22]. In [23]
and [24], Gaussian AR texture model is resorted for radar image segmentation.
In this study, we use a non-Gaussian MRF model, so-called t-MRF, for tex-
ture representation. In this AR model, we assume that the regression error
is an independent and identically distributed (iid) Student’s t-distribution. t-
distribution is a convenient model for robust regression and it has been used
in inverse problems in image processing [25], [29], [30] and image segmentation
[31] as a robust statistical model.

In this study, we follow the model based classification approach. Finite
Mixture Model (FMM) is a suitable statistical model to represent SAR image
histogram and to perform a model based classification [5]. One of the first uses
of FMM in SAR image classification may be found in [6]. In [7] mixture of
Gamma densities is used in SAR image processing. A combination of the pdfs
into a FMM has been used in [8] for medium resolution and in [9] for high
resolution SAR images. In mixture models, generally, a single model density
is used to represent only one feature of the data, i.e. mixtures of Gaussians,
mixtures of Gamma. For example in SAR images, mixture of Gamma densities
models the intensity of the images. To exploit different features in order to
increase classification performance, we may combine different feature densities
into a single classifier. There are some methods to combine the outcomes of the
different and independent classifiers [32]. Rather than combining the classifiers,
we construct a single classifier by assembling both SAR amplitude and texture
features into a FMM using the Products of Experts (PoE) approach [33]. In
this approach, we just multiply the amplitude and texture densities to construct
a single model density. Similar approaches can be found in feature selective
mixture models [26], [27], [28].

RR n° 7700
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To obtain smooth and segmented class label maps, a post-processing can
be applied to roughly classified class labels, but a Bayesian approach allows to
include smoothing constraints to classification problems. Potts-Markov image
model is introduced in [34] for discrete intensity images. In [35] and [36], some
Bayesian approaches are resorted for SAR image segmentation. Hidden Markov
chains and random fields are used in [37] for radar image classification. [38]
exploits a Potts-Markov model with MnL class densities in hyperspectral image
segmentation. A double MRFs model is proposed in [23] for optical images to
model the texture and the class labels as two different random fields. In [39]
amplitude and texture characteristics are used in two successive and independent
schemes for SAR multipolarization image segmentation. In our mixture model,
we use a texture model along with the amplitude and assume the class label
map to be a latent random field.

We assume that each latent class label is a categorical random variable which
is a special version of the multinomial random variable where each pixel belongs
to only one class [5]. For each class, we have a binary map that indicates
the pixels belonging to that class. We introduce a spatial interaction within
each binary map adopting multinomial logistic model [40] to obtain a smooth
segmentation map. Note that the edge preserving segmentation is out of the
scope of this paper. In our logistic regression model, the probability of the class
label is proportional to a linear combination of surrounding binary pixels. If
we compare the Potts-Markov image model [34] with ours, we may say that
we have K different probability density functions for binary random fields of
each class, instead of a single multi-level Gibbs distribution. The final density
of the class labels is constituted by combining K probability densities into a
multinomial density. In this way, we obtain a non-stationary multinomial class
density function which incorporates both class mixture probabilities and spatial
smoothness into a single density. A single model or algorithm is preferred to
avoid the propagation of the error between different models and algorithms.

Since our latent model is varying adaptively with respect to local pixels, we
obtain a non-stationary FMM. Non-stationary FMM has been introduced for
image classification in [41]. Using hidden MRFs model, a non-stationary latent
class label model incorporated with finite mixture density is proposed in [42]
for the segmentation of brain MR images. A non-stationary latent class label
model is proposed in [43] by defining a Gaussian MRF over the parameters of the
Dirichlet Compound Multinomial (DCM) mixture density. DCM density is also
called multivariate Polya-Eggenberger density and the related process is called
as Polya urn process [44], [45]. The Polya urn process is proposed to model the
diffusion of a contagious disease over a population. The idea proposed in [44]
has been already used in image segmentation [46] by assuming that each pixel
label is related to an urn which contains its neighboring pixels. In this study,
we utilize non-stationary FMM for SAR image classification.

Fitting a mixture model to some data can be realized by using EM algorithm.
The EM algorithm [47], [48] and its stochastic versions [49] have been used for
parameter estimation in latent variable models. We use a computationally less
expensive version of EM algorithm, namely Classification EM (CEM) [50], for
both parameter estimation and classification, using the advantage of categorical
random variables. In classification step, CEM uses the Winner-Take-All prin-
ciple to allocate each data pixel to the related class according to the posterior
probability of latent class label. After the classification step of CEM, we esti-
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mate the parameters of the class densities using only the pixels which belong to
that class.

Determining the necessary number of classes to represent the data and ini-
tialization are some drawbacks of the EM type algorithms. Running EM type
algorithms several times for different model orders to determine the model order
based on a criterion is a simple approach to reach a parsimonious solution. In
[51], a combination of hierarchal agglomeration [52], EM and Bayesian Infor-
mation Criterion (BIC) [53] is proposed to find necessary number of classes in
the mixture model. [54] performs a similar strategy with Component-wise EM
[55] and Minimum Message Length (MML) criterion [56, 57]. In this study, we
combine hierarchical agglomeration, CEM and ICL [58, 59] criterion to get rid
of the drawbacks of CEM.

In Section 2 and 3, the MnL mixture model and CEM algorithm are given.
The simulation results are shown in Section 5. Section 6 presents the conclusion
and future work.

2 Multinomial Logistic Mixture of Amplitude

and Texture Densities

We assume that the observed amplitude at the nth pixel, sn, where n ∈ R =
{1, 2, . . . , N} represents the lexicographically ordered pixel index, is free from
any noise and instrumental degradation. Every pixel in the image has a latent
class label. Denoting K the number of classes, we encode the class label as
a K dimensional categorical vector zn whose elements zn,k, k ∈ {1, 2, . . . , K}

have the following properties: 1) zn,k ∈ {0, 1} and 2)
∑K

k=1 zn,k = 1. We may
write the probability of sn as the marginalization of the joint probability of
p(sn, zn|Θ) = p(sn|zn, Θ)p(zn), [5], as

p(sn|Θ) =
∑

zn

p(sn|zn, Θ)p(zn)

=
∑

zn

K
∏

k=1

[p(sn|θk)πn,k]zn,k (1)

where πn,k = p(zn,k = 1), θk is the parameter of the class density and Θ =
{θ1, . . . , θK} is the set of the parameters. Since zn is a categorical random
vector, (1) is reduced to classical FMM as follow

p(sn|Θ) =

K
∑

k=1

p(sn|θk)πn,k (2)

We prefer to use the notation in (1) to show the contribution of the multinomial
density of class label, p(zn), into finite mixture model more explicitly. We give
the details of the class and the mixture densities in the following two sections.

2.1 Class Amplitude and Texture Densities

Our aim is to use the amplitude and the texture statistics together to classify
the SAR images. For this purpose, we combine both statistics by using the idea
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of PoE [33]. We model the class amplitudes using Nakagami density, which is
a basic theoretical multi-look amplitude model for SAR images [1]. We express
the class amplitude density as

pA(sn|µk, νk) =
2

Γ(νk)

(

νk

µk

)νk

s2νk−1
n e

(

−νk
s2n
µk

)

. (3)

We introduce a t-MRF texture model to use the contextual information for
classification. We write the t-MRF texture model using the neighbors of the
pixel in N (n)

sn =
∑

n′∈N (n)

αk,n′sn′ + tk,n (4)

where αk,n′ is the regression coefficient and the regression error tk,n is an iid
t-distributed zero-mean random variable with degree of freedom parameter βk

and scale parameters δk. In this way, we write the class texture density as a
t-distribution such that

pT (sn|αk, βk, δk) =
Γ((1 + βk)/2)

Γ(βk/2)(πβkδk)1/2

×

[

1 +
(sn − φT

nαk)2

βkδk

]−
βk+1

2

(5)

where the D = |N (n)| dimensional vectors φn and αk contain the neighboring
pixels sn′ and regression coefficients αk,n′ , respectively. The t-distribution can
also be written in implicit form using both of a Gaussian and a Gamma densities
[62]

p(sn|αk, βk, δk) =

∫

p(sn|τn,k, δk)p(τn,k|βk)dτn,k

=

∫

N

(

sn

∣

∣

∣

∣

φT
nαk,

δk

τn,k

)

G

(

τn,k

∣

∣

∣

∣

βk

2
,
βk

2

)

dτn,k. (6)

We use the representation in (6) for calculation of the parameters using EM
method nested in CEM algorithm.

We constitute the class density by multiplying the amplitude and texture
densities, in (3) and (5), as

p(sn|θk) = pA(sn|µk, νk)pT (sn|αk, βk, δk) (7)

where θk = {αk, βk, δk, µk, νk}.

2.2 Mixture Density - Class Prior

The prior density p(zn,k|θz) of the categorical random variable is naturally an
iid multinomial density, but we are not able to obtain a smooth class label
map if we use an iid multinomial. We need to use a density which models the
spatial smoothness of the class labels as well. DCM density can be a solution to
introduce smoothing [46]. DCM density is the density of the Polya urn process
and give us a non-parametric density estimation in a defined window. In case
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that the estimated probabilities are almost equal in that window, Polya urn
model may fail to make a decision to classify the pixels. [43] proposes a MRF
model over the spatially varying parameter of DCM density. We use a contrast
function called Logistic function [40] which emphasizes the high probabilities
while attenuating the low ones. The logistic function allows us to make an
easier decision by discriminating the probabilities closed to each other. We
can introduce spatial interactions of the categorical random field by defining a
binary spatial auto-regression model. We have already assumed in (1) that the
probability density of label zn is a special multinomial density. We can express
it with parameters πn = [πn,1, . . . , πn,K ], as

p(zn|πn) = Mult(zn|πn) =

K
∏

k=1

π
zn,k

n,k (8)

where πn,k = p(zn,k = 1) is the class probability with condition
∑K

k=1 πn,k = 1.
If we substitute the logistic model with parameter θz in place of πn,k, we obtain
MnL density for the problem at hand as

p(zn|θz) =

K
∏

k=1

(

exp(θzvk(zn,k))
∑K

j=1 exp(θzvj(zn,j))

)zn,k

(9)

where
vk(zn,k) = 1 +

∑

m∈M(n)

zm,k. (10)

The function vk(zn,k) returns the number of labels which belong to class k in
a given window. The mixture density in (9) is spatially-varying with given
function vk(zn,k) in (10).

3 Classification EM Algorithm

Since our purpose is to cluster the observed image pixels by maximizing the
marginal likelihood given in (1), we suggest to use EM type algorithm to deal
with the summation. The EM log-likelihood function is written as

QEM (Θ|Θt−1) =

N
∑

n=1

K
∑

k=1

zn,k log{p(sn|θk)πn,k}p(zn,k|sn,Θt−1) (11)

If we used the exact EM algorithm to find the maximum of Q(Θ|Θt−1) with
respect to Θ, we would need to maximize the parameters for each class given
the expected value of the class labels. Instead of this, we use the advantage
of working with categorical random variables and resort to Classification EM
algorithm [50]. We can partition the pixel domain R into K non-overlapped

regions such that R =
⋃K

k=1 Rk and Rk

⋂

Rl = 0, k 6= l. We can write the
classification log-likelihood function as

QCEM (Θ|Θt−1) =

K
∑

k=1

∑

m(k)∈Rk

log{p(sm(k)|θk)πm(k),k}p(zm(k),k|sn, Θt−1)

(12)

RR n° 7700
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The CEM algorithm incorporates a classification step between the E-step and
the M-step which performs a simple Maximum-a-Posteriori (MAP) estimation
to find the highest probability class label. Since the posterior p(zn,k|sn,Θt−1)
is a discrete probability density function of a finite number of classes, we can
perform the MAP estimation by choosing the maximum class probability. We
summarize the CEM algorithm for our problem as follows:

E-step: For k = 1, . . . , K and n = 1, . . . , N , calculate the posterior proba-
bilities

p(zn,k|sn, Θt−1) = p(sn|θ
t−1
k )

exp(θt−1
z vk(zn,k))

∑K
j=1 exp(θt−1

z vj(zn,j))
(13)

given the previously estimated parameter set Θt−1 using (3), (5) and (7).
C-step: For n = 1, . . . , N , classify the nth pixel into class j as zn,j = 1 by

choosing j which maximizes the posterior p(zn,k|sn, Θt−1) over k = 1, . . . , K as

j = arg max
k

p(zn,k|sn,Θt−1) (14)

M-step: To find a Bayesian estimate, maximize the classification log-likelihood
in (12) and the log-prior functions log p(Θ) together with respect to Θ as

Θt−1 = arg max
Θ

{QCEM (Θ|Θt−1) + log p(Θ)} (15)

To maximize this function, we alternate among the variables µk, νk, αk,
βk and δk. We only define an inverse Gamma prior with mean 1 for βk ∼
IG(βk|Nk, Nk) where Nk is the number of pixels in class k. We choose this prior
among some positive densities by testing their performance in the simulations.
We have obtained better results with small values of βk. This prior ensures βk

to take a value around 1. We assume uniform priors for the other parameters.
The functions of the amplitude parameters over all pixels are written as follows

Q(µk; Θt−1) = −Nkνk log µk −
νk

µk

∑

n∈Rk

s2
n (16)

Q(νk; Θt−1) = Nkνk log νk

µk
− Nk log Γ(νk)+

(2νk − 1)
∑

n∈Rk
log sn − νk

µk

∑

n∈Rk
s2

n
(17)

We estimate the texture parameters using another sub-EM algorithm nested
within CEM. The nested EM algorithm has already been studied in [61]. We can
express the t-distribution as a Gaussian scale mixture of gamma distributed la-
tent variables τn,k. Thereby, the EM log-likelihood functions of the t-distribution
in (5) are written as [62], [30]

Q(αk; Θt−1) = −
∑

n∈Rk

(sn − φT
nαk)2

2δk
〈τn,k〉 (18)

Q(δk; Θt−1) = −
Nk

2
log δk −

∑

n∈Rk

(sn − φT
nαk)2

2δk
〈τn,k〉 (19)

Q(βk; Θt−1) = −Nk log Γ(βk

2 ) + Nkβk

2 log βk

2

+
∑

n∈Rk

(

βk

2

)

〈log τn,k〉

−
∑

n∈Rk

〈τn,k〉βk

2

(

1 +
(sn−φT

nαk)2

2δkβk

)

−(Nk + 1) log βk − Nk

βk

(20)
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where 〈τn,k〉 is the posterior expectation of the gamma distributed latent vari-
able and calculated as

〈τn,k〉 =
βk + 1

βk

(

1 +
(sn − φT

nαk)2

βkδk

)−1

(21)

For simplicity, we use 〈.〉 to represent the posterior expectation 〈.〉τn,k|Θt−1 .

The solutions to (16), (18) and (19) can be easily found as

µk =
1

Nk

Nk
∑

n=1

s2
n (22)

αk = (ΦT Φ)−1ΦT s (23)

δk =

Nk
∑

n=1

(sn − φT
nαk)2

Nk
〈τn,k〉 (24)

For (17) and (20), we use a zero finding method to determine their maximum
[63] by setting their first derivatives to zero

log
νk

µk
− ψ1(νk) +

2

Nk

Nk
∑

n=1

log sn = 0 (25)

log
βk

2
− ψ1(

βk

2
) + 1 +

1

Nk

Nk
∑

n=1

〈log τn,k〉

−〈τn,k〉 −
Nk + 1

βk
+

Nk

β2
k

= 0 (26)

The parameter θz of the MnL class label is found by maximizing the following
function

Q(θz; Θ
t−1) =

N
∑

n=1



θzvk(zn,k) − log

K
∑

j=1

eθzvj(zn,j)



 (27)

We use a Newton-Raphson iteration to fit θz as

θt
z = θt−1

z −
1

2

∇Q(θz; Θ
t−1)

∇2Q(θz; Θt−1)
(28)

where the operators ∇· and ∇2· represent the gradient and the Laplacian of the
function with respect to θz.

4 Algorithm

In this section, we present the details of the unsupervised classification algo-
rithm. Our strategy follows the same general philosophy as the one proposed in
[52] and developed for mixture model in [51, 54]. We start the CEM algorithm
with a large number of classes, K = Kmax, and then we reduce the number of

RR n° 7700
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Table 1: Unsupervised CEM algorithm for classification of amplitude and tex-
ture based mixture model.

Initialize the classes defined in Section 4.1 for K = Kmax.
While K ≥ Kmin, do

θz = c, c ≥ 0
While the condition in (33) is false, do

E-step: Calculate the posteriors in (13)
C-step: Classify the pixels regarding to (14)
M-step: Estimate the parameters of amplitude and tex-
ture densities using (21-26)
Update the smoothness parameter θz using (28)

Find the weakest class using (29)
Find the closest class to the weakest class using (30-32)
Merge these two classes Rl ← Rl

⋃

Rkweak

K ← K − 1

classes to K ← K − 1 by merging the weakest class in probability to the one
that is most similar to it with respect to a distance measure. The weakest class
may be found using the average probabilities of each class as

kweak = arg min
k

1

Nk

∑

n∈Rk

p(zn,k|sn,Θt−1) (29)

Kullback-Leibler (KL) type divergence criterions are used in hierarchical
texture segmentation for region merging [64]. We use a symmetric KL type dis-
tance measure called Jensen-Shannon divergence [65] which is defined between
two probability density functions, i.e. pkweak

and pk, k 6= kweak, as

DJS(k) =
1

2
DKL(pkweak

||q) +
1

2
DKL(pk||q) (30)

where q = 0.5pkweak
+ 0.5pk and

DKL(p||q) =
∑

k

p(k) log
p(k)

q(k)
(31)

We find the closest class to kweak as

l = arg min
k

DJS(k) (32)

and merge these two classes to constitute a new class Rl ← Rl

⋃

Rkweak
.

We repeat this procedure until we reach the predefined minimum number of
classes Kmin. We determine the necessary number of classes by observing the
ICL criterion explained in Section 4.3. The details of the initialization and the
stopping criterion of the algorithm are presented in Section 4.1 and 4.2. The
summary of the algorithm can be found in Table 1

RR n° 7700
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4.1 Initialization

The algorithm can be initialized by determining the class areas manually in case
that there are a few number of classes. We suggest to use an initialization strat-
egy for completely unsupervised classification. It removes the user intervention
from the algorithm and enables to use the algorithm in case of large number
of classes. First, we run the CEM algorithm for one global class. Using the
cumulative distribution of the fitted Nakagami density g = FA(sn|µ0, ν0) where
g ∈ [0, 1] and dividing [0, 1] into K equal bins, we can find our initial class
parameters as µk = F−1

A (gk|µ0, ν0), k = 1, . . . , K where gk’s are the centers of
the bins. We initialize the other parameters using the estimated parameters of
the global class. We reset the parameter θz to a constant c after reducing the
number of classes.

4.2 Stopping Criterion

We observe the normalized and weighted absolute difference between sequential
values of parameter set θk to decide the convergence of the algorithm. We
assume that the algorithm has converged, if the following expression is satisfied:

K
∑

k=1

Nk|θt
k − θt−1

k |

N |θt−1
k |

≤ 10−3 (33)

4.3 Choosing the Number of Classes

The SAR images which we used have a small number of classes. We aim at
validating our assumption on small number of classes using the Integrated Clas-
sification Likelihood (ICL) [59]. Even though BIC is the most used and the
most practical criterion for large data sets, we prefer to use ICL because it is
developed specifically for classification likelihood problem, [58], and we have
obtained better results than BIC in the determination of the number of classes.
In our problem, the ICL criterion may be written as

ICL(K) = L(K) − H(K) −
1

2
dK log N + P (k) (34)

where L(K) is the logarithm of (2) for all pixels,

L(K) =

N
∑

n=1

log

(

K
∑

k=1

p(sn|θ̂k)p(zn,k|sn, Θ̂)

)

(35)

H(k) is an entropic penalty term,

H(K) = −
N

∑

n=1

K
∑

k=1

zn,k log p(zn,k|sn, Θ̂) (36)

and P (K) is the term formed by the logarithm of the prior distribution of the

parameters. In our case, it is P (K) =
∑K

k=1 log IG(β̂k|Nk, Nk). We also use
the BIC criterion for comparison. It can be written as

BIC(K) = L(k) −
1

2
dK log N + P (k) (37)

where dK is the number of free parameters. In our case, it is dK = 12 ∗ K + 1.
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5 Simulation Results

This section presents the high resolution SAR image classification results of the
proposed method called ATML-CEM (Amplitude and Texture density mixtures
of MnL with CEM), compared to the corresponding results obtained with other
methods. The competitors are DSEM [9], CoDSEM-GLCM [11] and K-MnL.
We have also tested three different versions of ATML-CEM method. One of
them is supervised ATML-CEM [60] where training and testing sets are deter-
mined by selecting some spatially disjoint class regions in the image, and we run
the algorithm twice for training and testing. We implement the other two ver-
sions by considering only Amplitude (AML-CEM) or only Texture (TML-CEM)
statistics.

The K-MnL method is the sequential combination of K-means clustering for
classification and Multinomial Logistic label model for segmentation to obtain a
more fair comparison with K-means clustering since K-means does not provide
a segmented map. The weak point of the K-means algorithm is that it does
not converge to the same solution every time, since it starts with random seed.
Therefore, we run the K-MnL method 20 times and select the best result among
them.

We tested the algorithms on the following four SAR image patches:

� SYN: 200 × 200 pixels, synthetic image constituted by collating 4 different
100 × 100 patches from TSX1 image. The small patches are taken from
water, urban, land and forest areas (see Fig. 2(a)).

� TSX1: 1200 × 1000 pixels, HH polarized TerraSAR-X Stripmap (6.5 m
ground resolution) 2.66-look geocorrected image which was acquired over
Sanchagang, China (see Fig. 4(a)). ©Infoterra.

� TSX2: 900 × 600 pixels, HH polarized, TerraSAR-X SpotLight (8.2 m
ground resolution) 4-look image which was acquired over the city of Rosen-
heim in Germany (see Fig. 6(a)). ©Infoterra.

� CSK1: 672 × 947 pixels, HH polarized COSMO-SkyMed Stripmap (2.5 m
ground resolution) single-look image which was acquired over Lombriasco,
Italy (see Fig. 9(a)). ©ASI.

For all real SAR images (TSX1, TSX2 and CSK1) classified by ATML-CEM
versions, we use the same setting for model and initialization. The sizes of
the windows for texture and label models are selected to be 3×3 and 13×13
respectively by trial and error. For synthetic SAR image (SYN), we utilize
a 21×21 window in MnL label model and a 3×3 window in texture model.
We initialize the algorithm as described in Section 4.1 and estimate all the
parameters along the iterations.

We produce SYN image to test unsupervised ATML-CEM algorithm in case
of known number of classes, because the real images may contain more classes
than our expectations and distinguishing between different classes by eyes to
construct a ground-truth is very hard if the number of classes is high. From
Fig. 1(a), we can see that the ICL plot has its first peak at 4. BIC does not
have any significant peak to allow us to take a decision. The outcomes of the
algorithm for different number of classes can be seen in Fig. 3. The numerical
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Table 2: Accuracy (in %) of the classification of SYN image for 4 classes and in
average.

water urban trees land average

ATML-CEM (Sup.) 99.02 99.46 99.28 99.30 99.27

K-MnL (Unsup.) 96.58 80.18 99.60 90.32 91.92
AML-CEM (Unsup.) 97.53 97.89 97.72 94.57 96.93
TML-CEM (Unsup.) 98.18 81.10 85.79 88.72 88.45

ATML-CEM (Unsup.) 97.74 97.61 97.73 94.81 96.97

results are listed in Table 2. For supervised case, we allocate 25% of the data
for training and 75% for testing. The similar results of AML-CEM and ATML-
CEM show that the contribution of texture information is very weak in this
data set. From Fig. 2, we can see that the classification map of ATML-CEM is
obviously better than the one of K-MnL.
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Figure 1: ICL and BIC values of the classified (a) SYN (b) TSX1, (c) TSX2
and (d) CSK1 images for several numbers of sources.

For TSX1 image in Fig.4(a), the full ground-truth map (Courtesy of V.
Krylov) is manually generated. Fig.4 shows the classification results where the
red colored regions indicate the misclassified parts according to 3-classes ground-
truth map. We can see the plotted ICL values with respect to the number of
classes in Fig. 1(b). The ICL plot has its maximum at 5. The BIC values are
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(a) SYN image (b) K-MnL classification

(c) Supervised classification (d) Unsupervised classification

Figure 2: (a) SYN image, (b), (c) and (d) classification maps obtained by K-
MnL, supervised and unsupervised ATML-CEM methods. Dark blue, light blue,
yellow and red colors represent class 1 (water), class 2 (urban), class 3 (trees)
and class 4 (land), respectively.

monotonically increasing and does not allow to take a decision about the number
of classes. We can see from the BIC plots of different images in Fig. 5 that BIC
has similar monotonically increasing behavior and ICL has clearer peaks. Fig.
5 shows several classification maps found for different numbers of classes. Since
we have the 3-classes ground-truth map, we compare our results numerically in
the 3-classes case. The numerical accuracy results are given in Table 3. While
supervised ATML-CEM gives the better result in average, unsupervised ATML-
CEM and supervised DSEM-MRF follow it. Among the unsupervised methods,
the performance of K-MnL is better than the others in average, but results of
ATML-CEM and AML-CEM are closed to its results.

From the experiment with TSX1 image, we realize that if the image does not
have strong texture, we cannot benefit from including texture statistics into the
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(a) K = 3 (b) K = 4

(c) K = 6 (d) K = 10

Figure 3: Classification maps of SYN image obtained with unsupervised ATML-
CEM method for different numbers of classes K = {3,4,5,10}.

Table 3: Accuracy (in %) of the classification of TSX1 image in water, wet soil
and dry soil areas and average.

water wet soil dry soil average

DSEM-MRF (Sup.) 90.00 69.93 91.28 83.74
ATML-CEM (Sup.) 89.88 76.38 87.33 84.53

K-MnL (Unsup.) 89.71 86.13 72.42 82.92

AML-CEM (Unsup.) 89.11 63.69 93.46 82.09
TML-CEM (Unsup.) 52.71 64.59 93.65 70.32

ATML-CEM (Unsup.) 88.93 63.47 94.07 82.15

model. To reveal the advantage of using texture model, we exploit the ATML-
CEM algorithm for urban area extraction problem on TSX2 image in Fig. 6(a).
Table 4 lists the accuracy of the classification in water, urban and land areas
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(a) TSX1 image (b) K-MnL classification

(c) Supervised classification (d) Unsupervised classification

Figure 4: (a) TSX1 image, (b), (c) and (d) classification maps obtained by
K-MnL, supervised and unsupervised ATML-CEM methods. Dark blue, light
blue, yellow and red colors represent water, wet soil, dry soil and misclassified
areas, respectively.

and average according to a groundtruth class map (Courtesy of A. Voisin). We
include the result of CoDSEM-GLCM [11] which is the extended version of
the DSEM method by including texture information. In both supervised and
unsupervised cases, ATML-CEM provides better results than the others. TML-
CEM gives better result than other methods in the urban area, however, the
combination of amplitude and texture features helps to increase the quality of
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(a) K = 2 (b) K = 3

 

 

(c) K = 5 (d) K = 8

Figure 5: Classification maps of TSX1 image obtained with unsupervised
ATML-CEM method for different numbers of classes K = {2,3,5,8}.

classification in average. From Fig. 6, we can see that the K-MnL method fails
to classify the urban areas. The classification map of ATML-CEM includes the
trees and hills areas into urban area, since their textures are more similar to
urban texture than the others. Misclassification in water areas is caused by the
dark shadowed regions. Fig. 1(c) shows the ICL and BIC values. From this plot,
we can see that the necessary number of classes should be 7. Fig. 7 presents
the classification maps for 3-, 5-, 7- and 15-classes cases. In 7-classes case, the
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Table 4: Accuracy (in %) of the classification of TSX2 image in water, urban
and land areas and overall.

water urban land average

CoDSEM-GLCM (Sup.) 91.28 98.82 93.53 94.54
DSEM (Sup.) 92.95 98.32 81.33 90.87

ATML-CEM (Sup.) 98.60 97.56 94.78 96.98

K-MnL (Unsup.) 100.00 79.03 80.33 86.45
AML-CEM (Unsup.) 93.27 98.46 79.33 90.35
TML-CEM (Unsup.) 89.88 99.24 65.62 84.91

ATML-CEM (Unsup.) 97.78 97.82 79.22 91.60

urban area is divided into two parts which are related to medium and strong
reflections caused by buildings. Land are also divided into several regions.

(a) (b) K-MnL classification

(c) Supervised classification (d) Unsupervised classification

Figure 6: (a) TSX2 image, (b), (c) and (d) classification maps obtained by K-
MnL, supervised ATML-CEM and unsupervised ATML-CEM methods. Blue,
red and green colors represent water, urban and land areas, respectively.

We have tested ATML-CEM on another patch called CSK1 (see Fig. 9(a)).
Tab. 5 lists the numerical results. Among the supervised methods, ATML-CEM
is very successful. Since this SAR image is a single-look observation, the noise
level is higher than in the other images. We can obtain some good unsupervised
classification results after applying a denoising process. Among the Lee, Frost
and Wiener filters, we prefer using a 2D adaptive Wiener filter with 3 × 3
window proposed in [66], because we obtain better classification results. In Fig.
8, we show the histogram of the intensity of the CSK1 image before and after
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(a) K = 3 (b) K = 5

(c) K = 7 (d) K = 15

Figure 7: Classification maps of TSX2 image obtained with unsupervised
ATML-CEM method for different numbers of classes K = {3,5,7,15}.

Table 5: Accuracy (in %) of the classification of CSK1 image in water, urban
and land areas and overall. Note that unsupervised classification results are
obtained after denoising.

water urban land average

CoDSEM-GLCM (Sup.) 95.28 98.67 98.50 97.48
DSEM (Sup.) 97.74 98.90 81.80 92.82

ATML-CEM (Sup.) 99.76 99.96 99.62 99.78

K-MnL (Unsup.) 99.99 63.39 52.14 71.84
AML-CEM (Unsup.) 99.06 47.08 27.66 57.93
TML-CEM (Unsup.) 98.88 96.69 77.84 91.14

ATML-CEM (Unsup.) 99.64 93.00 92.04 94.89

denoising to justify that our Nakagami/Gamma density assumption is still valid
after denoising. CSK1 is an 8-bits image and we plot its intensity histogram
between 0 and 254 to demonstrate two histograms in a comparable case. ATML-
CEM provides significantly better results in overall, see Fig. 9 and Table 5. The
results in Fig. 9 are found for 3-classes case, since we have the 3-classes ground-
truth map. The optimum number of classes is found as 6 according to ICL
criterion, see Fig. 1(d). Fig. 10 shows some classification maps for different
numbers of classes.

The simulations were performed on MATLAB platform on a PC with Intel
Xeon, Core 8, 2.40 GHz CPU. The number of iterations and total required
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Figure 8: Histograms of the intensity of the CSK1 image (a) before and (b)
after denoising.

(a) CSK1 image (b) K-MnL classification

(c) Supervised classification (d) Unsupervised classification

Figure 9: (a) CSK1 image, (b), (c) and (d) classification maps obtained by K-
MnL, supervised and unsupervised ATML-CEM methods. Blue, red and green
colors represent water, urban and land areas, respectively.

time in minutes for the algorithm are shown in Table 6. We also present the
required time in seconds for a single iteration in case of the number of classes
K = {3, 6, 9, 12}. The algorithm reaches a solution in a reasonable time, if we
take into consideration that more or less a million of pixels are processed.
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(a) K = 3 (b) K = 5

 

 

(c) K = 6 (d) K = 12

Figure 10: Classification maps of CSK1 image obtained with unsupervised
ATML-CEM method for different numbers of classes K = {3,5,6,12}.

Table 6: The number of pixels of TSX1, TSX2 and CSK1; Corresponding re-
quired time in seconds for a single iteration in case of K = {2, 4, 6, 8}; Total
required time in minutes; and Total number of iterations.

# of pixels K = 8 K = 6 K = 4 K = 2 Total [min.] Total it.

TSX1 1200e+3 7.04 6.18 4.62 3.55 5.07 57
TSX2 540e+3 2.83 2.31 1.89 1.58 3.97 110
CSK1 636e+3 3.52 3.42 2.65 2.13 2.42 50

6 Conclusion and Future Work

We have proposed a Bayesian model which uses amplitude and texture features
together in a FMM along with nonstationary latent class labels. Using these
two features together in the model, we obtain better high resolution SAR image
classification results, especially in the urban areas. Furthermore, using an ag-
glomerative type unsupervised classification method, we eliminate the negative
effect of the latent class label initialization. According to our experiments, the
larger number of classes we start the algorithm with, the more initial value in-
dependent results we obtain. Consequently, the computational cost is increased
as a by-product. The ICL criterion which we prefer over BIC does not always
indicate the number of classes noticeably. In some cases it has several peaks
very close to each others. In these cases, since we search the smallest number of
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classes, we can observe the first peak of ICL to take a decision on the number of
classes. More complicated criterions may be investigated in a future study. The
speckle type noise has impaired the algorithm especially in single-look observa-
tion case. The statistics of the speckle noise may be included to the proposed
model in order to obtain better classification/segmentation in case of low signal
to noise ratio.
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