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Abstract:

A non-standard wave equation, established by Galbrun in 1931, is used to study sound

propagation in non-uniform flows. Galbrun’s equation describes exactly the same

physical phenomenon that the linearized Euler’s equations (LEE) but is derived from an

Eulerian-Lagrangian description and written only in term of the Lagrangian perturbation

of the displacement. This equation has interesting properties and may be a good

alternative to the LEE: only acoustic displacement is involved (even in non-homentropic

cases), it provides exact expressions of acoustic intensity and energy, and boundary

conditions are easily expressed because acoustic displacement whose normal component

is continuous appears explicitly . In this paper, Galbrun’s equation is solved using a finite

element method (FEM) in the axisymmetric case. With standard finite elements, the

direct displacement-based variational formulation gives some corrupted results. Instead,

a mixed finite element satisfying the inf-sup condition is proposed to avoid this problem.

A first set of  results is compared with semi-analytical solutions for a straight duct

containing a sheared flow (obtained from Pridmore-Brown’s equation). A second set of

results concerns a more complex duct geometry with a potential flow and is compared to

results obtained from a multiple-scale method (which is an adaptation for the

incompressible case of a Rienstra’s recent work).

PACS numbers: 43.20.Bi, 43.28.Py, 43.20.Mv
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I.  INTRO DUCTION

Propagation of acoustic disturbances in non-uniform flows is a subject of great

interest in many practical problems, particularly in transport engineering with

automotive exhaust systems, aeronautical turbofan engine inlet ducts, etc. The

understanding of this phenomenon is a central feature for the prediction of noise and for

designing components that efficiently attenuate sound. In practice, the shape of these

components is often complex and flows are not uniform. Thus, the basic equations that

describe such a problem must be able to cope with those complexities. Two kinds of

formulations are mainly used: the linearized Euler’s equations (LEE) and the full-

potential formulation. However as discussed further below, there exists another wave

equation, which is a reformulation of the LEE.

The full-potential formulation is obtained from the LEE by assuming both flow and

disturbances irrotationality. Thus, it constitutes a specific case of the general LEE. The

corresponding propagation equation is scalar and written only in term of the acoustic

velocity potential. This makes its resolution far easier and explains why it is much more

widespread in the litterature. On the basis of the full-potential equation, some authors

studied the effect of flow variation and multidirectionality upon sound propagation in

ducts with variable cross-sections, using a finite element method (FEM)1,2,3 or a

boundary element method4. Besides, the analysis of pure propagation phenomena has
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naturally been extended to radiation by many authors by the use of various techniques

(FEM combined with a boundary element method5,6,7,8,9 or a wave-envelope element

technique10,11,12,13, dual reciprocity boundary element method14, etc.).

Recently, Rienstra15 developed an analytical model based on a multiple-scales

method to study pure propagation in slowly varying cross-section ducts. Rienstra and

Eversman16 made comparisons between the multiple-scales and FEM solutions that

validates both models (though it highlights the limit s of a multiple-scales method when

reflections or conversions into other modes occur). In this paper, Rienstra’s analytical

model is used to give a reference solution that validates the FEM implementation of

Galbrun’s equation.

Because of its relative simplicity, the full-potential equation is a powerful

formulation and may be sufficient to study sound propagation in flows. However, its

main drawback is that it cannot take into account rotational mean flows. For instance,

flow rotationality cannot be neglected when the effect of boundary layer refraction is

important (see, for instance, Ref. 17,18,19) or when a mean flow swirl is present (this

typically happens behind a rotor stage – see Ref. 20).

Actually, if the mean flow is rotational, the decomposition of the perturbations in

terms of independent acoustic and rotational modes is no longer valid. The LEE must be

directly solved. These equations represent a system of five equations and five unknowns,
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which can be reduced to four if the flow is supposed to be homentropic (pressure and

density are then directly related). Given the complexity of the system, some attempts

were made to simplify its solution. For instance, Nayfeh et al.21, Uenishi and Myers22

developed a numerical method for solving acoustic propagation in ducts with variable

cross-sections and mean sheared flow.

In the late 1970s, Abrahamson23, Astley and Eversman24,25 implemented the direct

LEE respectively for axisymmetric and 2D geometries, using a FEM. Good results were

presented for simple cases but unfortunately, their work has not been continued. Astley

and Eversman26 also outlined the existence of spurious modes when using a FEM to

formulate the eigenvalue problem for a straight lined duct with shear flow.

More recently, Golubev and Atassi27 studied a straight duct containing a mean flow

with swirl and showed the coupling that occurs between acoustic and rotational modes.

Cooper and Peake20 extended Golubev’s study to slowly varying lined ducts by applying

a multiple-scales method. Results showed the influence of the mean flow swirl, i.e. co-

rotating modes are always much more damped than those in a non-swirling flow and

counter-rotating modes may be amplified.

Furthermore, it must be noticed that the LEE have recently been implemented by

several authors (see, for instance, Ref. 28,29,30) using numerical methods based on

finit e difference schemes. These references proved the operator ability to adequately
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propagate sound wave but, so far, numerical applications are still limited to simple

geometries because of numerical difficulties and high computer resources requirement.

Through what is cited above, it can be seen that the use of the LEE may be essential

and inescapable in several practical cases. However, this system is far more complex

than the scalar full-potential equation, and it is thus rarely solved for general cases. In

this paper, it is attempted to develop a general method based on a FEM to solve sound

propagation problems with rotational mean flows. Instead of choosing the LEE, a non-

standard wave equation originally established by Galbrun31 in the early 1930s is

considered. As explained in the following section, this equation is derived from an

Eulerian-Lagrangian description and is an exact reformulation of the LEE. Thus,

Galbrun’s equation a priori describes exactly the same physical phenomenon. Its main

feature is that it constitutes a second-order linear partial differential equation written

only in terms of the displacement perturbation.

Although only few works deal with this equation, it may be an interesting

alternative to the LEE. Only acoustic displacement is involved (even in non-homentropic

cases), which yields a gain of one to two unknowns compared to the LEE ; it also

provides exact expressions of acoustic intensity and energy ; besides, boundary

conditions are easily expressed because acoustic displacement (whose normal

component is generally continuous at any interface between two media) appears

explicitly, which avoid the somewhat difficult use of Myers’ condition32.
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In 1985, Poirée33 detailed the Eulerian-Lagrangian description in order to derive

Galbrun’s equation and its extension to nonlinear problems. He also derived some

general continuity conditions valid at any straight interface. Godin34 independently

obtained Galbrun’s equation in a quite different way. In particular, he derived exact

expressions of acoustic energy and intensity, and boundary conditions for free, rigid, and

absorbing surfaces in terms of the displacement. Ben Tahar and Goy35 developed a

variational formulation to study vibroacoustic problems with mean flow.

Recently, Peyret and Elias36 proposed a direct displacement-based formulation of

Galbrun’s equation solved using a FEM. They also derived the same energy

conservation law as Godin but with a different approach. Bonnet et al.37 pointed out the

fact that the direct displacement-based formulation associated with Galbrun’s equations

does not necessarily converge with standard finite elements and proposed a method to

regularize the variational formulation in the case of a uniform flow. These two last

references are discussed in detail later (see Sec. III).

In this paper, a mixed variational formulation based on the pressure-displacement

variables is presented in order to avoid some spurious solutions. Though the overall

method is quite general, finite element discretization and numerical results are presented

for the axisymmetric case. A first set of  results consists in comparing FEM with semi-

analytical solutions for a straight duct containing a sheared flow (obtained from
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Pridmore-Brown equation). A second set of results concerns a more complex duct

geometry with a potential flow and is compared to results obtained from a multiple-scale

method (which is an adaptation of Rienstra’s work for the incompressible case - see Ref.

15).

II.  THEORY

Compared to the classical Eulerian description, the Eulerian-Lagrangian description

is not usual. This section briefly recalls the latter before giving Galbrun’s equation and

the associated expression of acoustic intensity. This section does not give details about

calculations but reviews can be found in Ref. 31,33,34.

A. The Eulerian-Lagrangian description

In the Eulerian description, perturbations are Eulerian and expressed with Eulerian

variables. This description is implicitl y used when Euler’s equations are directly

linearized. The Eulerian-Lagrangian description consists in considering Lagrangian

perturbations of quantities expressed in terms of Eulerian variables. In order to give a

physical comprehension of what Lagrangian and Eulerian perturbations mean, the

perturbed (or total) and non-perturbed (or mean flow) states have to be described first.
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Define the geometrical position x of a given particle in the mean flow configuration

and its position y in the perturbed configuration. Then, if wL denotes the displacement

perturbation of this particle, x and y are related by:

ε= + Ly x w (2.1)

In the remainder of this paper, Ψ represents any physical quantity (tensor of

arbitrary order) and the subscript 0 is used to distinguish mean flow quantities from their

total (or perturbed) counterpart. Then, two kinds of perturbations can be defined:

( ) ( )
( ) ( )

0

0

, ,

, ,

E

L

t t

t t

ε

ε

Ψ = Ψ − Ψ

Ψ = Ψ − Ψ

y y

y x
(2.2)

Superscripts E and L denote respectively Eulerian and Lagrangian perturbations.

From these definitions, it can be seen that Eulerian perturbations are associated with the

same geometrical point but not the same particle, whereas Lagrangian perturbations are

associated with the same particle. Using Eq. (2.1) into Eq. (2.2), a Taylor expansion up

to the first order gives the fundamental relationship between Eulerian and Lagrangian

perturbations:

0.L EΨ = Ψ + ∇ΨLw (2.3)

As stated earlier, Ψ represents any physical quantity and the above equation holds

for pressure fluctuations, density, velocity, etc.
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B. Galbrun’s equation

Equation (2.3) is now applied to pressure, density and velocity perturbations. This

yields:

0 0. , . ,

.

L E L Ep p p

d

dt

ρ ρ ρ= + ∇ = + ∇

= + ∇

L L

L
E L

0

w w

w
v w v

(2.4)

where d/dt=∂/∂ t+vo .∇  is the material derivative. Equations (2.4) allow to express every

Eulerian perturbations in terms of Lagrangian perturbations. Replacing every fluctuation

by its Lagrangian counterpart into the LEE leads (after tedious calculations) to Galbrun’s

equation:

( ) ( )
2

2 T
0 0 0 0 02 0
d

c p p
dt

ρ ρ−∇ ∇⋅ + ∇⋅ ∇ − ∇ ⋅∇ =
L

L L Lw
w w w (2.5)

and the Lagrangian density perturbation is explicitly given by:

0
Lρ ρ= − ∇ ⋅ Lw (2.6)

Eq. (2.6) constitutes the mass continuity equation obtained from a Lagrangian-Eulerian

description. It simply states that density fluctuations are balanced by dilatation

fluctuations.

In order to derive Galbrun’s equation, perfect fluid and isentropic assumptions have

implicitly been made by starting from the LEE. For Lagrangian perturbations, the

isentropic assumption leads to the well-known pressure-density relationship:

2
0

L Lp cρ= (2.7)
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which yields the following explicit equation for the Lagrangian pressure:

2
0 0

Lp cρ= − ∇ ⋅ Lw (2.8)

Some important remarks should now be adressed. Unlike Eulerian perturbations, Eq.

(2.7) remains valid even for inhomogeneous media and/or for non-homentropic flows. In

these situations, solving the LEE would require an additional equation, that is the

linearized energy equation (see, for instance, Ref. 38). In fact, for Lagrangian

perturbations, Eq. (2.7) still holds because the equation of state applies for a given

particle so that the thermodynamical system is closed.

Thus, Galbrun’s equation obviously provides a first advantage (compared to the

LEE) because this equation is expressed with the Lagrangian displacement as a unique

unknown, which yields a gain of one to two variables.

Another asset is the existence (but not uniqueness) of a Lagrangian density

associated with Galbrun’s equation (see Ref. 36). This yields an exact energy

conservation law and exact expressions for the acoustic energy and intensity. These

expressions can be found in Ref. 34 and 36. In particular, the acoustic intensity is given

by:

( )0 0
Ld

p p
t dt t

ρ  ∂ ∂= ⋅ + − ⋅∇ ∂ ∂ 

L L L
L

0

w w w
i v w (2.9)
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It can be noticed that the Lagrangian displacement inevitably appears in this

expression, which likely explains why no exact formulation for the intensity has been

found based on a pure Eulerian description.

III.  NUMERICA L MET HOD

In this section, Galbrun’s equation is solved using a FEM. From now on,

fluctuations are assumed to have an e-iωt time dependence. Besides, the mean flow is

steady and the mean pressure is supposed to be constant for simplicity (dropping the last

two terms of Eq. (2.5)). This assumption is not valid for aeroacoustic problems but our

purpose is to solve Galbrun’s equation with a FEM (as outlined by Peyret and Elias36,

terms with po do not present a major interest from a numerical point of view). Under

these assumptions, Eq. (2.5) becomes:

( ) ( )2 2
0 0 0 0 02 0 i cρω ωρ ρ ρ− − ⋅∇ + ⋅∇ ⋅∇ − ∇ ∇⋅ =L L L L

0 0 0w v w v v w w (3.1)

The first subheading of this section gives a brief review about the numerical

difficulties of the direct displacement based formulation associated to (3.1). In the

second subheading, a displacement-pressure based mixed formulation is proposed to

overcome these difficulties. A third one deals with boundary conditions and the last

subheading gives some important details about the finite element discretization of the

mixed formulation.
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A. Displacement based formulation

Equation (3.1) is multiplied by a trial field w* and integrated over the domain Ω.

Then, integrating by part the last two terms (which imply second order derivatives) and

half the second term yields the following direct displacement based variational

formulation:

( )( )

( ) ( )

( ) ( )

( )

2 * 2 *
0 0 0

* *
0 0

*
0

* *
0

      

      

      0        L

S

c d d

i d i d

d

d
p dS

dt

ρ ω ρ

ω ρ ω ρ

ρ

ρ

Ω Ω

Ω Ω

Ω

∇⋅ ∇⋅ Ω− ⋅ Ω

− ⋅ ⋅∇ Ω+ ⋅∇ ⋅ Ω

− ⋅∇ ⋅ ⋅∇ Ω

 
+ ⋅ ⋅ + ⋅ = ∀ 

 

∫ ∫

∫ ∫

∫

∫

L L

L L
0 0

L
0 0

L

0

w w w w

w v w v w w

v w v w

w
w v n n w

(3.2)

It can be noticed that the above formulation is presented in such a way that the first

line corresponds to the no-flow case and the second and third one to the presence of

mean flow (the last line is a boundary integral).

This formulation is used in Ref. 36. However, when standard finite elements are

implemented to discretize the formulation, solutions are generally corrupted, even in the

no-flow case. This phenomenon is purely numerical. An example of spurious solution is

given in Sec. IVA.



F. Treyssède, JASA

14

Bonnet & al.37 have recently proposed a regularized formulation of Galbrun’s

equation in the uniform flow case (with this method, some specific terms are added in

the formulation (3.2)). A good convergence is obtained but limitations of the method

arise for the generalization to arbitrary mean flows.

The no-flow case was first studied in the 1970s when considering vibrations of

coupled fluid-structure systems (see, for instance, Ref. 39) and was proved to exhibit

spurious circulation modes with non-zero frequencies. Basically, this phenomenon is due

to a bad accuracy of the divergence and curl (calculated from derivatives of

displacements), which in turn affects the displacement prediction itself. In order to cope

with this numerical phenomenon, several methods have been proposed, such as the

penalty method39, edge finite element40, and mixed finite element method41, 42.

In the presence of mean flow, the penalty method and edge finite element method

cannot be directly applied because the displacement field is generally no more

irrotational. Thus, the method chosen in this paper is naturally based on a mixed finite

element formulation. To conclude this subheading, one emphasizes that the overall

problem in the now-flow case is typically analogous to incompressible elasticity or

fluid43 and electromagnetics44, and is often referred to as “locking” in the litterature.
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B. Mixed formulation

A mixed variational formulation based on pressure-displacement variables is now

derived. Although pressure is now an explicit unknown of Galbrun’s equation (as in the

LEE), the efficiency of such a formulation to prevent corruption by spurious solutions

has already been demonstrated by Wang and Bathe42 in the no-flow case when

considering fluid-structure interactions. It was also extensively and rigorously analyzed

by Brezzi and Fortin45 in a general way (see also Bathe43 for a more engineering-oriented

approach applied to incompressible elasticity).

In the presence of arbitrary mean flow, an analogous mixed formulation of Ref. 42

can be obtained by replacing the last term of Eq. (3.1) with the pressure gradient (use of

Eq. (2.8) is made). It yields the following system:

( )2
0 0 0

2
0 0

2 0

0

L

L

i p

p c

ρ ω ωρ ρ

ρ

 − − ⋅∇ + ⋅∇ ⋅∇ +∇ =


+ ∇⋅ =

L L L
0 0 0

L

w v w v v w

w
(3.3)

Multiplyi ng both equations by trial fields w* and p* respectively, integrating over

the domain Ω and then by parts gives the following mixed variational formulation:
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( ) ( )

( ) ( )

( ) ( ) { }

* * * 2 *
02

0 0

* *
0 0

*
0

* * * *
0
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 0     ,

L L

S S

p p d p d p d d
c

i d i d

d

d
dS p dS p

dt

ω ρ
ρ

ω ρ ω ρ

ρ

ρ

Ω Ω Ω Ω

Ω Ω

Ω

− Ω+ ∇ ⋅ Ω+ ⋅∇ Ω− ⋅ Ω

− ⋅ ⋅∇ Ω+ ⋅∇ ⋅ Ω

− ⋅∇ ⋅ ⋅∇ Ω
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+ ⋅ ⋅ − ⋅ = ∀ 

 

∫ ∫ ∫ ∫

∫ ∫

∫

∫ ∫

L L

L L
0 0

L
0 0

L
L

0

w w w w

w v w v w w

v w v w

w
w v n w n w

(3.4)

where S is the surface enclosing the acoustic domain Ω and n is the outward normal.

As in Eq. (3.2), the first line of the mixed formulation (3.4) represents the no-flow

operators. These operators are almost identical to those used by Wang and Bathe42 in

their mixed formulation. The only slight difference is that one has chosen to integrate by

parts the second term of the second equation of system (3.3) (instead of the last term of

the first equation) in order to let the normal displacement appear explicitly at the

boundary.

Normal displacement at walls can thus be easily imposed (the second surface

integral of Eq. (3.4) simply disappear for perfectly rigid walls). Besides, for fluid-

structure interactions (not considered in this paper), normal displacement continuity

could also be easily imposed by replacing the fluid normal displacement with the

structure normal displacement.

In order to show the efficiency of a mixed formulation, a comparison with the

displacement based formulation is given in Sec. IVA.
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C. Boundary conditions

Boundary conditions associated with Galbrun’s equation must be carefully applied.

Figure 1 represents a typical problem of propagation inside a duct carrying flow. Two

types of boundary conditions must be distinguished: those imposed at walls (boundary

S1) and those imposed inside the fluid (boundary S2).

At walls, the first surface integral of (3.4) always vanishes because the mean flow

normal velocity is zero. For rigid walls, normal displacement also equals zero and the

second integral also vanishes. For an absorbing wall, the adequate boundary condition is

obtained from the normal displacement fluid-wall continuity. Given the wall impedance

Z, this condition is simply given by the following relationship:

1

L

S
p i Zω= − ⋅Lw n (3.5)

which is simply applied by replacing the normal displacement in the second boundary

integral. The fact that displacement is an explicit variable in the proposed formulation

makes the impedance condition (3.5) simpler to implement than in the LEE case, that

would have required the use of Myer’s condition32.

When an arbitrary mean flow is present, the displacement field may not be

irrotational. Thus, it is obvious that a fixed pressure inside the fluid (on S2) is not
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sufficient to determine a unique solution. For instance, applying pressure (which

represents the displacement divergence from Eq. (2.8)) at the duct inlet and outlet means

that the rotational part of the displacement is left free. Consequently, one must impose

the total displacement field everywhere a boundary condition is required inside the fluid

(typically at the duct inlet-outlet). This condition is explicitl y given by:

2S
=Lw w (3.6)

and is directly enforced at nodes as a constraint in the FEM model. This makes the first

surface integrals in (3.4) vanish because w*≡δw=0 on S2 (i.e. forced boundary

condition). Note that in many instances, it is difficult to specify the particle displacement

on both surfaces labeled S2 because only the incident component is known. A boundary

condition based on a multi-modal decomposition technique overcomes this difficulty.

As a side remark, in the no-flow case, a surface with fixed pressure inside the fluid

is sufficient to uniquely determine the solution because displacement is implicitly

irrotational.

D. Finit e element discretization

It has been proven that interpolations for displacement and pressure must be

adequately chosen. The choice of a mixed formulation is not sufficient to avoid locking,
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and one also has to choose appropriate interpolation functions. Based on Ref. 43 and 45,

this subheading gives some details about what kind of finit e elements has to be used.

If a bad choice of interpolating functions is made, the element may lock and/or give

some spurious pressure modes. A criterion that ensures convergence and stabilit y of the

finit e element is given by the so-called inf-sup condition. Though not necessary, this

condition is a strong guaranty of reliability. Details about the inf-sup condition are not

given in this paper but can be found in Ref. 43 and 45. For a more practical use, a

numerical test of this condition has also been developed by Chapelle and Bathe46. One

example of triangular 2D-element satisfying the inf-sup condition is given on Fig. 2.

This element may be referred to as the “P1
+- P1” , “4-3c” or “MINI ” element43,45 and is

the one used in this paper. An example of higher order element is also given on the same

figure (element “9-4c”). Note that some other 2D (or 3D) elements can be found in Ref.

43, 46.

In the no-flow case, elements that satisfy the inf-sup condition have successfully

been implemented by Wang and Bathe42. The originality of Galbrun’s equation is that

the pressure-displacement relationship given by (2.8) is not altered by the presence of

flow and is strictly identical to the no-flow case. This enables to directly apply the inf-

sup condition to a Galbrun-based formulation. Thus, under the assumption that the

additional operators introduced by the presence of flow (terms in vo .∇ ) does not alter
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convergence properties of elements satisfying the inf-sup condition, it is expected that

the proposed mixed FEM for solving Galbrun’s equation is robust.

When flow is present, it should be noticed that the mass continuity equation

obtained from the LEE implies material derivatives and no equation similar to Eq. (2.8)

can be obtained. The inf-sup condition cannot then be directly applied when the LEE are

considered. Thus, given the current knowledge about mixed formulations, Galbrun’s

equation seems to be more interesting from a numerical point of view.

The general variational formulation (3.4) is now restricted to axisymmetric

geometries. Introducing the cylindrical coordinates, the following θ-dependence is set:

( ) ( )
( ) ( )

, , ,

, , ,

im

L L im

r z r z e

p r z p r z e

θ

θ

θ

θ

−

−

 =


=

L Lw w
(3.7)

where the angular mode number m is a parameter of the solution. The weighting

functions are taken as:

( ) ( )
( ) ( )

* *

* *

, , ,

, , ,

im

im

r z r z e

p r z p r z e

θ

θ

θ

θ

+

+

 =


=

w w
(3.8)

The (2D) acoustic domain Ω is chosen to be meshed with 4-3c elements. On the

reference element, displacement and pressure variables are thus interpolated as follows:

( ) ( ) ( )
( ) ( )

2 3

1 2 3

, 1 1

, 1L

u v u v u v u v uv

p u v u v p up vp

 = − − + + + − −


= − − + +

L
1w w w w a

(3.9)
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where the subscripts i (i=1,2,3) denotes the node number. It can be seen for the

displacement, that the standard linear interpolation is enriched by introducing a

generalized variable a. The term (1-u-v)uv represents a bubble function: this polynomial

is null on the three side of the triangle and thus maintains the compatibility (C0

continuity).

Then, elements have four degrees of freedom per node, plus three internal (three for

each component of wL). However, these internal degrees of freedom can be condensed

out before the element are assembled, which is attractive from a computational point of

view.

After assembling and applying boundary conditions, the global discretized

variational formulation yields the following algebraic system:

=r r rK w f (3.10)

K r is a ω -dependent complex band matrix, unsymmetrical when flow is present. A

sparse storage is chosen. For a fixed ω, the unknown nodal displacement vector wr is

finally obtained by using a LU decomposition.

IV.  RESULTS
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In this section, the FEM numerical method is validated with two semi-analytical

models. The first model corresponds to the well-known Pridmore-Brown equation, the

second to Rienstra’s multiple scale approximation (in the incompressible mean flow case

in order to fit with the assumption of the FEM model - see Sec. III ). Both models

represents the propagation of a given (m,n) mode in an infinite duct (m and n denote

respectively the angular and radial mode number).

They may be considered as complementary. Pridmore-Brown equation deals with a

simple straight duct but a possibly sheared mean flow. Boundary layer effects upon

propagation can thus be considered. In Rienstra’s multiple-scales method, the mean flow

must be potential but the duct is slowly varying, which permits to study more complex

geometries.

Unlike Pridmore-Brown equation, Rienstra’s model constitutes an approximation. It

cannot be exact because of modal reflection and scattering that may occur in a varying

duct. These limitations of a multiple-scales method have been highlighted by Rienstra

and Eversman16 and are also demonstrated in this paper.

In the following, iso-pressure contours are given in modulus for all plots. Units are

chosen to be in Pa in order not to minimize errors. The averaged intensity vector may

also be given on the θ=0° plane. Mean flow velocities are defined in Mach number (M).

Propagation and flow directions are also sketched in order to explicitl y show if wave
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propagation is upstream or downstream. Besides, typical values of ρ0=1.2kg.m-3 and

c0=340m.s-1 are used.

Test cases sweep a non-dimensional frequency range up to about kR=20 and the

duct geometry is always meshed with a λ/10 finite element length. This is the estimated

criterion for a satisfactory convergence but a λ/8 criterion may be sufficient to give good

results. These criteria are yet modulated by a 21 M−  factor due to the Doppler effect

when flow is present.

A. Validation for straight ducts (Pridmore-Brown equation)

For FEM computations of this subheading, the methodology is as follows. The

Lagrangian displacement is calculated from the Pridmore-Brown model and is then

imposed at the duct inlet of the FEM model (in the remaining, the terms “inlet” and

“outlet” are used from an acoustical point of view – see the direction of propagation

upon each figure – and not from a mean flow point of view). A modal non-reflective

boundary condition is preferred at the outlet, which is less constraining (in particular, the

phase and amplitude are left free). Hence, the mode being enforced at the inlet/outlet

boundaries, the FEM solution inside the duct is computed and compared to the semi-

analytical one.
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The non-reflective boundary condition is inspired from Peyret and Elias36. It

simulates the one-way propagation and applies only for a given (m,n) mode. In classical

acoustics (no-flow case), one usually imposes on the cross-section an anechoic

termination based on the wave impedance (i.e. the ratio of the pressure and the normal

acoustic velocity). Here, an additional condition is required with the displacement

variable in order to determine a unique solution. The velocity and the normal

displacement which appear in the boundary integral of Eq. (3.4) are thus replaced with

the following expressions:

( )0

1
  ;  L

nr

d
p

dt i Z
ρ

ω
⋅ = ⋅ = −

L
L L

0 nr

w
v n Z w w n (4.1)

Znr is the standard modal non-reflecting impedance and Znr can be viewed as a modal

non-reflective matrix impedance. In the Pridmore-Brown model, material derivatives are

simply given by d/dt=-i(ω-v0kz) because an ( )zi k z m te θ ω− −  dependence is chosen for the modal

acoustic variables. This yields the following explicit expressions for the modal

impedances defined by (4.1):
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ω
ρ ω ρ

ω
−

= − − =nrZ I (4.2)

where v0 is the axial mean flow velocity and kz is the outlet modal axial wave-number,

which is part of the semi-analytical solution. I  denotes the identity matrix.

In this subheading, an annular straight duct is considered. The inner and outer radius

are respectively 0.2 and 1m. Geometry with a typical mesh is shown by Fig. 3.
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The first test case, given in Fig. 3, shows the efficiency of a mixed FEM compared

to a displacement based one. A comparison between the semi-analytical, displacement

based FEM and mixed FEM solutions is given for the pressure modulus. The example

concerns a (0,1) mode at f=250Hz propagating in a hard wall duct without flow. Solution

obtained with a displacement based formulation is totally corrupted by rotational fields.

These spurious solutions are small-scale artifact which are trapped within the model

grid. Unfortunately, this numerical problem does not disappear at all when the mesh is

refined. For a mixed FEM, results are clearly in good agreement with the semi-analytical

solution.

The second test case (Fig. 4) concerns a (8,0) mode propagating at f=500Hz in a

perfectly rigid wall duct. This mode is calculated for M=0 and M=-0.4 (upstream

propagation). Agreement between Pridmore-Brown and FEM solutions is perfect for

both Mach number. This test case aims at pointing out one of the effect of convection

upon cut-off frequencies, say a decrease by a 21 M−  factor. Figure 4 clearly shows that

without flow, the (8,0) mode is cut-off whereas for M=-0.4, it becomes cut-on. In fact,

for the duct dimensions, the (8,0) mode has an exact cut-off frequency of 522.0Hz

without flow, decreased to 478.5Hz at M=-0.4. This frequency is lower than 500Hz,

which explains why the mode fully propagates along the duct. Examining the intensity

plot for both Mach number gives directly the nature of modes: unlike at M=-0.4, the

acoustic intensity vector is null at M=0.0 which proves that the mode is cut-off (energy
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does not propagate). For the M=-0.4 case, a comparison in terms of the pressure phase is

also given by Figure 5, where a good agreement between solutions can be observed.

The third test case (Fig. 6) exhibits a (10,1) mode at f=1000Hz. Walls are lined and

the impedance value is Z=2040(1-i) for both inner and outer walls. The cross-section

averaged Mach number is M=-0.5 (upstream propagation). In this example, a comparison

between uniform and sheared flow is given in order to demonstrate the capability of the

FEM approach to take into account refraction phenomena. The shear flow is arbitrarily

chosen to have a boundary layer thickness of 10% (δ=0.08 m), with the same mass flow

rate that the uniform profile (see Fig. 7 for the mean flow velocity profiles). This

thickness is not realistic but voluntarily exaggerated in order to illustrate refraction. Note

that flows with a boundary layer are obviously rotational and cannot be considered with

the full-potential propagation equation.

As seen on Fig. 6, Pridmore-Brown and FEM solutions show satisfactory

agreement. In particular, modal shape and attenuation are conserved in the FEM model.

Results show a strong difference in amplitude between the uniform and sheared cases. In

fact, for an upstream propagation, the mean flow velocity gradient due to the presence of

the boundary layer tends to refract waves toward the center, thus yielding a weaker

attenuation than in the uniform case. (This is the opposite for a downstream propagation,

for which waves are refracted toward walls – see, for instance Ref. 17). Attenuation

coefficient values can directly be obtained from the semi-analytical model. These
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coefficients are 5.6 dB.m-1 and 0.9 dB.m-1 respectively for the uniform and sheared

cases. Thus, for the duct being considered, an error of about 9 dB is made at the outlet

when a uniform profile is supposed.

B. Validation for varyin g ducts (Rienstra’s model)

The test geometry taken is now varying (but the flow is restricted to be potential).

This geometry is the same as in Rienstra’s papers15,16 and is representative of a turbofan

aircraft engine. It includes a circular-to-annular transition (a central body is thus

present).

There are differences between the multiple scale method and the FEM. The FEM

formulation admits the propagation of many modes (reflection and scattering are integral

part of the solution). On the contrary, the multiple scale approximation lies in supposing

that a single given mode is propagating in a single direction inside a duct. Hence, this

kind of approximation neglects reflection and scattering into other modes, as clearly

demonstrated by Rienstra and Eversman’s study16. Reflection and scattering limitations

of Rienstra’s model are also both highlighted in this subheading by choosing adequate

test cases.

The procedure used for FEM computation is not the same as previously exposed in

Sec. IVA. The previous mono-modal non reflecting boundary condition cannot be used
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when reflections or scattering into other modes become significant. Instead, a modal

decomposition technique such as in Ref. 16 is used. This technique consists in recasting

the acoustic variables at the duct inlet and outlet via an eigenmode expansion. For FEM

calculations, the method is as follows. On the inlet plane, the complex amplitude of the

appropriate mode is specified via a forced boundary condition. On the outer plane,

reflected mode amplitudes are set to zero, imposing a non-reflecting boundary condition.

Inlet reflected and outlet transmitted mode amplitudes are unknown and part of the

solution. In this paper, ten radial modes have been used for the expansion (given the cut-

off frequencies of higher order modes, this is sufficient for the test cases presented in the

following). Note that the eigenmode expansion must be done with hard walls for

orthogonality (soft wall modes are not orthogonal). Thus, for test cases with lined walls,

the FEM geometry has been extended up to 0.5m both at the inlet and outlet by adding

pieces of straight hard wall ducts (not shown on figures).

In the FEM model, the potential mean flow is first computed, also via a FEM

solving Laplace’s equation and then used for solving Galbrun’s equation. Results

presented in this subsection give comparisons between the solutions obtained by

Rienstra’s multiple-scales method (mono-modal) and the FEM model proposed in the

present paper (FEM solutions of Rienstra and Eversman are not shown).

The first test case is depicted in Fig. 8, where geometry, mesh and mean flow are

presented. At the inlet and outlet, the axial local Mach number values are M=0.3 and
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0.25 respectively. It must be observed that the outer wall i s straight, which constitutes a

slight difference with Rienstra’s geometry (considered in the second test case). This

essentially aims at minimizing reflections due to the outer wall.

In this first set of results (Fig. 9), a downstream (1,1) mode propagating in a rigid

wall duct is considered. Computations are achieved for three frequencies. At 300 and

360Hz, a very good agreement is obtained between FEM and multiple-scales solutions,

which validates the FEM code. At these frequencies, the only cut-on modes with m=1

are (1,0) and (1,1). Other cut-on modes with m≠1 are not considered by the FEM model

because m is a fixed parameter in the code. Consequently, the good convergence

between both models demonstrates that scattering into the (1,0) mode as well as

reflection are almost negligible.

However, when the frequency f=420Hz is reached, a strong difference is observed.

This disagreement is likely explained by partial scattering into the (1,2) mode. In fact,

analyzing local cut-off frequencies shows that this mode is cut-on at the outlet (its local

cut-off frequency is 416.8Hz). Hence, it can be deduced from the difference observed

that for f=420Hz, the multiple-scales approximation fails.

The last test case (see Fig. 10) concerns a (7,0) mode at f=500Hz propagating into

the exact Rienstra’s geometry. The outer wall i s lined, the impedance value is

Z=4080(1+i). The central body is left perfectly rigid. Mesh and flow are not shown for
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conciseness (M=0.5 and 0.49 at the inlet and outlet respectively). The goal of this

example is to outline the reflection phenomenon that limits the use of a multiple-scales

method. The frequency of f=500Hz is chosen in order for the (7,0) mode to be the only

cut-on mode. Calculations effectively give a maximum local cut-off frequency along the

duct of 411.2Hz for this mode and a minimum cut-off frequency of 558.6Hz for the (7,1)

mode. This indicates that the (7,0) mode is always cut-on and the (7,1) always cut-off.

This permits to avoid any significant scattering into other modes and thus to focus on

auto-reflection of the (7,0) mode only. Computations are made for both downstream and

upstream propagation.

In the downstream case, a good agreement is obtained. This shows that only few

reflections are produced inside the duct for this direction of propagation. In the upstream

propagation case, some differences occur (on this plot, wave is propagating from the top

to the bottom). Some wiggles appear and iso-pressure contours are not totally smooth. At

the acoustic outlet (bottom), it can be seen on plots that the attenuation obtained by the

FEM is a little greater than the semi-analytical one, which tends to prove that reflections

of the (7,0) mode on itself are not negligible. This may be attributed to the central body

as well as the abrupt change of outer radius located at the acoustic inlet, both viewed as a

narrowing for an upstream propagation.

Finally, it may be interesting to look at the acoustic intensity vector that has been

plotted for both the upstream and downstream case. Because the lining of the wall
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absorbs some energy, intensity is not exactly parallel to the wall but penetrates into it.

This is more visible in the upstream case, which is coherent with the fact that the

downstream wave is less attenuated.

V. CONCLUSION

In this paper, a mixed FEM based on Galbrun’s equation has been proposed to solve

sound wave propagation in arbitrary flows. Compared to the LEE, this equation may

have several advantages. From a theoretical point of view, it yields an exact expression

for the acoustic intensity and simpler boundary conditions (especially in case of

absorbing walls). From a numerical point of view, Galbrun’s equation allows the direct

application of the inf-sup condition, already encountered in the study of mixed FEM for

incompressible media.

Results obtained with the proposed mixed FEM have been compared with two

complementary semi-analytical models and have been found to be in very good

agreement. The comparison with the Pridmore-Brown equation has proven the efficiency

of the numerical method to take into account convection and refraction from a boundary

layer, which cannot be considered with a full-potential formulation. Comparisons with a

multiple-scales method have fully validated the FEM for complex geometry and have
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also confirmed limitations of a mutliple-scales approach when some significant

reflection or diffraction occur.

Those results show that a mixed FEM method based on Galbrun’s equation could be

an interesting alternative to a finite-difference method based on the LEE, for solving

aeroacoustic problems.
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FIGURE CAPTIONS:

FIG.1: Typical geometry of a duct carrying flow (S1 denotes the wall boundaries and S2

the inlet and outlet boundaries).

FIG.2: Examples of 2-D elements satisfying the inf-sup condition. (a) Element “4-3c”

(used in this paper), which may be referred to as the “P1
+- P1” or “MINI ” element in the

literature. (b) Example of higher order element, with 9 nodes for the displacement and 4

nodes for the pressure (element “9-4c”).

FIG.3: Pressure modulus in Pa of the (0,1) mode at f=250Hz (no flow and rigid walls).

(a) semi-analytical solution, (b) displacement-based FEM solution, (c) mixed FEM

solution, (d) FEM mesh.

FIG.4: Pressure modulus in Pa of the (8,0) mode at f=500Hz (rigid walls). (a) Pridmore-

Brown and (b) mixed FEM solutions with M=0.0. (c) Pridmore-Brown and (d) mixed

FEM solutions with M=-0.4. (e)-(f) intensity vector (computed from the FEM model) for

M=0.0 and M=-0.4 respectively.

FIG.5: Pressure phase in radians of the (8,0) mode at f=500Hz with M=-0.4 (rigid walls).

(a) Pridmore-Brown and (b) mixed FEM solutions.
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FIG.6: Pressure modulus in Pa of the (10,1) mode at f=1000Hz and M=-0.5 with lined

walls (Z=2040-2040i). (a) Pridmore-Brown and (b) mixed FEM solutions for a uniform

flow. (c) Pridmore-Brown and (d) mixed FEM solutions with a boundary layer thickness

of 10%.

FIG.7: Axial velocity profiles for the shear and uniform mean flows. Both flows have the

same mass flow rates (the mean Mach number is 0.5).

FIG.8: Rienstra’s duct geometry with a straight outer wall . (a) FEM mesh, (b) radial and

(c) axial potential mean flow velocities (in Mach number) computed from a FEM model

of Laplace’s equation.

FIG.9: Pressure modulus in Pa of the (1,1) mode (rigid walls). (a)-(b)-(c) multiple-scales

semi-analytical solutions at f=300,360,and 420Hz respectively, (d)-(e)-(f) mixed FEM

solutions at f=300, 360, and 420Hz.

FIG.10: Pressure modulus in Pa of the (7,0) mode at 500Hz with lined walls

(Z=4080+4080i) for the exact Rienstra’s duct geometry. (a)-(b) comparison between

multiple-scales and mixed FEM solutions for a downstream propagation. (c)-(d)

comparison for an upstream propagation.
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