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Abstract

Altenbernd, Thomas and Wöhrle have considered in [ATW03] acceptance
of languages of infinite two-dimensional words (infinite pictures) by finite
tiling systems, with the usual acceptance conditions, suchas the Büchi and
Muller ones, firstly used for infinite words. Many classical decision prob-
lems are studied in formal language theory and in automata theory and arise
now naturally about recognizable languages of infinite pictures. We first
review in this paper some recent results of [Fin09b] where wegave the ex-
act degree of numerous undecidable problems for Büchi-recognizable lan-
guages of infinite pictures, which are actually located at the first or at the
second level of the analytical hierarchy, and “highly undecidable”. Then we
prove here some more (high) undecidability results. We firstshow that it is
Π1

2-complete to determine whether a given Büchi-recognizable languages of
infinite pictures is unambiguous. Then we investigate cardinality problems.
Using recent results of [FL09], we prove that it isD2(Σ

1
1)-complete to de-

termine whether a given Büchi-recognizable language of infinite pictures is
countably infinite, and that it isΣ1

1-complete to determine whether a given
Büchi-recognizable language of infinite pictures is uncountable. Next we
consider complements of recognizable languages of infinitepictures. Using
some results of Set Theory, we show that the cardinality of the comple-
ment of a Büchi-recognizable language of infinite picturesmay depend on
the model of the axiomatic systemZFC. We prove that the problem to de-
termine whether the complement of a given Büchi-recognizable language
of infinite pictures is countable (respectively, uncountable) is in the class
Σ1
3 \ (Π

1
2 ∪ Σ1

2) (respectively, in the classΠ1
3 \ (Π

1
2 ∪ Σ1

2)).
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1 Introduction

Languages of infinite words accepted by finite automata were first studied by
Büchi to prove the decidability of the monadic second ordertheory of one suc-
cessor over the integers. Since then regularω-languages have been much studied
and many applications have been found for specification and verification of non-
terminating systems, see [Tho90, PP04] for many results andreferences.

Altenbernd, Thomas and Wöhrle have considered in [ATW03] acceptance of lan-
guages of infinite two-dimensional words (infinite pictures) by finite tiling sys-
tems, with the usual acceptance conditions, such as the Büchi and Muller ones,
firstly used for infinite words. This way they extended both the classical theory of
ω-regular languages and the classical theory of recognizable languages of finite
pictures, [GR97], to the case of infinite pictures.

Many classical decision problems are studied in formal language theory and in
automata theory and arise now naturally about recognizablelanguages of infinite
pictures.

In a recent paper, we gave the exact degree of numerous undecidable problems for
Büchi-recognizable languages of infinite pictures. In particular, the non-emptiness
and the infiniteness problems areΣ1

1-complete, and the universality problem, the
inclusion problem, the equivalence problem, the complementability problem, and
the determinizability problem, are allΠ1

2-complete. These decision problems are
then located at the first or at the second level of the analytical hierarchy, and
“highly undecidable”. This gave new natural examples of decision problems lo-
cated at the first or at the second level of the analytical hierarchy.

Here we first review some of these results, and we study new decision problems,
obtaining new results of high undecidability.

We first consider the notion of unambiguous Büchi tiling system, and of unam-
biguous Büchi-recognizable language of infinite pictures. We show that every
language of infinite pictures which is accepted by an unambiguous Büchi tiling
system is a Borel set. As a corollary this shows the existenceof inherently am-
biguous Büchi-recognizable language of infinite pictures. Then we use this result
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to prove that it isΠ1
2-complete to determine whether a given Büchi-recognizable

language of infinite pictures is unambiguous.

Next we study cardinality problems. Using recent results ofFinkel and Lecomte
in [FL09], we first show that it isD2(Σ

1
1)-complete to determine whether a given

Büchi-recognizable language of infinite pictures is countably infinite, whereD2(Σ
1
1)

is the class of2-differences ofΣ1
1-sets, i.e. the class of sets which are intersections

of aΣ1
1-set and of aΠ1

1-set. And it isΣ1
1-complete to determine whether a given

Büchi-recognizable language of infinite pictures is uncountable.

Then we consider the complements of Büchi-recognizable languages of infinite
pictures. By using some results of Set Theory, we show that the cardinality of the
complement of a Büchi-recognizable language of infinite pictures may depend
on the actual model of the axiomatic systemZFC. We prove that one can effec-
tively construct a Büchi tiling systemT accepting a languageL ⊆ Σω,ω, whose
complement isL− = Σω,ω − L, such that:

1. There is a modelV1 of ZFC in whichL− is countable.

2. There is a modelV2 of ZFC in whichL− has cardinal2ℵ0.

3. There is a modelV3 of ZFC in whichL− has cardinalℵ1 with ℵ0 < ℵ1 <

2ℵ0 .

Then, using the proof of this result and Schoenfield’s Absoluteness Theorem, we
prove that the problem to determine whether the complement of a given Büchi-
recognizable language of infinite pictures is countable (respectively, uncountable)
is in the classΣ1

3 \ (Π1
2 ∪ Σ1

2) (respectively, in the classΠ1
3 \ (Π1

2 ∪ Σ1
2)). This

shows that natural cardinality problems are actually located at thethird level of
the analytical hierarchy.

The paper is organized as follows. We recall in Section2 the notions of tiling
systems and of recognizable languages of pictures. In section 3, we recall the
definition of the analytical hierarchy on subsets ofN. The definitions of the Borel
hierarchy and of analytical sets of a Cantor space, along with their effective coun-
terparts, are given in Section4. Some notions of Set Theory, which are useful in
the sequel, are exposed in Section5. We study decision problems in Section6,
proving new results. Some concluding remarks are given in Section7.

2 Tiling Systems

We assume the reader to be familiar with the theory of formal (ω)-languages
[Tho90, Sta97]. We recall usual notations of formal language theory.
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WhenΣ is a finite alphabet, anon-empty finite wordover Σ is any sequence
x = a1 . . . ak, whereai ∈ Σ for i = 1, . . . , k , andk is an integer≥ 1. The
lengthof x is k, denoted by|x|. Theempty wordhas no letter and is denoted by
λ; its length is0. Σ⋆ is theset of finite words(including the empty word) overΣ.
Thefirst infinite ordinalis ω. An ω-word overΣ is anω -sequencea1 . . . an . . .,
where for all integersi ≥ 1, ai ∈ Σ. Whenσ is anω-word overΣ, we writeσ =
σ(1)σ(2) . . . σ(n) . . ., where for alli, σ(i) ∈ Σ, andσ[n] = σ(1)σ(2) . . . σ(n) for
all n ≥ 1 andσ[0] = λ.
The usual concatenation of two finite wordsu andv is denotedu.v (and some-
times justuv). This product is extended to the product of a finite wordu and an
ω-wordv: the infinite wordu.v is then theω-word such that:
(u.v)(k) = u(k) if k ≤ |u| , and(u.v)(k) = v(k − |u|) if k > |u|.
Theset of ω-words over the alphabetΣ is denoted byΣω. An ω-languageover
an alphabetΣ is a subset ofΣω.

We now define two-dimensional words, i.e. pictures.
LetΣ be a finite alphabet, let# be a letter not inΣ and letΣ̂ = Σ∪{#}. If m and
n are two positive integers or ifm = n = 0, a picture of size(m,n) overΣ is a
functionp from {0, 1, . . . , m+1}×{0, 1, . . . , n+1} into Σ̂ such thatp(i, j) = #
if i ∈ {0, m+1} or j ∈ {0, n+1} andp(i, j) ∈ Σ otherwise. The empty picture is
the only picture of size(0, 0) and is denoted byλ. Pictures of size(n, 0) or (0, n),
for n > 0, are not defined.Σ⋆,⋆ is the set of pictures overΣ. A picture language
L is a subset ofΣ⋆,⋆. The research on picture languages was firstly motivated by
the problems arising in pattern recognition and image processing, a survey on the
theory of picture languages may be found in [GR97].

An ω-picture overΣ is a functionp fromω×ω into Σ̂ such thatp(i, 0) = p(0, i) =
# for all i ≥ 0 andp(i, j) ∈ Σ for i, j > 0. Σω,ω is the set ofω-pictures overΣ.
An ω-picture languageL is a subset ofΣω,ω.
ForΣ a finite alphabet we callΣω2

the set of functions fromω × ω intoΣ. So the
setΣω,ω of ω-pictures overΣ is a strict subset of̂Σω2

.

We shall say that, for each integerj ≥ 1, thejth row of anω-picturep ∈ Σω,ω

is the infinite wordp(1, j).p(2, j).p(3, j) . . . overΣ and thejth column ofp is the
infinite wordp(j, 1).p(j, 2).p(j, 3) . . . overΣ.
As usual, one can imagine that, for integersj > k ≥ 1, thejth column ofp is on
the right of thekth column ofp and that thejth row of p is “above” thekth row of
p.

We introduce now (non deterministic) tiling systems as in the paper [ATW03].
A tiling system is a tupleA=(Q,Σ,∆), whereQ is a finite set of states,Σ is a
finite alphabet,∆ ⊆ (Σ̂×Q)4 is a finite set of tiles.
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A Büchi tiling system is a pair(A,F ) whereA=(Q,Σ,∆) is a tiling system and
F ⊆ Q is the set of accepting states.
A Muller tiling system is a pair(A,F) whereA=(Q,Σ,∆) is a tiling system and
F⊆ 2Q is the set of accepting sets of states.

Tiles are denoted by

(

(a3, q3) (a4, q4)
(a1, q1) (a2, q2)

)

with ai ∈ Σ̂ andqi ∈ Q,

and in general, over an alphabetΓ, by

(

b3 b4
b1 b2

)

with bi ∈ Γ.

A combination of tiles is defined by:
(

b3 b4
b1 b2

)

◦

(

b′3 b′4
b′1 b′2

)

=

(

(b3, b
′
3) (b4, b

′
4)

(b1, b
′
1) (b2, b

′
2)

)

A run of a tiling systemA=(Q,Σ,∆) over a (finite) picturep of size(m,n) over
Σ is a mappingρ from {0, 1, . . . , m+ 1} × {0, 1, . . . , n+ 1} intoQ such that for
all (i, j) ∈ {0, 1, . . . , m} × {0, 1, . . . , n} with p(i, j) = ai,j andρ(i, j) = qi,j we
have

(

ai,j+1 ai+1,j+1

ai,j ai+1,j

)

◦

(

qi,j+1 qi+1,j+1

qi,j qi+1,j

)

∈ ∆.

A run of a tiling systemA=(Q,Σ,∆) over anω-picturep ∈ Σω,ω is a mapping
ρ from ω × ω into Q such that for all(i, j) ∈ ω × ω with p(i, j) = ai,j and
ρ(i, j) = qi,j we have

(

ai,j+1 ai+1,j+1

ai,j ai+1,j

)

◦

(

qi,j+1 qi+1,j+1

qi,j qi+1,j

)

∈ ∆.

We now recall acceptance of finite or infinite pictures by tiling systems:

Definition 2.1 LetA=(Q,Σ,∆) be a tiling system,F ⊆ Q andF⊆ 2Q.

• The picture language recognized byA is the set of picturesp ∈ Σ⋆,⋆ such
that there is some runρ ofA onp.

• Theω-picture language B̈uchi-recognized by(A,F ) is the set ofω-pictures
p ∈ Σω,ω such that there is some runρ ofA onp andρ(v) ∈ F for infinitely
manyv ∈ ω2. It is denoted byLB((A,F )).

• Theω-picture language Muller-recognized by(A,F) is the set ofω-pictures
p ∈ Σω,ω such that there is some runρ of A on p andInf(ρ) ∈ F where
Inf(ρ) is the set of states occurring infinitely often inρ. It is denoted by
LM ((A,F)).
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Notice that anω-picture languageL ⊆ Σω,ω is recognized by a Büchi tiling system
if and only if it is recognized by a Muller tiling system, [ATW03].
We shall denoteTS(Σω,ω) the class of languagesL ⊆ Σω,ω which are recognized
by some Büchi (or Muller) tiling system.

3 Recall of Known Basic Notions

3.1 The Analytical Hierarchy

The set of natural numbers is denoted byN and the set of all mappings fromN
intoN will be denoted byF .

We assume the reader to be familiar with the arithmetical hierarchy on subsets
of N. We now recall the notions of analytical hierarchy and of complete sets for
classes of this hierarchy which may be found in [Rog67].

Definition 3.1 Let k, l > 0 be some integers.Φ is a partial recursive function of
k function variables andl number variables if there existsz ∈ N such that for any
(f1, . . . , fk, x1, . . . , xl) ∈ Fk × Nl, we have

Φ(f1, . . . , fk, x1, . . . , xl) = τ f1,...,fkz (x1, . . . , xl),

where the right hand side is the output of the Turing machine with indexz and
oraclesf1, . . . , fk over the input(x1, . . . , xl). For k > 0 andl = 0, Φ is a partial
recursive function if, for somez,

Φ(f1, . . . , fk) = τ f1,...,fkz (0).

The valuez is called the G̈odel number or index forΦ.

Definition 3.2 Let k, l > 0 be some integers andR ⊆ Fk × Nl. The relationR
is said to be a recursive relation ofk function variables andl number variables if
its characteristic function is recursive.

We now define analytical subsets ofNl.

Definition 3.3 A subsetR of Nl is analytical if it is recursive or if there exists a
recursive setS ⊆ Fm × Nn, withm ≥ 0 andn ≥ l, such that

R = {(x1, . . . , xl) | (Q1s1)(Q2s2) . . . (Qm+n−lsm+n−l)S(f1, . . . , fm, x1, . . . , xn)},

whereQi is either∀ or ∃ for 1 ≤ i ≤ m + n − l, and wheres1, . . . , sm+n−l are
f1, . . . , fm, xl+1, . . . , xn in some order.
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The expression(Q1s1)(Q2s2) . . . (Qm+n−lsm+n−l)S(f1, . . . , fm, x1, . . . , xn) is called
a predicate form forR. A quantifier applying over a function variable is of type
1, otherwise it is of type0. In a predicate form the (possibly empty) sequence
of quantifiers, indexed by their type, is called the prefix of the form. The reduced
prefix is the sequence of quantifiers obtained by suppressingthe quantifiers of type
0 from the prefix.

The levels of the analytical hierarchy are distinguished byconsidering the number
of alternations in the reduced prefix.

Definition 3.4 For n > 0, aΣ1
n-prefix is one whose reduced prefix begins with∃1

and hasn− 1 alternations of quantifiers. AΣ1
0-prefix is one whose reduced prefix

is empty. Forn > 0, a Π1
n-prefix is one whose reduced prefix begins with∀1 and

hasn − 1 alternations of quantifiers. AΠ1
0-prefix is one whose reduced prefix is

empty.
A predicate form is aΣ1

n (Π1
n)-form if it has aΣ1

n (Π1
n)-prefix. The class of sets in

someNl which can be expressed inΣ1
n-form (respectively,Π1

n-form) is denoted by
Σ1

n (respectively,Π1
n).

The classΣ1
0 = Π1

0 is the class of arithmetical sets.

We now recall some well known results about the analytical hierarchy.

Proposition 3.5 LetR ⊆ Nl for some integerl. ThenR is an analytical set iff
there is some integern ≥ 0 such thatR ∈ Σ1

n or R ∈ Π1
n.

Theorem 3.6 For each integern ≥ 1,

(a) Σ1
n ∪Π1

n ( Σ1
n+1 ∩ Π1

n+1.

(b) A setR ⊆ Nl is in the classΣ1
n iff its complement is in the classΠ1

n.

(c) Σ1
n −Π1

n 6= ∅ andΠ1
n − Σ1

n 6= ∅.

Transformations of prefixes are often used, following the rules given by the next
theorem.

Theorem 3.7 For any predicate form with the given prefix, an equivalent predi-
cate form with the new one can be obtained, following the allowed prefix trans-
formations given below :

(a) . . .∃0∃0 . . .→ . . .∃0 . . . , . . .∀0∀0 . . .→ . . .∀0 . . . ;

(b) . . .∃1∃1 . . .→ . . .∃1 . . . , . . .∀1∀1 . . .→ . . .∀1 . . . ;
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(c) . . .∃0 . . .→ . . .∃1 . . . , . . .∀0 . . .→ . . .∀1 . . . ;

(d) . . .∃0∀1 . . .→ . . .∀1∃0 . . . , . . .∀0∃1 . . .→ . . .∃1∀0 . . . ;

We can now define the notion of 1-reduction and ofΣ1
n-complete (respectively,

Π1
n-complete) sets. Notice that we give the definition for subsets ofN but one can

easily extend this definition to the case of subsets ofNl for some integerl.

Definition 3.8 Given two setsA,B ⊆ N we say A is 1-reducible to B and write
A ≤1 B if there exists a total computable injective function f fromN to N such
thatA = f−1[B].

Definition 3.9 A setA ⊆ N is said to beΣ1
n-complete (respectively,Π1

n-complete)
iff A is aΣ1

n-set (respectively,Π1
n-set) and for eachΣ1

n-set (respectively,Π1
n-set)

B ⊆ N it holds thatB ≤1 A.

For each integern ≥ 1 there exists someΣ1
n-complete setEn ⊆ N. The com-

plementE−
n = N − En is aΠ1

n-complete set. These sets are precisely defined in
[Rog67] or [CC89].

3.2 Borel Hierarchy and Analytic Sets

We assume now the reader to be familiar with basic notions of topology which
may be found in [Mos80, LT94, Kec95, Sta97, PP04].

There is a natural metric on the setΣω of infinite words over a finite alphabet
Σ containing at least two letters which is called theprefix metricand defined as
follows. Foru, v ∈ Σω andu 6= v let δ(u, v) = 2−lpref(u,v) wherelpref(u,v) is the
first integern such that the(n+1)st letter ofu is different from the(n+1)st letter
of v. This metric induces onΣω the usual Cantor topology for whichopen subsets
of Σω are in the formW.Σω, whereW ⊆ Σ⋆. A setL ⊆ Σω is aclosed setiff its
complementΣω −L is an open set. Now let define theBorel Hierarchyof subsets
of Σω:

Definition 3.10 For a non-null countable ordinalα, the classesΣ0
α andΠ

0
α of

the Borel Hierarchy on the topological spaceΣω are defined as follows:
Σ

0
1 is the class of open subsets ofΣω, Π0

1 is the class of closed subsets ofΣω,
and for any countable ordinalα ≥ 2:
Σ

0
α is the class of countable unions of subsets ofΣω in

⋃

γ<α Π
0
γ.

Π
0
α is the class of countable intersections of subsets ofΣω in

⋃

γ<αΣ
0
γ.
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For a countable ordinalα, a subset ofΣω is a Borel set ofrankα iff it is in Σ
0
α∪Π

0
α

but not in
⋃

γ<α(Σ
0
γ ∪Π

0
γ).

There are also some subsets ofΣω which are not Borel. Indeed there exists an-
other hierarchy beyond the Borel hierarchy, which is calledthe projective hier-
archy and which is obtained from the Borel hierarchy by successive applications
of operations of projection and complementation. The first level of the projective
hierarchy is formed by the class ofanalytic setsand the class ofco-analytic sets
which are complements of analytic sets. In particular the class of Borel subsets
of Σω is strictly included into the classΣ1

1 of analytic setswhich are obtained by
projections of Borel sets.

Definition 3.11 A subsetA of Σω is in the classΣ1
1 of analytic sets iff there exist

a finite setY and a Borel subsetB of (Σ × Y )ω such that[x ∈ A ↔ ∃y ∈ Y ω

(x, y) ∈ B], where(x, y) is the infinite word over the alphabetΣ × Y such that
(x, y)(i) = (x(i), y(i)) for each integeri ≥ 1.

We now define completeness with regard to reduction by continuous functions.
For a countable ordinalα ≥ 1, a setF ⊆ Σω is said to be aΣ0

α (respectively,
Π

0
α, Σ1

1)-complete setiff for any setE ⊆ Y ω (with Y a finite alphabet):E ∈ Σ
0
α

(respectively,E ∈ Π
0
α, E ∈ Σ

1
1) iff there exists a continuous functionf : Y ω →

Σω such thatE = f−1(F ). Σ0
n (respectivelyΠ0

n)-complete sets, withn an integer
≥ 1, are thoroughly characterized in [Sta86].

In particularR = (0⋆.1)ω is a well known example of aΠ0
2-complete subset of

{0, 1}ω. It is the set ofω-words over{0, 1} having infinitely many occurrences of
the letter1. Its complement{0, 1}ω − (0⋆.1)ω is aΣ0

2-complete subset of{0, 1}ω.

We recall now the definition of the arithmetical hierarchy ofω-languages which
form the effective analogue to the hierarchy of Borel sets offinite ranks.
LetX be a finite alphabet. Anω-languageL ⊆ Xω belongs to the classΣn if and
only if there exists a recursive relationRL ⊆ (N)n−1 ×X⋆ such that

L = {σ ∈ Xω | ∃a1 . . . Qnan (a1, . . . , an−1, σ[an + 1]) ∈ RL}

whereQi is one of the quantifiers∀ or ∃ (not necessarily in an alternating order).
An ω-languageL ⊆ Xω belongs to the classΠn if and only if its complement
Xω − L belongs to the classΣn. The inclusion relations that hold between the
classesΣn andΠn are the same as for the corresponding classes of the Borel
hierarchy. The classesΣn andΠn are included in the respective classesΣ

0

n
and

Σ
0

n
of the Borel hierarchy, and cardinality arguments suffice toshow that these

inclusions are strict.
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As in the case of the Borel hierarchy, projections of arithmetical sets (of the sec-
ondΠ-class) lead beyond the arithmetical hierarchy, to the analytical hierarchy
of ω-languages. The first class of this hierarchy is the (lightface) classΣ1

1 of ef-
fective analytic setswhich are obtained by projection of arithmetical sets. An
ω-languageL ⊆ Xω belongs to the classΣ1

1 if and only if there exists a recursive
relationRL ⊆ N× {0, 1}⋆ ×X⋆ such that:

L = {σ ∈ Xω | ∃τ(τ ∈ {0, 1}ω ∧ ∀n∃m((n, τ [m], σ[m]) ∈ RL))}

Then anω-languageL ⊆ Xω is in the classΣ1
1 iff it is the projection of anω-

language over the alphabetX × {0, 1} which is in the classΠ2. The (lightface)
classΠ1

1 of effective co-analytic setsis simply the class of complements of effec-
tive analytic sets. We denote as usual∆1

1 = Σ1
1 ∩ Π1

1.
Recall that anω-languageL ⊆ Xω is in the classΣ1

1 iff it is accepted by a non de-
terministic Turing machine (readingω-words) with a Büchi or Muller acceptance
condition [CG78, Sta97].

ForΓ a finite alphabet having at least two letters, the setΓω×ω of functions from
ω×ω intoΓ is usually equipped with the product topology of the discrete topology
onΓ. This topology may be defined by the following distanced. Let x andy in
Γω×ω such thatx 6= y, then

d(x, y) =
1

2n
where

n = min{p ≥ 0 | ∃(i, j) x(i, j) 6= y(i, j) andi+ j = p}.

Then the topological spaceΓω×ω is homeomorphic to the topological spaceΓω,
equipped with the Cantor topology. Borel subsets ofΓω×ω are defined from open
subsets as in the case of the topological spaceΓω. Analytic subsets ofΓω×ω are
obtained as projections onΓω×ω of Borel subsets of the product spaceΓω×ω ×Γω.
The setΣω,ω of ω-pictures overΣ, considered a topological subspace ofΣ̂ω×ω, is
easily seen to be homeomorphic to the topological spaceΣω×ω, via the mapping
ϕ : Σω,ω → Σω×ω defined byϕ(p)(i, j) = p(i + 1, j + 1) for all p ∈ Σω,ω and
i, j ∈ ω.

3.3 Some Results of Set Theory

We now recall some basic notions of set theory which will be useful in the sequel,
and which are exposed in any textbook on set theory, like [Jec02].

The usual axiomatic systemZFC is Zermelo-Fraenkel systemZF plus the axiom
of choiceAC. A model (V, ∈) of the axiomatic systemZFC is a collectionV of
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sets, equipped with the membership relation∈, where “x ∈ y” means that the set
x is an element of the sety, which satisfies the axioms ofZFC. We shall often say
“ the modelV” instead of “the model (V, ∈)”.

The axioms ofZFC express some natural facts that we consider to hold in the
universe of sets. For instance a natural fact is that two setsx andy are equal iff
they have the same elements. This is expressed by theAxiom of Extensionality.
Another natural axiom is thePairing Axiomwhich states that for all setsx andy
there exists a setz = {x, y} whose elements arex andy. Similarly thePowerset
Axiomstates the existence of the set of subsets of a setx. We refer the reader to
any textbook on set theory, like [Jec02], for an exposition of the other axioms of
ZFC.

The infinite cardinals are usually denoted byℵ0,ℵ1,ℵ2, . . . ,ℵα, . . . The cardinal
ℵα is also denoted byωα, as usual when it is considered an ordinal.

The continuum hypothesisCH says that the first uncountable cardinalℵ1 is equal
to 2ℵ0 which is the cardinal of the continuum. Gödel and Cohen proved that
the continuum hypothesisCH is independent from the axiomatic systemZFC:
providing ZFC is consistent, there exist some models ofZFC + CH and also
some models ofZFC + ¬ CH, where¬ CH denotes the negation of the continuum
hypothesis, [Jec02].

Let ON be the class of all ordinals. Recall that an ordinalα is said to be a
successor ordinal iff there exists an ordinalβ such thatα = β + 1; otherwise the
ordinalα is said to be a limit ordinal and in that caseα = sup{β ∈ ON | β < α}.

The classL of constructible setsin a modelV of ZF is defined by

L =
⋃

α∈ON

L(α)

where the setsL(α) are constructed by induction as follows:

1. L(0) = ∅

2. L(α) =
⋃

β<α L(β), for α a limit ordinal, and

3. L(α + 1) is the set of subsets ofL(α) which are definable from a finite
number of elements ofL(α) by a first-order formula relativized toL(α).

If V is a model ofZF andL is the class ofconstructible setsof V, then the class
L forms a model ofZFC + CH . Notice that the axiom (V=L ) means “every set is
constructible” and that it is consistent withZFC.

11



Consider now a modelV of the axiomatic systemZFC and the class of con-
structible setsL ⊆ V which forms another model ofZFC. It is known that the
ordinals ofL are also the ordinals ofV. But the cardinals inV may be different
from the cardinals inL .

In particular, the first uncountable cardinal inL is denotedℵL

1 . It is in fact an
ordinal of V which is denotedωL

1 . It is known that this ordinal satisfies the in-
equalityωL

1 ≤ ω1. In a modelV of the axiomatic systemZFC + V=L the equality
ωL

1 = ω1 holds. But in some other models ofZFC the inequality may be strict and
thenωL

1 < ω1. This is explained in [Jec02, page 202]: one can start from a model
V of ZFC + V=L and construct by forcing a generic extensionV[G] in which the
cardinalsω andω1 are collapsed; in this extension the inequalityωL

1 < ω1 holds.

We now recall the notion of a perfect set.

Definition 3.12 Let P ⊆ Σω, whereΣ is a finite alphabet having at least two
letters. The setP is said to be a perfect subset ofΣω if and only if :
(1) P is a non-empty closed set, and
(2) for everyx ∈ P and every open setU containingx there is an elementy ∈
P ∩ U such thatx 6= y.

So a perfect subset ofΣω is a non-empty closed set which has no isolated points.
It is well known that a perfect subset ofΣω has cardinality2ℵ0, see [Mos80, page
66].

We now recall the notion of thin subset ofΣω.

Definition 3.13 A setX ⊆ Σω is said to be thin iff it contains no perfect subset.

The following important result was proved by Kechris [Kec75] and independently
by Guaspari [Gua73] and Sacks [Sac76].

Theorem 3.14 (see [Mos80] page 247)(ZFC) LetΣ be a finite alphabet having
at least two letters. There exists a thinΠ1

1-setC1(Σω) ⊆ Σω which contains every
thin,Π1

1-subset ofΣω. It is called the largest thinΠ1
1-set inΣω.

An important fact is that the cardinality of the largest thinΠ1
1-set inΣω depends on

the model ofZFC. The following result on the cardinality ofC1(Σω), was proved
by Kechris and independently by Guaspari and Sacks, see also[Kan97, page 171].

Theorem 3.15 (ZFC) The cardinal of the largest thinΠ1
1-set inΣω is equal to the

cardinal ofωL

1 .

12



This means that in a given modelV of ZFC the cardinal of the largest thinΠ1
1-set

in Σω is equal to the cardinalin V of the ordinalωL

1 which plays the role of the
cardinalℵ1 in the inner modelL of constructible sets ofV.

We can now state the following result which will be useful in the sequel.

Corollary 3.16

(a) There is a modelV1 of ZFC in which the largest thinΠ1
1-set inΣω has

cardinalℵ1, whereℵ1 = 2ℵ0 .

(b) There is a modelV2 of ZFC in which the largest thinΠ1
1-set inΣω has

cardinalℵ0, i.e. is countably infinite.

(c) There is a modelV3 of ZFC in which the largest thinΠ1
1-set inΣω has

cardinalℵ1, whereℵ0 < ℵ1 < 2ℵ0 .

Proof. (a). In the modelL , the cardinal of the largest thinΠ1
1-set inΣω is equal to

the cardinal ofω1. Moreover the continuum hypothesis is satisfied thus2ℵ0 = ℵ1.
Thus the largest thinΠ1

1-set inΣω has the cardinality2ℵ0 = ℵ1.

(b). Let V be a model of (ZFC + ωL

1 < ω1). In this modelω1 is the first un-
countable ordinal. ThusωL

1 < ω1 implies thatωL

1 is a countable ordinal inV. Its
cardinal isℵ0 and it is also the cardinal of the largest thinΠ1

1-set inΣω.

(c). It suffices to show that there is a modelV3 of ZFC in which ωL

1 = ω1 and
ℵ1 < 2ℵ0 . Such a model can be constructed by Cohen’s forcing. We can start from
a modelV of ZFC + V=L (in whichωL

1 = ω1) and construct by forcing a generic
extensionV[G] in whichℵ2 subsets ofω are added. Notice that the cardinals are
preserved under this extension (see [Jec02, page 219]) and that the constructible
sets ofV[G] are also the constructible sets ofV. Thus in the new modelV[G] we
still haveωL

1 = ω1 but nowℵ1 < 2ℵ0. �

4 Decision Problems

We now study decision problems for recognizable languages of infinite pictures.
We gave in [Fin09b] the exact degree of several natural decision problems. We
first recall some of these results.

Castro and Cucker proved in [CC89] that the non-emptiness problem and the in-
finiteness problem forω-languages of Turing machines are bothΣ1

1-complete. We
easily inferred from this result a similar result for recognizable languages of infi-
nite pictures.
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From now on we shall denote byTz the non deterministic tiling system of indexz,
(accepting pictures overΣ = {a, b}), equipped with a Büchi acceptance condition.

Theorem 4.1 ([Fin09b]) The non-emptiness problem and the infiniteness prob-
lem for B̈uchi-recognizable languages of infinite pictures areΣ1

1-complete, i.e. :

1. {z ∈ N | LB(Tz) 6= ∅} is Σ1
1-complete.

2. {z ∈ N | LB(Tz) is infinite} isΣ1
1-complete.

In a similar way, the universality problem and the inclusionand the equivalence
problems, forω-languages of Turing machines, have been proved to beΠ1

2-complete
by Castro and Cucker in [CC89], and we used these results to prove the following
results in [Fin09b].

Theorem 4.2 ([Fin09b]) The universality problem for B̈uchi-recognizable lan-
guages of infinite pictures isΠ1

2-complete, i.e. :

{z ∈ N | LB(Tz) = Σω,ω} is Π1
2-complete.

Theorem 4.3 ([Fin09b]) The inclusion and the equivalence problems for Büchi-
recognizable languages of infinite pictures areΠ1

2-complete, i.e. :

1. {(y, z) ∈ N2 | LB(Ty) ⊆ LB(Tz)} isΠ1
2-complete.

2. {(y, z) ∈ N2 | LB(Ty) = LB(Tz)} is Π1
2-complete.

The class of Büchi-recognizable languages of infinite pictures is not closed un-
der complement [ATW03]. Thus the following question naturally arises: “can we
decide whether the complement of a Büchi-recognizable language of infinite pic-
tures is Büchi-recognizable?”. And what is the exact complexity of this decision
problem, called the complementability problem.

Another classical problem is the determinizability problem: “can we decide whether
a given recognizable language of infinite pictures is recognized by a deterministic
tiling system?”.
Recall that a tiling system is called deterministic if on anypicture it allows at most
one tile covering the origin, the state assigned to position(i+1, j+1) is uniquely
determined by the states at positions(i, j), (i + 1, j), (i, j + 1) and the states at
the border positions(0, j + 1) and(i + 1, 0) are determined by the state(0, j),
respectively(i, 0), [ATW03].
As remarked in [ATW03], the hierarchy proofs of the classical Landweber hierar-
chy defined using deterministicω-automata “carry over without essential changes
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to pictures”. In particular, a language ofω-pictures which is Büchi-recognized
by a deterministic tiling system is aΠ0

2-set and a language ofω-pictures which
is Muller-recognized by a deterministic tiling system is a boolean combination of
Π

0
2-sets, hence a∆0

3-set.

These topological properties have been used in [Fin09b], along with a dichotomy
property, to prove the following results.

Theorem 4.4 ([Fin09b]) The determinizability problem and the complementabil-
ity problem for B̈uchi-recognizable languages of infinite pictures areΠ1

2-complete,
i.e. :

1. {z ∈ N | LB(Tz) is Büchi-recognizable by a deterministic tiling system} is
Π1

2-complete.

2. {z ∈ N | LB(Tz) is Muller-recognizable by a deterministic tiling system}
is Π1

2-complete.

3. {z ∈ N | ∃y Σω,ω − LB(Tz) = LB(Ty)} isΠ1
2-complete.

We already mentioned that we used some results of Castro and Cucker in the proof
of the above results. Castro and Cucker studied degrees of decision problems
for ω-languages accepted by Turing machines and proved that manyof them are
highly undecidable, [CC89]. We are going to use again some oftheir results to
prove here new results about Büchi-recognizable languages of infinite pictures.

We firstly recall the notion of acceptance of infinite words byTuring machines
considered by Castro and Cucker in [CC89].

Definition 4.5 A non deterministic Turing machineM is a5-tupleM = (Q,Σ,Γ, δ, q0),
whereQ is a finite set of states,Σ is a finite input alphabet,Γ is a finite tape alpha-
bet satisfyingΣ ⊆ Γ, q0 is the initial state, andδ is a mapping fromQ×Γ to sub-
sets ofQ×Γ×{L,R, S}. A configuration ofM is a3-tuple(q, σ, i), whereq ∈ Q,
σ ∈ Γω and i ∈ N. An infinite sequence of configurationsr = (qi, αi, ji)i≥1 is
called a run ofM onw ∈ Σω iff:

(a) (q1, α1, j1) = (q0, w, 1), and

(b) for eachi ≥ 1, (qi, αi, ji) ⊢ (qi+1, αi+1, ji+1),

where⊢ is the transition relation ofM defined as usual. The runr is said to
be complete if the limsup of the head positions is infinity, i.e. if (∀n ≥ 1)(∃k ≥
1)(jk ≥ n). The runr is said to be oscillating if the liminf of the head positions is
bounded, i.e. if(∃k ≥ 1)(∀n ≥ 1)(∃m ≥ n)(jm = k).
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Definition 4.6 Let M = (Q,Σ,Γ, δ, q0) be a non deterministic Turing machine
andF ⊆ Q. Theω-language accepted by(M, F ) is the set ofω-wordsσ ∈ Σω

such that there exists a complete non oscillating runr = (qi, αi, ji)i≥1 ofM onσ
such that, for alli, qi ∈ F.

The above acceptance condition is denoted1′-acceptance in [CG78]. Another
usual acceptance condition is the now called Büchi acceptance condition which is
also denoted2-acceptance in [CG78]. We now recall its definition.

Definition 4.7 Let M = (Q,Σ,Γ, δ, q0) be a non deterministic Turing machine
andF ⊆ Q. Theω-language B̈uchi accepted by(M, F ) is the set ofω-words
σ ∈ Σω such that there exists a complete non oscillating runr = (qi, αi, ji)i≥1 of
M onσ and infinitely many integersi such thatqi ∈ F.

Recall that Cohen and Gold proved in [CG78, Theorem 8.6] thatone can effec-
tively construct, from a given non deterministic Turing machine, another equiva-
lent non deterministic Turing machine, equipped with the same kind of acceptance
condition, and in which every run is complete non oscillating. Cohen and Gold
proved also in [CG78, Theorem 8.2] that anω-language is accepted by a non de-
terministic Turing machine with1′-acceptance condition iff it is accepted by a non
deterministic Turing machine with Büchi acceptance condition.

From now on, we shall denoteMz the non deterministic Turing machine of index
z, (accepting words overΣ = {a, b}), equipped with a1′-acceptance condition.

An important notion in automata theory is the notion of ambiguity. It can be
defined also in the context of acceptance by tiling systems, see [AGMR06] for the
case of finite pictures.

Definition 4.8 LetA=(Q,Σ,∆) be a tiling system, andF ⊆ Q. The B̈uchi tiling
system(A, F ) is unambiguous iff everyω-picturep ∈ Σω,ω has at most an accept-
ing run by(A, F ).

Definition 4.9 A Büchi recognizable languageL ⊆ Σω,ω is unambiguous iff there
exists an unambiguous Büchi tiling system(A, F ) such thatL = L(A, F ). Oth-
erwise the languageL is said to be inherently ambiguous.

We can now prove the following result, which is very similar to a corresponding
result for recognizable tree languages proved in [FS09].

Proposition 4.10 LetL ⊆ Σω,ω be an unambiguous B̈uchi recognizable language
of infinite pictures. ThenL is a Borel subset ofΣω,ω.
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Proof. Let L ⊆ Σω,ω be a language accepted by an unambiguous Büchi tiling
system(A, F ), whereA=(Q,Σ,∆), and letR ⊆ (Σ̂×Q)ω×ω be defined by:

R = {(p, ρ) | p ∈ Σω,ω andρ ∈ is an accepting run of(A, F ) on the picturep}.

The setR is easily seen to be aΠ0
2-subset of(Σ̂×Q)ω×ω.

Consider now the projectionPROJΣ̂ω×ω : Σ̂ω×ω × Qω×ω → Σ̂ω×ω defined by
PROJΣ̂ω×ω((p, ρ)) = p for all (p, ρ) ∈ Σ̂ω×ω × Qω×ω. This projection is a con-
tinuous function and it isinjectiveon the Borel setR because the Büchi tiling
system(A, F ) is unambiguous. Hence, by a Theorem of Lusin and Souslin, see
[Kec95, Theorem 15.1 page 89], the injective image ofR by the continuous func-
tionPROJΣ̂ω×ω is Borel. Thus the languageL = PROJΣ̂ω×ω(R) is a Borel subset
of Σ̂ω×ω. But Σω,ω is a closed subset of̂Σω×ω andL ⊆ Σω,ω. ThusL is also a
Borel subset ofΣω,ω. �

Corollary 4.11 There exist some inherently ambiguous Büchi-recognizable lan-
guages of infinite pictures.

Proof. The result follows directly from the above proposition because we know
that there exist some Büchi-recognizable languages of infinite pictures which are
not Borel sets, see [Fin04, Fin09b]. �

We can now state that the unambiguity problem for recognizable language of in-
finite pictures isΠ1

2-complete.

Theorem 4.12 The unambiguity problem for recognizable languages of infinite
pictures isΠ1

2-complete, i.e. :

{z ∈ N | LB(Tz) is non ambiguous} isΠ1
2-complete.

Proof. To prove that the unambiguity problem for recognizable language of in-
finite pictures is in the classΠ1

2, we reason as in the case of the unambiguity
problem forω-languages accepted by1-counter or2-tape automata, see [Fin09c].

Notice first, as in [Fin09b], that, using a recursive bijection b : (N − {0})2 →
N−{0}, one can associate with eachω-wordσ ∈ Σω a uniqueω-picturepσ ∈ Σω,ω

which is simply defined bypσ(i, j) = σ(b(i, j)) for all integersi, j ≥ 1. And we
can identify a runρ ∈ Qω×ω with an element ofQω and finally with a coding of
this element over the alphabet{0, 1}. So the runρ can be identified with its code
ρ̄ ∈ {0, 1}ω.

If a tiling systemA=(Q,Σ,∆) is equipped with a set of accepting statesF ⊆ Q,
then forσ ∈ Σω andρ ∈ {0, 1}ω, “ρ is a Büchi accepting run of(A, F ) over the
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ω-picturepσ” can be expressed by an arithmetical formula, see [ATW03, Section
2.4] and [Fin09b].

We can now first express “Tz is non ambiguous” by :

“∀σ ∈ Σω∀ρ, ρ′ ∈ {0, 1}ω[(ρ andρ′ are accepting runs ofTz onpσ) → ρ = ρ′]”

which is aΠ1
1-formula. Then “LB(Tz) is non ambiguous” can be expressed by the

following formula: “∃y[LB(Tz) = LB(Ty) andTy is non ambiguous]”. This is a
Π1

2-formula becauseLB(Tz) = LB(Ty) can be expressed by aΠ1
2-formula, and the

quantification∃y is of type0. Thus the set{z ∈ N | LB(Tz) is non ambiguous}
is aΠ1

2-set.

To prove the completeness part of the theorem, we shall use the following di-
chotomy result proved in [Fin09b, proof of Theorem 5.11].
There exists an injective computable functionH ◦ θ from N intoN such that:
First case: If L(Mz) = Σω thenLB(TH◦θ(z)) = Σω,ω.
Second case:If L(Mz) 6= Σω thenLB(TH◦θ(z)) is not a Borel set.

In the first caseLB(TH◦θ(z)) = Σω,ω is obviously an unambiguous language. And
in the second case the languageLB(TH◦θ(z)) cannot be unambiguous because it is
not a Borel subset ofΣω,ω. Thus, using the reductionH ◦ θ, we see that :

{z ∈ N | L(Mz) = Σω} ≤1 {z ∈ N | LB(Tz) is non ambiguous}

and the result follows from theΠ1
2-completeness of the universality problem for

ω-languages of Turing machines proved by Castro and Cucker in[CC89]. �

Notice that the same dichotomy result above with the reductionH ◦ θ was used in
[Fin09b] to prove that topological properties of recognizable languages of infinite
pictures are actually highly undecidable.

Theorem 4.13 ([Fin09b]) Letα be a non-null countable ordinal. Then

1. {z ∈ N | LB(Tz) is in the Borel classΣ0
α} isΠ1

2-hard.

2. {z ∈ N | LB(Tz) is in the Borel classΠ0
α} is Π1

2-hard.

3. {z ∈ N | LB(Tz) is a Borel set} is Π1
2-hard.

A natural question is to study similar problems by replacingBorel classes by the
effective classes of the arithmetical hierarchy. This was not studied in [Fin09b],
but a similar problem was solved in [Fin09c] forω-languages accepted by1-
counter or2-tape Büchi automata. We can reason in a similar way for the case
of recognizable languages of infinite pictures, and state the following result.
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Theorem 4.14 Letn ≥ 1 be an integer. Then

1. {z ∈ N | LB(Tz) is in the arithmetical classΣn} isΠ1
2-complete.

2. {z ∈ N | LB(Tz) is in the arithmetical classΠn} isΠ1
2-complete.

3. {z ∈ N | LB(Tz) is a∆1
1-set} isΠ1

2-complete.

We do not give the complete proof here. It is actually very similar to the case
of ω-languages accepted by1-counter or2-tape Büchi automata in [Fin09c]. A
key argument, to prove that{z ∈ N | LB(Tz) is in the arithmetical classΣn} (re-
spectively,{z ∈ N | LB(Tz) is in the arithmetical classΠn}) is aΠ1

2-set, is the
existence of a universal setUΣn

⊆ N × Σω,ω (respectively,UΠn
⊆ N × Σω,ω) for

the class ofΣn-subsets ofΣω,ω, (respectively,Πn-subsets ofΣω,ω), [Mos80, p.
172]. Notice also that the completeness part follows easilyfrom the dichotomy
result obtained with the reductionH ◦ θ.

We now come to cardinality problems. We already know that it is Σ1
1-complete

to determine whether a given recognizable language of infinite pictures is empty
(respectively, infinite). Recall that every recognizable language of infinite pictures
is an analytic set. On the other hand, every analytic set is either countable or has
the cardinality2ℵ0 of the continuum. Then some questions naturally arise. What
are the complexities of the following decision problems: “Is a given recognizable
language of infinite pictures countable? Is it countably infinite? Is it uncount-
able?”. Notice that similar questions were asked by Castro and Cucker in the case
of ω-languages of Turing machines and have been solved very recently by Finkel
and Lecomte in [FL09]. We can now state the following result for recognizable
languages of infinite pictures. BelowD2(Σ

1
1) denotes the class of2-differences of

Σ1
1-sets, i.e. the class of sets which are intersections of aΣ1

1-set and of aΠ1
1-set.

Theorem 4.15

1. {z ∈ N | LB(Tz) is countable} is Π1
1-complete.

2. {z ∈ N | LB(Tz) is uncountable} isΣ1
1-complete.

3. {z ∈ N | LB(Tz) is countably infinite} isD2(Σ
1
1)-complete.

Proof. (1). We can first prove that{z ∈ N | LB(Tz) is countable} is in the class
Π1

1 in the same way as in the case ofω-languages of Turing machines in [FL09].
We know that a recognizable language of infinite picturesLB(Tz) is aΣ1

1-subset
of Σω,ω. But it is known that aΣ1

1-subsetL of Σω,ω is countable if and only
if for every x ∈ L the singleton{x} is a∆1

1-subset ofΣω,ω, see [Mos80, page
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243]. Then, using a nice coding of∆1
1-subsets ofΣω,ω given in [HKL90, Theorem

3.3.1], we can prove that{z ∈ N | LB(Tz) is countable} is in the classΠ1
1, see

[FL09] for more details.

To prove the completeness part of Item (1), we shall use the following two lemmas
proved in previous papers.

For σ ∈ Σω = {a, b}ω we denoteσa theω-picture whose first row is theω-word
σ and whose other rows are labelled with the lettera. For anω-languageL ⊆
Σω = {a, b}ω we denoteLa the language of infinite pictures{σa | σ ∈ L}.

Lemma 4.16 ([Fin04]) If L ⊆ Σω is accepted by some Turing machine (in which
every run is complete non oscillating) with a Büchi acceptance condition, thenLa

is Büchi recognizable by a finite tiling system.

Lemma 4.17 ([Fin09b]) There is an injective computable functionK fromN into
N satisfying the following property.
If Mz is the non deterministic Turing machine (equipped with a1′-acceptance
condition) of indexz, and if TK(z) is the tiling system (equipped with a Büchi
acceptance condition) of indexK(z), then

L(Mz)
a = LB(TK(z))

On the other hand, we can easily see that the cardinality of theω-languageL(Mz)
is equal to the cardinality of theω-picture languageL(Mz)

a. Thus using the
reductionK given in the above lemma we see that:

{z ∈ N | L(Mz) is countable} ≤1 {z ∈ N | LB(Tz) is countable}

Then the completeness part follows from the fact that{z ∈ N | L(Mz) is countable}
is Π1

1-complete, proved in [FL09].

(2). The proof of Item (2) follows directly from Item (1).

(3). We already know that the set{z ∈ N | LB(Tz) is infinite} is in the classΣ1
1.

Thus the set{z ∈ N | LB(Tz) is countably infinite} is the intersection of aΣ1
1-set

and of aΠ1
1-set, i.e. it is in the classD2(Σ

1
1). Using again the reductionK we see

that:

{z ∈ N | L(Mz) is countably infinite} ≤1 {z ∈ N | LB(Tz) is countably infinite}

It was proved in [FL09] that{z ∈ N | L(Mz) is countably infinite} is D2(Σ
1
1)-

complete. Thus the set{z ∈ N | LB(Tz) is countably infinite} is alsoD2(Σ
1
1)-

complete. �
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We are now looking at complements of recognizable languagesof infinite pictures.
We first state the following result which shows that actuallythe cardinality of the
complement of a recognizable language of infinite pictures may depend on the
models of set theory. We denoteLB(T )− the complementΣω,ω − LB(T ) of a
Büchi-recognizable languageLB(T ) ⊆ Σω,ω.

Theorem 4.18 The cardinality of the complement of a Büchi-recognizable lan-
guage of infinite pictures is not determined by the axiomaticsystemZFC. Indeed
there is a B̈uchi tiling systemT such that:

1. There is a modelV1 of ZFC in whichLB(T )− is countable.

2. There is a modelV2 of ZFC in whichLB(T )− has cardinal2ℵ0.

3. There is a modelV3 of ZFC in whichLB(T )− has cardinalℵ1 with ℵ0 <

ℵ1 < 2ℵ0.

Proof. Moschovakis gave in [Mos80, page 248] aΠ1
1-formulaφ defining the set

C1(Σ
ω). Thus its complementC1(Σω)− = {a, b}ω −C1(Σ

ω) is aΣ1
1-set defined by

theΣ1
1-formulaψ = ¬φ.

Recall that one can construct, from theΣ1
1-formulaψ definingC1(Σω)−, a Büchi

Turing machineM accepting theω-languageC1(Σω)−.

On the other hand it is easy to see that the languageΣω,ω − (Σω)a of ω-pictures
is Büchi recognizable. But the classTS(Σω,ω) is closed under finite union, so we
get the following result.

Lemma 4.19 ([Fin09b]) If L ⊆ Σω is accepted by some Turing machine with a
Büchi acceptance condition, thenLa ∪ [Σω,ω − (Σω)a] is Büchi recognizable by a
finite tiling system.

Notice that the constructions are effective and that they can be achieved in an in-
jective way. Thus we can construct, from the Büchi Turing machineM accepting
theω-languageC1(Σω)−, a Büchi tiling systemT such that

LB(T ) = L(M)a ∪ [Σω,ω − (Σω)a].

It is then easy to see that:

LB(T )− = (Σω − L(M))a = (C1(Σ
ω))a.

Thus the cardinality ofLB(T )− is equal to the cardinality of theω-language
C1(Σ

ω), and then we can infer the results of the theorem from previous Corol-
lary 3.16. �

21



We can now use the proof of the above result to prove the following result which
shows that natural cardinality problems are actually located at the third level of
the analytical hierarchy.

Theorem 4.20

1. {z ∈ N | LB(Tz)
− is finite} isΠ1

2-complete.

2. {z ∈ N | LB(Tz)
− is countable} is inΣ1

3 \ (Π
1
2 ∪ Σ1

2).

3. {z ∈ N | LB(Tz)
− is uncountable} is in Π1

3 \ (Π
1
2 ∪ Σ1

2).

Proof. Item (1) was proved in [Fin09b].

To prove Item (2), we first show that{z ∈ N | LB(Tz)
− is countable} is in the

classΣ1
3.

As in [Fin09b], using a recursive bijectionb : (N − {0})2 → N − {0}, we can
consider an infinite wordσ ∈ Σω as a countably infinite family of infinite words
overΣ : the family ofω-words(σi) such that for eachi ≥ 1, σi is defined by
σi(j) = σ(b(i, j)) for eachj ≥ 1. And one can associate with eachω-wordσ ∈
Σω a uniqueω-picturepσ ∈ Σω,ω which is simply defined bypσ(i, j) = σ(b(i, j))
for all integersi, j ≥ 1.

We can now express “LB(Tz)
− is countable ” by the formula:

∃σ ∈ Σω ∀p ∈ Σω,ω [(p ∈ LB(Tz)) or (∃i ∈ N p = pσi)]

This is aΣ1
3-formula because “p ∈ LB(Tz)”, and hence also “[(p ∈ LB(Tz)) or (∃i ∈

N p = pσi)]”, is expressed by aΣ1
1-formula.

We can now prove that{z ∈ N | LB(Tz)
− is countable} is neither in the classΣ1

2

nor in the classΠ1
2, by using Shoenfield’s Absoluteness Theorem from Set Theory.

Let T be the Büchi tiling system obtained in Theorem 4.18 and letz0 be its index
so thatT = Tz0 .

Assume now thatV is a model of (ZFC + ωL

1 < ω1). In the modelV, by the
proofs of Theorem 4.18 and of Corollary 3.16, the integerz0 belongs to the set
{z ∈ N | LB(Tz)

− is countable}.

But, by the proofs of Theorem 4.18 and of Corollary 3.16, in the inner model
L ⊆ V, the languageLB(Tz0)

− has cardinality2ℵ0 . Thus the integerz0 does not
belong to the set{z ∈ N | LB(Tz)

− is countable}.
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On the other hand, Schoenfield’s Absoluteness Theorem implies that everyΣ1
2-set

(respectively,Π1
2-set) is absolute for all inner models of (ZFC), see [Jec02, page

490].
In particular, if the set{z ∈ N | LB(Tz)

− is countable} was aΣ1
2-set or aΠ1

2-set
then it could not be a different subset ofN in the modelsV andL considered
above. Therefore, the set{z ∈ N | LB(Tz)

− is countable} is neither aΣ1
2-set nor

aΠ1
2-set.

Item (3) follows directly from Item (2). �

5 Concluding Remarks

Using the notion of largest effective coanalytic set, we have proved in another pa-
per that the topological complexity of a recognizable language of infinite pictures
is not determined by the axiomatic systemZFC. In particular, there is a Büchi
tiling systemS and modelsV1 andV2 of ZFC such that: theω-picture language
L(S) id Borel inV1 but not inV2, [Fin09a].

We have proved in this paper that{z ∈ N | LB(Tz)
− is countable} is in Σ1

3 \
(Π1

2 ∪ Σ1
2). It remains open whether this set is actuallyΣ1

3-complete.
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