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Abstrad:

A non-standal wawe eudion, estaltished by Galbrunm 193], is use to sudy sound
propagéion in non-unifom flows. Galbruns euaion describe exadly the same
physcad phenomeaon tha the linearizel Euler’s equaions (LEE) but is derivel from an
Eulerian-Lagrangia descripion and witten only in temm of the Lagrangian perturbéion
of the displacementThis equaion ha& intereing propeties ad ma be a good
aternative o the LEE only acougic displacemenis involved (even in non-homentropic
cases) it provides exad expressons d aoudic intengty and energy ard boundary
condtions ae eay expressal becaus acousc displacemenwhose normd component
Is antinuows gpears eplicitly . In this paper Galbruns equdion is solvel usirg a finite
elemen mehod (FEM in the axisynmetrc case With standad finite elementsthe
dired displacement-baskevaridiond formulation gives sone carupted resits. Insead,
amixed finite elemensatisfyng the inf-sup condtion is piopose to avod this poblem.
A first set & resudts is comparg with semi-analytcd solutions far a straght duct
containng a sheare flow (obtainel from Pridmore-Browrs equdion). A second sé of
resuts concerrsa moe comple dud geomety with a potertial flow and is compard to
resuts obtaina&l from a mudtiple-scale mehod (which 8 an adaptdon fo the

incompressibke case ba Rienstras recen work).

PACS numbers43.20.Bj 43.28.Py43.20.Mv
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l. INTRO DUCTION

Propagatio of acoustt disturbance in non-unifom flows s a subjet of great
interes in mary practicd problems particulary in transpar engireerng with
automotive exhaus systems aeronautich turbofan engire inle ducts etc. The
understandig o this phenomenois a centrafeatue for the predictiom of noise ard for
designig componerd tha efficiently attenua¢ sound In practice the shape bthese
componerd is often comple ard flows ae nd uniform. Thus, tle basic quatiors that
descrile sut a problen mug be able ¢ cope with thog® complexities Two kinds of
formulatiors ae mainy used the linearized Eulers equatiors (LEE) ard the full-
potentid formulation Howeve as discusse furthe below, thee exiss anothe wave

equation which is a reformulatio of the LEE.

The full-potentid formulation is obtaind from the LEE by assuning boh flow and
disturbancs irrotationality Thus it constitute a specific casefdhe generbLEE. The
correspondig propagatia equatin is scala ard written only in tem of the acoustic
velocity potential This makes & resolutio far easie ard explairs why it is mud more
widespea in the litterature On the bass o the full-potentid equation sone authors
studial the dfed of flow variation ard multidirectionality upon soum propagatia in
ducs with variabe cress-gctions usng a finite elemen metha (FEMY*® or a

bounday elemen method. Besides, th analyss o pure propagatin phenomea has
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naturaly been extendd to radiatim by mary authos by the use o various techniques

6,6,7,8,9

(FEM combineal with a bounday elemem metho or a wave-envelope element

techngue®**2!3 dud reciprocity bounday elemen method?, etc.).

Recently Rienstrd® developed @ analytich model basd on a multiple-sales
methal to sudy pure propagatin in slowly varying crass-ction ducts Riensta and
Eversmaf made comparisosi betveen the multiple-scale aml FEM solutiors that
validates boh modes (thaugh it highlights the limits d a multiple-scale metha when
reflectiors a conversiors into otheg modes accur). In this paper Rienstra analytcal
modd is usel to give a reference solutiotha validates tre FBEM implementation of

Galbruns equation.

Becaug d its relatie simpicity, the full-potentid equatian is a powerful
formulation ard may be sufficien to study sourd propagatiao in flows However, its
main drawlad is thd it canna take into accoun rotationa mean flows. For instarce,
flow rotationaliy canna be neglectd when the effed¢ of bounday laye refraction is
importar (see for instarce Ref.17,18,19 or when a mea flow swirl is presen (this

typicdly hgopers behind a rota stage — see Ref20).

Actually, if the mea flow is rotational the decompositio of the perturbatios in
terms d independeinacoustt ard rotationdmodes is ro longe valid. The LEE mus be

directly solved The® equatiors represetna systen of five equatiors amd five unknowns,
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which can be reduced to fou if the flow is supposé to be homentropic (pssue and
densiy are then directly related) Given the complexiy of the system sone attempts
were ma@ © smplify its solution Far instarte, Nayfeh & al?!, Uenish and Myerg?

developé a numerca metha for solving acoustt propagatia in ducts with variable

cross-ectiors a mea steara flow.

In the laie 1970s Abrahamsof?, Astley ard Eversmaff*?®> implementd the direct
LEE respctively for axisymmetrt ard 2D geometriesusirg a FEM Good resuls were
presentd for ample case bu unfortunately ther work has nd been continued Astley
arnd Eversmaff alo oulined the existence fospuriols mods when ushg a FEM to

formulate the eigenvalue proltefor a straigh lined dud with sheaflow.

More recently Golubey ard Atass?’ studieda straigh dud containhg a mea flow
with swil and showed th caipling tha occurs betveen acoustt ard rotationa modes.
Coope ard Peaké®extende Golubes sudy to slowly varying lined ducs by applying
a multiple-scale method Resuls showe the influence 6the mea flow swirl, i.e. co-
rotatig modes ae alway mut more dampd than tho® in a non-swirlng flow and

counterrotatig mode ma be amplified.

Furthermore it must ke noticel tha the LEE hawe recenty beenimplemente by
severd authos (e for instarte Ref. 28,29,30 using numerich method basd on

finite diferene schemesThe® reference provel the operato ability to adeuately
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propagae soud wawe but 0 far, numerich applicatiors ae stil limited to smple

geometris kecaus d numercd difficulties arl high conpute resouces requirement.

Through whd is cited above it can be sea tha the use bthe LEE may be essential
ard inescapalel in severlpracticd cases However this systen is fa more complex
than the scala full-potentid equation ard it is thus rargl solved for generacases In
this paperit is dtemptal to develp a generamethal based n a FEM to sohe sound
propagatio problens with rotationd mean flows. Instead of choosirg the LEE, a non-
standad wawe euatin origindly establishd by Galbruri® in the eary 1930 is
considered As explaind in the following sction this equation is derivel from an
Eulerian-Lagrangia description amh is an exat reformulation of the LEE. Thus,
Galbruns equatian a prioli describe exactly the samephysicd phenomenonlts main
featue is thd it constituts a second-ordelinea partid differentid equatian written

only in terns o the displacemerperturbation.

Although only few works ded with this euation it may be a interesting
alternative o the LEE. Only acoustt displaemer is involved (even in non-homentropic
cases) which yields a gan of one o two unknowrs compard to the LEE ; it also
provides exad expressiors d acoustt intensiyy armd enery ; besides boundary
conditiors ae eafly expresseé becaus acoustic displacemen(whoe normal
componeh is generall continuos & ary interface betwee two medid appears

explicitly, which avod the somewhedifficult use of Myers condition®2
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In 1985 Poie” detdled the Eulerian-Lagrangia descriptio in orde to derive
Galbruns euation ard its extensio to norinea problems He al® derivel some
gener& continuity conditiors vald a ary straigh interface Godir* independently
obtainal Galbruré equatin in a quie diferert way. In particular he derivel exact
expressiors d acoustt enery ard intensity ard bounday conditiors for freg rigid, and
absorbilg surbices in terns o the displacementBen Taha ard Goy” developed a

variationd formulation to stud/ vibroacoustt problens with mean flow.

Recently Peyreé ard Hias*® proposeda diret¢ displacement-badeformulation of
Galbruns euation solvel using a FEM They alo derival the same energy
conservatia law as Godin bu with a diferert approach Bonné et al*’ pointed otithe
fad that the dired¢ displacement-bask formulation associatd with Galbrurs egquations
does nd necessaily converg with standad finite elemerg amd proposedca metha to
regularze the variatiorlaformulation in the case ba uniform flow. Theg two last

refererces ae discusse in detal later (see Seclll).

In this paper a mixed variation& formulation baséd on the pressure-disgcement
variables is presenta in orde to avod sone urious solutions Though the overd
methal is quie generalfinite elemendiscretzation ard numericaresuls ae presented
for the axisymmetric caseé\ first se of resuls consiss in comparig FEM with semi-

analytica solutiors for a straigh dud containig a sheare flow (obtainel from
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Pridmore-Brom equation) A secom sé of resuls corcerrs a more compbe duct
geomety with a potentid flow ard is comparé to resuls obtaind from a multiple-sale
methal (which is an adaptation bRienstras wolk for the incompresibke case see Ref.

15).

Il THEORY

Compare to the clessicd Eulerian descriptionthe Eulerian-Lagrangradescription
is nd usual This ction briefly recalk tre latte before giving Galbrurs equation and
the associatd expressia of acoustt intensity This sectiom does nd give detds about

calculatiors bu reviews can be fourd in Ref 31,33,34.

A. The Eulerian-Lagrangian description

In the Eulerian description perturbatios ae Eulerian ard expressed wht Eulerian
variables This descriptio is implicitly usel when Eulers eguatiors ae directly
linearized The Eulerian-Lagrangia description consist in considerig Lagrangian
perturbatios o quantities expresse in terns d Eulerian variables In orde to give a
physcad comprehensio of what Lagrangiam ard Eulerian perturbatios mean the

perturbel (or tota) ard non-perturbé (o mean flow) states hawe  be describé first.
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Define the geometridgosition x of a given partick in the mean flow configuration
ard its positin y in the perturbd configuration Then, f w" denotes the displacement

perturbatim of this particle x andy are relatel by:

Yy =X+EW" (2.1)

In the remandea of this paper W represerg ary physca quantiy (tensa of
arbitrary ordel) ard the subscripO is usel to distinguit mean flow quantities from their

totd (or perturbed counterpartThen two kinds o perturbatios can be defined:

PE =W(y,t) - ¥, (y.t)
Wt =W(y,t) - W, (xt)

(2.2)

Superscripg E ard L denoke respectivel Eulerian ard Lagrangia perturbations.
From the® definitions it can be £en tha Eulerian perturbatioa ae asociatd with the
sane geometrichpoint but nat the same particlewheea Lagrangia perturbatios are
associatd with the same particleUsing Eq (2.1) into Eq (2.2), a Tayla expansio up
to the firs orde gives the fundamentarelationshp between Eulerian ad Lagrangian
perturbations:

Wh= WE wt W (2.3)

As state eatier, W represers ary phystcd quantiyy ard the above gquatian holds

for pressue fluctuationsdensity, velocity, etc.
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B. Galbrun’s gquation

Equation (2.3) is nav apgied to pressure densiy ard velocity perturbations This

yields:
pr=p-+w-.Op, p"=p"+w" .Op,
L (2.4)
d\cllvt =vF +w".0v,

where d/dt=0/0 t+V, .0 is the materidderivative Equatiors (2.4) allow to expres every
Eulerien perturbation in terns o Lagrangian perturbationsReplacng evey fluctuation
by its Lagrangia counterpadrinto the LEE lead (afte tediows calculationsto Galbun’s

equation:

po%—m(podiﬂ wh I ) p) e p 0 (25)

ard the Lagrangia densiy perturbatio is explicitly given by:
p-=—pIw" (2.6)
Eg. (2.6) constitutes the mas continuiy equation obtainel from a Lagrangian-Eulerian

description It simply states thd densiy fluctuatiors ae balancd by dilatation

fluctuations.

In orde to derive Galbrurs equation pered fluid ard isentropt assumptios have
implicitly been mad by startig from the LEE. For Lagrangia perturbations the

isentropt assumptio leads o the wdl-known pressure-densytrelationship:

L

p-=p

L

¢ (2.7)

10
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which yields the following explict equatian for the Lagrangia pressure:

p" = —poGIw" (2.8)

Sorme importar remarls stould now be adressed Unlike Eulerian perturbationsgq.
(2.7) remairs vald even for inhomogeneosi meda and/o for non-homentroi flows. In
thee situations solving the LEE woull requie an addition& equation tha is the
linearizel enery equatin (e for instarte Ref. 38). In fact for Lagrangian
perturbations Eg (2.7) still holds kecaus the guatin of stake gplies for a given

particle 2 tha the thernomdynamicd system is closed.

Thus Galbruré euatian obviously provide a fird advantag (compard to the
LEE) becaus ths euatin is expressk with the Lagrangia disphcemen as a unique

unknown which yieldsa gan of one o two variables.

Anothe assé is the existence (bduna uniquensg of a Lagrangia density
associatd with Galbruré euation (e Ref 36). This yields an exad energy
conservatio law ard exad expressios for the acoustic eneygard intensity These
expressiors can be fourd in Ref 34 ard 36. In particular the acoust intensiy is given
by:

L

0 ot

11
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It can be noticel tha the Lagrangia disphcemen inevitably appeas in this
expression which likely explairs why no exad formulation for the intensiy has been

fourd based napure Eulerian description.

[l. NUMERICA L MET HOD

In this sction Galbrum euatin is solvel usinga FEM From now on,
fluctuatiors ae assumel to hae an €' time depederce Besidesthe mea flow is
stead/ ard the mea pressue is suppose to ke constanfor smplicity (dropping the last
two terns o Eq. (2.5)). This assumptio is nd valid for aeroacousti problens bu our
purpoe is b sole Galbrurs equation with a FEM (as oulined by Peyré ard Hias®®,
terms with p, do nad preseha majo interes from a numertd point of view). Under

thee assumptionskEq.(2.5) becomes:

~pedw ARy, MW+ il (@) w) @ (=w) 0 (3.1)

The firda subheadng o this sction gives a brid review abou the numeral
difficulties o the dire¢ displacement badeformulation sssociatd to (3.1). In the
secord subleadng, a displacement-pssue basd mixed formulatin is proposd to
overcone these dificulties. A third ore deas with bounday conditiors am the last
subleadng gives sone importart detals abot the finite elemen discretization of the

mixed formulation.

12
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A. Displacemert basel formulation

Equatio (3.1) is multiied by a trid field w* ard integrated owethe doman Q.
Then integratig by pat the lasg two terns (which imply secord orde derivatives) and
half the secod tem vyields the following dire¢ displacement bade variational

[rci(mi)fs v fa vy
‘in:FbW* [@vom/\f)dH ici;g(v@]] w:) Wl
—i[po(v0 DBN*D](VQ]] WLhi

+Iw*£oo(vom)%+meEdS =0 Ow
s U dt U

(3.2)

It can be noticel tha the aboe formulation is presenta in sucha weay that the first
line carespond © the no-flov cae am the secod ard third ore  the presence of

mean flow (the lag line isa bounday integral).

This formulation is usel in Ref 36. However, wha standad finite elemerg are
implementé to discretze the formulation solutiors ae generlly corrupted even in the
no-flow case This phenomenois purely numerical An exampé o spurious solution is

given in Sec IVA.

13
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Bonne & al.®’ hawe receny proposd a regularized formulatin of Galbruns
equatio in the unifom flow cae (with this method sone specific terra ae aldal in
the formulation (3.2)). A good convergere s obtaind bu limitations of the method

arise for the generbzation to arbitray mean flows.

The no-flov cae weas fird studied in the 197G when considemg vibratiors of
coupla fluid-structue systera (e for instarte Ref. 39) ard was provel to exhibit
spuriots circulation modes with nonzero frequenciesBasicdly, this phenomenois due
to a bal accuray of the divergence ah cul (calculatel from derivatives of
displacements)which in turn dfects the displacemeanpredictian itself In orde to cope
with this numerich phenomenon severbh method hae be@ proposed sud & the

penaly method®, edge finite elemerf, ard mixed finite elemenmethod® *2

In the presencefamean flow, the penaly methal and edg finite elemet method
cannd be directy applied becaug the displaceménfield is generdhy no more
irrotational Thus, tle metha chose in this pape is naturaly basel on a mixed finite
elemen formulation To conclde ths subleadng, ore emphasize tha the overall
problem in the now-flov ca® is typicdly analogos t© incompressil@d elasticiy or

fluid*® and e¢éctromagneti¢é, ard is often refared to & “locking’ in the litterature.

14
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B. Mixed formulation

A mixed variation& formulation base on pressure-displeemen variables is now
derived Although pressue is nav an exgicit unknown of Galbruns equation (as in the
LEE), the dficiency of such a formulation to preven corruption by gurious solutions
has alead) been demonstrated yo Warg and Bath& in the no-flov ca® when
considerig fluid-structue intelactions It was al® extensivel ard rigorousy analyged
by Brezz and Fortirf® in a generbway (see als Bathé&® for a moe engineerig-oriented

appraach appied to incompressild elasticity).

In the presencefaarbitrary mean flow, an analogos mixed formulatin of Ref. 42
can be obtaind by replacng the lag term of Eq. (3.1) with the pressue gradieh (use of
Eqg. (2.8)is made) It yields ttre following system:

E_po(“)2WL ~2 RV, MW+ Qi (@ V*[)] =p- 0

0 (3.3)
" +oGIw= 0

Multiplying boh eguatiors by trial fieldsw andp resgctively, integratimy over

the doman Q and the by pars gives tle following mixed variation&formulation:

15
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-y[pTlcép*ﬁoni[mmwm [V e bl v
—iaigw* (v, I )@+ iti;g(vg]]] W) wel

- (34)

+J;w* %)O(VO )%Edsi pw b ds=0 Hw,p

where Sis the surface enclosg the acoustic domaiQ andn is the outwad normal.

As in Eqg (3.2), the fird line o the mixed formulatian (3.4) represert tre no-flow
operators The® operates ae almos identicd to thoe usel by Warg and Bath® in
ther mixed formulation The onl dight differerce s tha one ha chosa to integraé by
parts the secod tem of the secod equatio of systen (3.3) (instead of the lag temm of
the firg equatior) in orde to let the normd displacemen sppea explicitly a the

boundary.

Normd displacemen a walls can thuis ke eagy impose (the secod surbce
integrd of Eq. (3.4) smply disgppea for perectly rigid walls) Besides for fluid-
structue inteactiors (nd considerd in this pape), norma displacemen continuity
coud alo be eady impose by replacng the fluid norma displacemen with the

structue normédisplacement.

In orde to shav the dficiency of a mixed formulation a compariso with the

displacemenbasel formulatian is given in Sec IVA.

16
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C. Boundary conditions

Bounday conditiors associatk with Galbrurg equation mug be careflly apgied.
Figure 1 represersta typcd problem d propagatio insice adud carrying flow. Two
types o bounday conditiors mus be distinguishedthos impose a wals (boundary

S)) ard tho® imposel insick tre fluid (bounday ).

At walls, the firg surface integrhof (3.4) always vanishe becaus the nmean flow
normd velocity is zera Fa rigid wals, norma displacemenal equak zer ard the
secord integrdalso vanishesFor an absorbig wall, the adguae bounday condition is
obtainal from the normé&displacemenfluid-wall continuity. Given the wal impedarce

Z, this condition is simpy given by the following relationship:

pL|Sl = —iwZw" [ (3.5)
which is simpy applied by replachg the normé displacemenin the secod boundary
integral The fad tha displacemen is an explict variabk in the proposd formulation

makes the impedare condition (3.5) smpler to implemen than in the LEE case that

would haw requirel the use 6Myer’s conditior’.

When an arbitray mean flow is present the displ@emen field may nat be

irrotational Thus it is obvous thd a fixed pressue insice the flud (on S) is not

17
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sufficiert to detemine a unigue solution Faor instarte applyng pressue (which
represert the displ@emen divergere fran Eq (2.8)) a the dud inlet ard outld means
tha the rotation&part of the displacemenis let free Consguently ore mus impose
the totd displacemenfield everywhee a boundar condition is requirel inside the fluid

(typicdly at the dud inlet-outlet) This condition is expicitly given by:
L —
w |SZ =W (3.6)
ard is directly enforced a& nodes asa constraitin the FEM model This make the first
surface integral in (3.4) vanih becaue w=dw=0 on S, (i.e. forced boundary
condition) Note thd in many instancest is dificult to speciy the particle displacement

on boh surfices labelel S; becaug only the incide components known A boundary

condition basd on a multi-modadecomposition technique overcoms this dificulty.

As a side remarkin the no-flov case a surface wh fixed pressue insice the fluid
is sufficiet to uniquey detemine the solution becaus displaceméanis implicitly

irrotational.

D. Finite elemen discretization

It has keen proven tha interpolatiors for displacemen ard pressue mus be

adequatel chosen The choice ®a mixed formulation is nd sufficiert to avod locking,

18
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ard ore al® has b choog gpropriak interpolatio functions Basel on Ref 43 and45,

this subheadm gives sone detdls abot wha kind of finite elemerg has o be used.

If a bal choie d interpolatirg functiors is made the elemethmay lock and/a give
sone puriows pressue modesA criterion tha ensure convergece aml stalility of the
finite elemenis given by the so-cled inf-sup condition Though na necessary this
condition is a stromy guarary of reliability. Detals abou the inf-sup condition are not
given in this pape bu can be fourd in Ref 43 and 45. For a more practidause a
numerica teg of this condition has al® bee developd by Chapdle aml Bath&®. One
exampé d triangula 2D-elemeh satisfyng the inf-aup condition is given on Fig 2.
This elemehmay be refered to & the “P,"- Py”, “4-3¢” or “MINI " elemenf®* and is
the one use in this paper An exampé o highe orde elemenis al® given on thke same
figure (elemen“9-4c”). Note thd sone othe 2D (or 3D) elemerd can be fourd in Ref.

43,46.

In the no-flov case elemersg tha satisly the inf-aup condition hawe successfully
been implementd by Warg ard Bathé®. The originality of Galbruns equation is that
the pressure-displeemen relationshp given by (2.8) is nd alteral by the presence of
flow ard is strictly identicd to the no-flov case This enablesa directly apply the inf-
sup condition to a Galbrun-bask formulation Thus, unde the assumptim tha the

additiond operatos introduced by the presece d flow (ternms in v, .[0) does nd alter

19
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convergene propertis d elemens satisfyng the inf-sup condition it is exgectel that

the proposd mixed FBEM for solving Galbrurs equation is robust.

When flow is present it should be noticel tha the mas continuily equation
obtainel from the LEE implies materidderivatives ard no equatian gmilar to Eq (2.8)
can be obtainedThe inf-aup condition cannd then be directy applied when the LEE are
considered Thus, give the curent knowledge abow mixed formulations Galbrun’s

equatio seers o be more interestop from a numericpoint of view.

The generh variational formulatio (3.4) is nowv restrictel to axisynmetric
geometriesintroducirg the cylindricad coordinatesthe following 6-dependece s set:

B (r,0,z)=w" (r,z)e™

0 y (3.7)
oot (r.0,2)=p(r,2) e™
where the angula mode numbe m is a paramete of the solution The weighting

functiors ae take as:

* ’9’ - * 1 +im@
%N (r.6,z)=w (r,z)e 3.8)
P

"(r.6,2)=p(r.2 ™

The (2D) acoustt doman Q is chosa to be meshd with 4-X elementsOn the

refererce elementdispbcemenand pressue variabls ae thus interpolatd as follows:

B (u,v) =(1-u-Yw, +w, +w, {1-u-} @

3.9
B (W) =(1-u-Y) p+ up+ vp 59

20
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where the subscrigti (i=1,2,3 denots the node numberlt can be sea for the
displacement tha the standat linea interpolation is enrichd by introducing a
generalzed variabk a. The tem (1-u-v)uvrepreserga bubble function this polynomial
is nul on the three side fothe triangle ad thus maintais the compatibiliy (C°

continuity).

Then elemerd hawe four degees d freedom pe node plus thee internh(three for
ead componenof w"). However thee intern& degrees d freedom can be mndensed
out before the elemenare sssembledwhich is atradive from a conputaiond point of

view.
After assembing and applying boundary cations the globd discrdized
variaiond formulation yields the fdlowing algebrat systen:

Kw, =f (3.10)

K, isa w -dependencomplex bard matrix unsynmetricd when flow is presentA
sparg storages chosenFo a fixed w, the unknow noda displacemen vecta w; is

finally obtainel by usirg a LU decomposition.

V. RESULTS
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In this ®ction the FEM numericd methal is validatel with two semi-analytical
models The firs modé correspond © the wdl-known Pridmore-Brown guation the
secord to Rienstra multipke scale pproxmation (in the incompresibke nean flow case
in orde to fit with the assumptiomm of the FBEM modd - see Seclll). Both models
represert the propagatio of a given (m,) moce in an infinite dud (m ard n denote

resgectively the angula ard radid mode numbe).

They may be considere as complementaryPridmore-Brow equation deas with a
simple straigh dud but a possibf shearel mea flow. Bounday laye effects upon
propagatio can thg be consideredin Rienstra multiple-sales methogdthe mea flow
mug be potentid but the dud is slowl varying, which permis © stugy more complex

geometries.

Unlike Pridmore-Brow equation Rienstra modé constitutes an gpproxmation It
cannd be exat becaug d modd reflection ard scatering tha may occu in a varyng
duct Thee limitatiors d a multiple-scale metha hawe be@ highlightel by Rienstra

ard Eversmatf and ae al® demonstratin this paper.

In the following, iso-pressue contous ae given in modults for all plots. Units are
chose to be in Pa in orde nat to minimize arors The average intensiy vecta may
also be given on the 6=0° plane Mean flow velocities ae definel in Mach numbe (M).

Propagatio ard flow directiors ae al® sketchd in orde to exgicitly show if wave
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propagatio is upstean or downsteam Besides, typidavalues o pp=1.2kg.n? and

co=340m.&" are used.

Ted cass swee a non-dmensiona frequeny range up © abow kR=20 ar the
dud geomety is alway meshd with a A/10 finite elemenlength This is the esimated

criterion for a satisfactor convergene bu a A/8 criterion may e sufficiert to give good

results Theg criteria a¢ y& modulatel by a v1-M? facta due o the Doppler effect

when flow is present.

A. Validation for straight ducts (Pridmore-Brown equation)

For FEM conputatiors d this sibheadng, the methodalgy is & follows The
Lagrangia displacemennis calculatd from the Pridmore-Brow modé ard is then
imposeal & the dud inlet of the FEM modd (in the remainng, the terns ‘inlet” and
‘Outlet” are usé from an acoustichpoint of view — e the directin of propagation
upon ead figure — ard na from a nean flow point of view). A modd nonreflective
bounday condition is prefered & the outlef which is les constraimg (in particular the
phage armd amplituce ae let free) Herce the mode beig enfoced & the inlet/outlet
boundariesthe FEM solution insice thedud is conputed and comparedotthe semi-

analytica one.
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The nonreflective bounday conditin is inspirel from Peyré ard Hias®®. It
simulates the one-wg propagatio ard apgies ony for a given (m,) mode In classical
acoustis (no-flov case) ore usual imposes o the crass-®ction an arechoic
temmination base on the wawe impedarce (i.e the ratd of the pressue am the normal
acoustt velocity) Here an addition& condition is requirel with the displacement
variabe in orde to detemine a unique solution The velociy ard the normal
displacemenwhich gopea in the bounday integrd of Eq. (3.4) are thus replacd with

the following expressions:

dw* . L .
v, [ =Z w- ;w [b=- 4.1
pO( 0 ) dt nr ] | an p ( )

Znr is the standat modd nonreflecting impedare anl Z,, can be viewal as a modal
nonreflective matrk impedace In the Pridmore-Brow mode| materid derivatives are
simply given byd/dt=-i(w-vok,) becaus an € ™) dependece & chosa for the modal
acoustt variables This yields the following expicit expressiors for the modal

impedancs definel by (4.1):

(@=vwk) 4.2)

Z:_.oo _OI;rZO

where vy is the axid mean flow velocity ard k; is the outlé modd axial wave-number,

which is pat of the semi-analyticd solution | denots tre identity matrix.

In this sibheading, an annula straigh dud is consideredThe inne ard oute radius

are respectivegl 0.2 and 1m Geomety with a typca med is showm by Fig. 3.
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The firg teg case given in Fig 3, shovg the dficiency of a mixed FEM compared
to a displacemeanbasel one A comparism between the semi-analyticaldisplacement
basel FEM and mixed FEM solutiors s given for the pressue malulus The example
corcerrsa (0,) mock & f=250Hz propagatig in a had wal dud without flow. Solution
obtainal with a displacemeanbasel formulatia is totdly corrupted by rotationa fields.
Thes gurious solutions a& small-sca artifa¢ which are trgpped within the model
grid. Unfortunately, tt8 numerca problem dos nd disgpea a al when the me# is
refined For amixed FEM, resuls ae cleary in good ageemeh with the seni-analytical

solution.

The secod tes ca® (Fig 4) corcerrs a (8,0 moce propagatig & f=500Hz in a
perfectly rigid wdl duct This moe s calculatd for M=0 ard M=-04 (upstream
propagation) Agreemeh between Pridmore-Brown ah FEM solutiors is peréd for

both Mach number This te$ cag ams & pointing ou ore d the dfed of convection

upon cut-of frequenciessa a decreas by a 1-M? factor Figure 4 clearly shows that
without flow, the (8,0 mock is cut-of whereas for M=-0.4, it become cut-on In fact,
for the dud dimensions the (8,0 mode ha an exad cut-df frequeny of 522.0Hz
without flow, decrease to 478.5Hz & M=-0.4 This frequeng is lowea than 500Hz,
which explairs why the mock fully propagate alorgy the duct Examining the intensity
plot for both Mach numbe gives directly the natue d modes unlike & M=-0.4, the

acoustt intensiy vecta is nul at M=0.0 which proves tha the moc s cut-of (energy

25



F. TreyssedeJASA

does nd propagate)Fo the M=-0.4 case a comparisno in terns d the pressue pha is

also given by Figure 5 whee a goad ageemen between solutiors can be observed.

The thid tes ca® (Fig 6) exhibitsa (10,1) mocde & f=1000Hz Wadls ae lined and
the impedarme value $ Z=2040(1+) for both inng ard oute wals. The crass-ction
averagd Mach numbe is M=-0.5 (upstrean propagation)in this examplea comparison
betwea uniform ard shearel flow is given in orde to demonstrat the capabiliy of the
FEM approadc to take into accoun refraction phenomenaThe sheaflow is arbitrarily
chosa to hawe a boundar layer thickness d 10% (6=0.08 m), with the sane mass flow
rate tha the uniform profile (e Fig 7 for the mea flow velocity profiles) This
thickness & nd redistic bu voluntarily exaggeratedn orde to illustrae refraction Note
tha flows with a bounday laye are obvbusly rotationd and cannd be considere with

the full-potentid propagatio equation.

As sea on Fig 6, Pridmore-Browm ard FBEM solutiors shav satishctory
agreementin particular modd shape am attenuatio ae conserve in the FBM model.
Resuls shav a strorg difference in ampliide betwea the uniform ard shearel casesin
fact, for an upstrean propagationthe mea flow velocity gradiem due o the presence of
the bounday laye tends 0 refrad waves towad the center thus yieldng a weaker
attenuatio than in the uniform case (This is the opposie for a downstrea propagation,
for which waves ae refractd towad wdls — se for instarte Ref 17). Attenuation

coefficiert values can directly be obtaind from the seni-analytcad model These
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coefficiens ae 56 dB.m* and 0.9 dB.m resgctively for the uniform ard steared
cases Thus for the dud beirg consideredan aror of abou 9 dB is mae & the outlet

when a uniform profile is supposed.

B. Validation for varyin g ducts (Rienstra’s model)

The tes geomety taken is nav varying (bu the flow is restrictd to ke potential).
This geomety is the same stin Rienstra papers®*® ard is representatesd a turbofan
aircrat engine It includes a circula-to-annula transition (@ centré body is thus

present).

There are difference betwea the multipk sca¢ metha and tle FEM The FEM
formulation admis the propagatio of mary modes (reflection ard scatering are integral
partt of the solution) On the contrary the multipke scale pproxmation lies in supposing
tha a single give moce is propagatig in a single directia insice aduct Herce this
kind of approxmation negécts reflection ard scatering into othe modes as ckarly
demonstrate by Riensta aml Eversmas’ study®. Reflection ard scatering limitations
of Rienstras modé are al® boh higHighted in this subleadng by choosirg adequate

ted cases.

The procelure usel for FEM conmputation is nd the same & prevously exposd in

Sec IVA. The previols mono-modanon reflecting bounday condition canna be used
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when reflectiors a scatterirg into othe modes kecone signifcant Instead a modal
decompositio technique sut as in Ref 16 is used This technique consiss in recasting
the acoust variable & the dud inlet ard outle via an eigenmod expansionFor FEM

calculations the methdl is & follows On the inlg plane the comple amplitude o the
appropriae mock s specifiel via a forced bounday condition On the oute plane,
reflected mode ampliudes ae sé to zerg imposng a nonreflecting bounday condition.
Inlet reflectad and outle transmittel mode ampliudes ae unknow ard pat of the
solution In this paperten radid modes hawe be@ usel for the expansio (given tke cut-
off frequencies d higha orde modesthis is sufficien for the te$ case presenta in the
following). Note thd the eigenmode expansiomus be done wih had walls for
orthogonaliy (sot wal modes ae nd orthogonal) Thus, fo teg case with lined wals,

the FEM geomety has keen extendd upto 0.5m both & the inlg ard outle by addng

pieces d straigh had wal ducts (nd shown on figures).

In the FEM mode| the potentid mean flow is firs conputed alo via a FEM
solving Laplaces equation ard then use for solving Galbrurs euation Results
presentd in this subsction give comparisos betveen the solutiors obtaind by
Rienstras multiple-scales metlo(mono-mod3gl ard the FBM modd proposel in the

presen pape (FEM solutions ¢ Riensta ad Eversma are nd shown).

The firg ted ca® s depictd in Fig. 8, whee geometrymes ard mean flow are

presentedAt the inlg ard outlet the axid local Mach numbe values ae M=0.3 and
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0.25 respctively. It must @ observed tha the oute wall is straight which constitute a
dight differerce with Rienstr& geomety (considerd in the secod tes case) This

essentifly ams & minimizing reflectiors due o the oute wall.

In this firs sd of resuls (Fig 9), a downstremn (1,1) mode propagatig in a rigid
wall duad is consideredConputatiors ae achievd for three freqjuencies At 300 and
360Hz a vel good ageemen is obtaind between FBEM and multiple-scals solutions,
which validates the FBM code At the® frequenciesthe ony cut-on mode with m=1
are (1,0 ard (1,1) Othe cut-on modes with n#1 are nd considerd by the FEM model
becaus m is a fixed paramete in the code Consguently the good convergeoe
betwee both moded demonstrates thascatterirg into the (1,0 mode a& wel as

reflection are almos nedigible.

However when the frequeny f=420Hz is reacheda stromy difference s observed.
This disagreeméris likely explain@ by partid scatering into the (1,9 mode In fact,
analyzng locd cut-off frequencis shovs thd this node is cut-on & the outlé (its local
cut-off frequeny is 416.8Hz) Herte, it can be deluced from the difererce observed

that for f=420Hz the multiple-scale gpproxmation fails.

The las tes cae (see FiglQ) corcerrs a (7,0 moce a f=500Hz propagatig into

the exat Rienstras geometry The oute wadl is lined, the impedame value is

Z=4080(1+). The centrabody is let perkctly rigid. Mesh ard flow are nd shown for
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concisenss (M=05 and 0.49 tathe inled ard outld resgectively) The goa of this
exampé is to ouline the reflectio phenomenon thdimits the use ®a multiple-scales
method The frequeny of f=500Hz is chosa in orde for the (7,0 moce o ke the only
cut-on mode Calculatios dfectively give amaxmum locd cut-off frequeny alorg the
dud of 411.2H for this moce am a minimum cut-df frequeng of 558.6H for the (7,1)
mode This indicats tha the (7,0 mocke is alwag cut-on ard the (7,) always cut-off.
This permits & avod ary significart scatterirg into othe modes ard thus to focus on
auto-refection of the (7,0 mode only. Conputatiors ae made fo both downsteam and

upstean propagation.

In the downstrem case a goa ageemeh is obtained This shows thaonly few
reflectiors ae praduced insice thedua for this direction of propagationIn the upsteam
propagatio case sone difference accur (on this plot wawe is propagatig from the top
to the bdtom). Sone wiggles gopea ard iso-presue contous ae nd totdly snooth At
the acoustic outte(battom), it can be se@a on plots thd the attenuatio obtainel by the
FEM isa little greatethan the semi-analytideone which tend o prowe thd reflections
of the (7,0 mocde on itsef are nd nedigible. This may be atributed to the centrbbody
as wdl as the abupt chang o oute radius located & the acoust inlet, both viewed as a

narrowing for an upstrean propagation.

Findly, it may be interestig to bok a the acousti intensiy vecta tha has been

plotted for both the upsteam ard downstremn case Becaus tle lining o the wall
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absorls sone energy intensily is nd exactly parallé to the wal but penetrate into it.
This is moe visibe in the upstean case which is coheren with the fad that the

downsteam wawe is les attenuated.

V. CONCLUSION

In this papera mixed FBEM basa& on Galbrurs equation has be@ proposd to solve
sourd wawe propagatio in arbitray flows. Compard to the LEE, this equatilm may
hawe severhadvantagesFrom a theoretid point of view, it yields an exad expression
for the acousti intensiy ard smpler bounday conditiors (especihy in cag of
absorbig walls) From a numericapoint of view, Galbrurgé equation allows tre direct
apdication of the inf-aup condition alread/ encountere in the study of mixed FEM for

incompressibke media.

Resuls obtaine with the proposd mixed FEM hawe be& compard with two
complementar semi-analytich modes am hawe bea fourd to ke in very god
agreementThe compariso with the Pridmore-Brow equatian has prove the dficiency
of the numericamethal to take into accoum convection ard refraction from a boundary
layer, which cannd be consideré with a full-potentid formulation Comparisos with a

multiple-scals metha hawe fully validated the FEM for complex geomety ard have
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alo confirmeal limitations o a mutiple-scales gproadh when sora significant

reflection or diffraction occur.

Those resuls shav tha amixed FBEM methal based o Galbruré equation could be
an interestig alternatie © a finite-differerte methd based n the LEE, for solving

aeroacousti problems.
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FIGURE CAPTIONS:

FIG.L Typicd geomety of adud carying flow (S, denote the wal boundaris ad S

the inlg ard outld boundaries).

FIG.2 Examples d 2-D elemens satisfyng the inf-aup condition (8 Elemen “4-3c”
(usel in this pape), which may e refered to as thre “P; - Py” or ‘MINI ” elemert in the
literature (b) Exampé o highe order elementwith 9 node for the displacemenard 4

nodes for the pressue (elemen9-4c”).

FIG.3 Pressue moduls in Pa o the (0,9 moce & f=250Hz (no flow ard rigid walls).
(@) semi-analytich solution (b) displacement-bask FEM solution (¢) mixed FEM

solution (d) FEM mesh.

FIG.4 Pressue moduls in Pa o the (8,0 moce & f=500Hz (rigid walls) (& Pridmore-
Brown ard (b mixed FBEM solutiors with M=0.0. (¢) Pridmore-Brow ard (d) mixed
FEM solutions wih M=-0.4. (e)-(f intensiy vecta (conputed from the FBM mode) for

M=0.0 andM=-04 resgctively.

FIG.5 Pressue phas in radiars o the (8,0 mode a f=500Hz with M=-04 (rigid wadls).

(a) Pridmore-Brow ard (b) mixed FEM solutions.
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FIG.6. Pressue moduls in Pa o the (10,1) moce & f=1000H ard M=-05 with lined
walls (Z=2040-2040). (8 Pridmore-Brow ard (b mixed FEM solutiors for a uniform
flow. (c) Pridmore-Brow ard (d) mixed FBEM solutions wih a bounday laye thickness

of 10%.

FIG.7: Axial velocity profiles for the sheaard uniform mean flows. Both flows hae the

sanme mass flow rates (tre mea Madh numbe is 0.5).

FIG.8 Rienstra dua geomety with a straigh outer wall. () FEM mesh (b) radid and
(c) axid potentid mean flow velocities (in Mach numbg conputed from a FBM model

of Laplaces equation.

FIG.9 Pressue moduls in Pa o the (1,) moce (rigid wals). (8)-(b)-(c) multiple-scales
sami-analytica solutiors & f=300,360,ad 420H respectively (d)-(e)-(f) mixed FEM

solutiors & f=30Q 360 ard 420Hz.

FIG.10 Pressue moduls in Pa o the (7,0 mode & 500Hz with lined walls
(Z=4080+4080 for the exat Rienstres dud geometry (8)-(b) comparisa between
multiple-scals am mixed FBEM solutiors for a downstrem propagation (¢)-(d)

compariso for an upstieam propagation.
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