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PENALIZED ESTIMATORS FOR NON LINEAR INVERSE PROBLEMS

JEAN-MICHEL LOUBES AND CARENNE LUDEÑA

Abstract. In this article we tackle the problem of inverse non linear ill-posed problems

from a statistical point of view. We discuss the problem of estimating an indirectly observed

function, without prior knowledge of its regularity, based on noisy observations. For this we

consider two approaches: one based on the Tikhonov regularization procedure, and another

one based on model selection methods for both ordered and non ordered subsets. In each case

we prove consistency of the estimators and show that their rate of convergence is optimal for

the given estimation procedure.

1. Introduction

In many problems it is necessary to recover an indirectly observed signal x0 based on the

non linearly transformed and noisy observation model

(1.1) y(ti) = F (x0)(ti) + εi, i = 1, . . . , n.

We assume F : X → Y is a known non linear operator between X, Y Hilbert spaces, (ti)

is a fixed observation scheme and εi are i.i.d. realizations of a certain random variable ε.

Throughout the paper, we shall denote y = (y(ti))
n
i=1. We assume that the observations

y(ti) ∈ IR.

When F is linear, two main estimation procedures have been considered. Namely, regu-

larized estimators such as the Tikhonov estimator, see for instance [3, 16], and non linear

threshold estimators [13, 6]. Rates of convergence for regularized estimators are known and

are seen to be optimal for an appropriate selection of the regularization parameter which

depends on the regularity of the unknown function. Moreover, based on concentration in-

equalities it is possible to show that the addition of an appropriate penalization term allows

selecting the regularization parameter or the projection subspace based on the data, in such

a way as to maintain the best possible rates. Optimal choices for the penalty term can be de-

duced for example from the general results for Gaussian model selection in [2]. An application
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2 PENALIZED ESTIMATORS FOR NON LINEAR INVERSE PROBLEMS

of these penalty methods is considered in [15] for general regularization methods. The second

approach has its most popular version in the wavelet-vaguelet decomposition introduced in

[8], further developed in [13, 6].

However, scarce statistical literature exists when F is non linear. Among the few papers

available, we point out the works [18] or [19] where some rates are given, and that of Bissantz

et al. in [4] where they discuss a non linear version of the method of regularization (MOR).

Different approaches are also developed in [7] for dynamical inverse problems or in [11] for

Maximum Entropy Methods.

Not alike the random setting, the deterministic non linear ill-posed inverse problem literature

is extensive. Most commonly, authors propose L2 regularized Tikhonov type estimators and

show that they provide a stable method for approximating the solution. For a general discus-

sion on regularization methods, we refer the reader to [9, 21]. As in the linear case, the choice

of the regularization parameter is crucial. This issue is often practically solved by numerical

methodology which relies on grid methods and iterative algorithms, see for instance [17] or

[12]. On the other hand, a priori optimal choices of the smoothing sequence are given in the

work of [20], leading to estimators of x0 which attain the best possible rates, whenever its

regularity is known beforehand.

Our main goal here is to provide a data driven estimator of the regularization parameter

in the Tikhonov procedure and of the ”cutoff” point for projection estimators, that behaves

as well as the best possible choice in each case. Namely, we consider choosing the regular-

ization parameter or subspace that minimizes the empirical quadratic loss function plus an

appropriate penalty, as in the linear case. The fact that F is non linear requires introducing

certain technical restrictions which shall be discussed in Section 2.

Given the Tikhonov regularization procedure, which shall be discussed in detail in Section

3, we consider the following estimator of x0,

x̂α
k̂

= x⋆ + (T ∗
m0

Tm0 + αkIm0)
−1T t

m0
y,

where k̂ is selected as the solution of

k̂ := arg min
k∈K

{

‖Rαk
(y − F (x̂αk

))‖2 + pen(αk)
}

,

for an appropriate penalization term pen(αk). Here Tm0 = TΠYm0
, where Ym0 is a certain

subspace of Y and ΠYm0
stands for the projection over this subspace, T is a certain linear

approximation of F and x⋆ is an “initial guess” for x0. We assume that x0 − x⋆ belongs to

the orthogonal complement of the nullspace of T .
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Our main result in this section, Theorem 3.1, establishes that the L2 risk of this data driven

estimator x̂α
k̂

attains the same convergence rates as those obtained for the best possible choice

of the regularization parameter αk, which typically depends on the regularity conditions of

the unknown signal x0.

Our next results deal with projection estimators. Always aiming at constructing data

driven estimators of the “cutoff” point, we study two procedures. First, we consider selecting

a subspace over a nested collection of linear subspaces Ym, m ∈ Mn a collection depending

on n. The optimal m is chosen as

m̂ = arg min
m∈Mn

‖ΠYm(y − F (x̂m))‖2
n + pen(m)

where pen(m) is an appropriate penalization term which shall be discussed in Section 4, ΠYm

stands for the projection over the subspace Ym, ‖ ‖n is the empirical norm based on the

observation scheme (ti), which shall be discussed in Section 2, and

x̂m := x⋆ + arg min
x∈x⋆+T ∗Ym

‖ΠYm(y − F (x))‖2
n.

Given the “initial guess” x⋆, we assume ‖x − x⋆‖ < ρ for some ρ, T is an approximation

of F ′(x0) and T ∗ stands for its adjoint. As above, we assume that x0 − x⋆ belongs to the

orthogonal complement of the nullspace of T . We then show, Theorem 4.1, that this data

driven selection of m attains the same convergence rates as those obtained for the best possible

choice of the “cutoff” point.

Second, we consider the problem of non ordered model selection, which can be thought of

as a threshold estimator for the estimated coefficients of x0 over a certain linear subspace

Xm0 := T ∗
m0

Y , where Tm0 is defined as in the Tikhonov procedure. More precisely, let m0 be

a certain big collection of possible models. Set

x̂m = x⋆ + arg min
x∈Xm

‖(T t
m0

Tm0)
−1T t

m0
ΠYm0

(y − F (x))‖2.

The optimal model is chosen as

m̂ = arg min
m⊂m0

‖(T t
m0

Tm0)
−1T t

m0
ΠYm0

(y − F (x̂m))‖2 + pen(m),

for a certain penalty function depending on the family of linear operators {F ′(x), ‖x−x⋆‖ <

ρ}, for some ρ and an appropriate “initial guess” x⋆, which, as above, is assumed such that

x0 − x⋆ belongs to the orthogonal of the nullspace of T . Our main result in this section,

Theorem 4.5 states that this data driven choice of m attains the same convergence rates as

those obtained by the best possible model choice.
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The article is organized as follows. In Section 2 we describe the general framework. In

Section 3 we provide an adaptive estimator for the regularization parameter for Tikhonov

like estimators, and show the resulting estimator is consistent. Section 4 is devoted to model

selection estimators for non linear inverse problems, first with embedded projection spaces

and then with non ordered selection. Some conclusions are drawn in Section 5. Section 6 is

devoted to technical lemmas which are useful throughout the paper.

2. Basic assumptions and notation

In this section we introduce some general notation and assumptions. These include standard

concentration assumptions over the observation noise and some restrictions over the class of

operators F (.).

Since the operator F is non linear, our convergence analysis will be a local one. Hence it is

necessary to start with an initial guess of the solution. We require that this starting point x⋆

allows us to construct a good approximation of the Fréchet derivative of the operator at x0:

F ′(x0). More precisely, we assume F is Fréchet differentiable and that the range of

DF (x1, x2) =

∫ 1

0

F ′(x1θ + x2(1 − θ))dθ

remains unchanged in a neighborhood of the initial solution x⋆, i.e in the ball Bρ(x
⋆) =

{x, ‖x − x⋆‖ ≤ ρ}, for a certain ρ > 0. The above discussion is summarized by the following

condition

AF control over the non linear part of the differential operator:

There exist cT , a fixed linear operator T (generally T = F ′(x⋆)) and a linear operator

depending on x and x′, written R(x, x′) such that for x, x′ ∈ Bρ(x
⋆)

F (x) − F (x′) = TR(x, x′)(x − x′),

with ‖I − R‖2 ≤ cT .

This kind of condition is considered in [14] as an alternative to the tangential cone condition.

The previous author in [4] shows that this AF condition is satisfied, for instance, by the

inverse groundwater filtration problem of identifying the transmissivity a in

−∇(a∇u) = f in Ω(2.1)

u = g on ∂Ω,

on a C2 domain Ω ⊂ R
2, from measurements of the piezometric head u, where F is the

parameter-to-solution map F : a → u.
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Hence, the non linear operator is replaced by T , a known bounded linear operator that can

be viewed as some approximation of F
′

(x) in a neighborhood Bρ(x
⋆), which we must be able

to use in our computations. In contrast, under AF, operator R is not required explicitly.

Under such restrictions, the non linearity of the problem does not change the rate of con-

vergence and we still are able to build adaptive estimators. We remark that AF is not strictly

comparable to the Lipschitz condition required in Theorem 3 in [4], their condition being a

global one over the domain of F . However locally AF is stronger.

Recall we want to estimate a function x0 : IR → IR observed in a inverse model

y(ti) = F (x0)(ti) + εi, i = 1, . . . , n.

It is important to stress that the observations depend on a fixed design (t1, . . . , tn) ∈ IRn.

This will require introducing an empirical norm based on this design. Let Qn be the empirical

measure of the co-variables Qn = 1
n

∑n
i=1 δti , where δ is the Dirac function. The L2(Qn)-norm

of a function y ∈ Y is then given by

‖y‖n = (

∫

y2dQn)1/2,

and the empirical scalar product by < y, ε >n=
1

n

n
∑

i=1

εiy(ti). Note that this empirical norm

is defined over the observation space Y . Over the solution space X we will consider the norm

given by the Hilbert space structure. For the sake of simplicity, we will write ‖.‖X = ‖.‖
when no confusion is possible. Over a finite dimensional space, the norm ‖.‖ will always

stand for the Euclidean norm and if v ∈ R
d, vt will stand for the transpose vector. Likewise

for any matrix A ∈ R
d×r At will stand for the transpose matrix and A+ := (AtA)−1At for

the generalized inverse. Considered as an operator, we will write A∗ for the adjoint of the

corresponding operator. Given any square matrix B, Tr(B) and ρ(B) will stand for the trace

and the spectral radius respectively.

We also introduce certain standard assumptions on the observation noise

AN moment condition for the errors:

ε is a centered random variable satisfying the moment condition IE(|ε|q/σq) ≤ q!/2 for

all q ≥ 1, with IE(ε2) = σ2.

As usual in statistics, assume that X satisfies a certain smoothness condition. In this paper,

we assume the following source assumption encountered typically in the inverse problems

literature, see for instance [10]. We point out that the source condition is assumed with

respect to the linear operator T defined in AF.
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SC source condition:

There exists 0 < ν ≤ 1/2 such that x0 ∈ Range((T ∗T )ν) := R((T ∗T )ν)

Moreover consider

Aν,ρ = {x ∈ X, x = (T ∗T )νω, ‖ω‖ ≤ ρ}

where 0 ≤ ν ≤ ν0, ν0 > 0 and use the further notation

(2.2) Aν =
⋃

ρ>0

Aν,ρ = R((T ∗T )ν)

These sets are usually called source sets, x ∈ Aν is said to have a source representation.

Estimating over all X is in general not possible because we can only observe the functions

over the fixed design (t1, . . . , tn). Thus assume that we are equipped with a sequence of linear

subspaces Ym, m ≥ 1, whose union is dense in Y , . We assume dim(Ym) = dm. We are

interested in a sub collection of these spaces generated by a set of indices Mn. In this paper,

we will use these approximation spaces as projection spaces in order to study the data. So,

denote the projection of any space W over any subspace Z by ΠZW . Let Πn
Ym

stand for the

projection in the empirical norm. Set also the corresponding projected operator Tm = Πn
Ym

T .

Using a sieve of the space Y , we consider the corresponding approximation spaces in the space

X, defined as Xm = T ∗
mY . By construction

ΠXm = (Πn
Ym

T )+Πn
Ym

T.

We point out that both Tm and its adjoint operator T ∗
m depend on the observation sequence

ti. However, we will usually drop this fact from the notation. To illustrate this assertion,

consider the following example.

Example 2.1. If Ym is a collection of nested spaces, generated by some orthonormal basis

φ = (φ1, . . . , φdm), with respect to the L2 norm over Y , and F = T = Id, then

Πn
Ym

y =

dm
∑

j=1

yj,nφj ,

where yj,n =< Πn
Ym

y, φj >n are the solution to the projection problem under the empirical

measure Qn. Set Gm = (φj(ti))i,j, i = 1, . . . , n and j = 1, . . . , dm. Thus, we may write in

matrix notation

Πn
Ym

y = (Gt
mGm)−1Gt

m(y(t1), . . . , y(tn)).
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Remark that, as above, we can always define Tm in matrix notation and thus T t
my always

makes sense. Moreover, if u ∈ Y , we will use indistinctly T t
mu ∈ R

dm and T ∗
mu ∈ Xm, the

latter in operator notation.

In our case we will relate the degree of ill-posedness of T to Πn
Ym

as follows.

IP ill-posedness of the operator: Let Mn be an index set. For m ∈ Mn there exists

p > 0 such that

γ(m) := ‖(I − Πn
Ym

)T‖ = O(d−p
m ).

p is the index of ill-posedness of the operator.

To illustrate this condition we include the following example

Example 2.2. The above assumption can be seen to hold under certain conditions over op-

erator T and matrix Gm defined in example (2.1). Let (σj , φj, ϕj)j be the singular value

decomposition of operator T and assume that there exists d > 0 such that σj = O(j−d). Let

Ym be the linear subspace generated by {ϕj}1≤j≤dm and assume that the fixed observation de-

sign ti, i = 1, . . . , n is such that this basis is also orthogonal in the empirical norm. Assume

also that supj=1,...,dm
‖ϕj‖∞ < ∞. Then,

I − Πn
Ym

= I − ΠYm + Πn
Ym

(I − ΠYm),

where ‖I − ΠYm‖ = O(d−p
m ) and

‖Πn
Ym

(I − ΠYm)u‖ = ‖Πn
Ym

(I − ΠYm)u‖n ≤ ‖(I − ΠYm)u‖n ≤ sup
j=1,...,jm

‖ϕj‖∞‖(I − ΠYm)u‖.

Define

νm := ‖T+
mΠn

Ym
‖.

This quantity controls the amplification of the observation error over the solution space Xm.

Consider

γm := inf
v∈Ym,‖v‖=1

‖T ∗
mv‖,

which expresses the effect of operator T ∗
m over the approximating subspace Ym. We have as

in [17], νm ≥ γm.

On the other hand this term is related to the goodness of the approximation scheme. Following

the proof in [17], it can be seen that γm+1 ≤ ‖T ∗(I − Πn
Ym

)‖ = ‖(I − Πn
Ym

)T‖.
The next assumption requires that γm and γ(m) are of the same order, which will be written

γm ∼ γ(m).
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AS amplification error: Assume

(2.3) γm = O(d−p
m ).

Moreover assume there exists a positive constant U such that

γ(m)

γm
≤

√
U.

Remark 2.1. Assumption AS thus establishes that the worst amplification of the error over

Xm is roughly equivalent to the best approximation over Ym in the empirical norm.

For this fixed m0, let (λj , φj, ϕj), j = 1, . . . , dm0 be the singular value decomposition of

operator Tm0 . For any u ∈ Y we can write T ∗
m0

u =
∑dm0

j=1 λjφj < u, ϕj >n, which depends

only on u = (u(x1), . . . , u(xn))t. As previously recall that Gm0 ∈ Mdm0 ,n is defined by

G = (ϕj(xi))j,i, i = 1, . . . , n, j = 1, , dm0. Thus, abusing notation we may write T t
m0

=

D(Gm0G
t
m0

)−1Gm0 : R
n → R

dm0 , where D = D(λj)j=1,...,dm0
is the diagonal matrix with

entries λj. Since T t
m0

u = T ∗
m0

u the latter in operator notation, both interpretations will

be used indistinctly. On the other hand, for x ∈ Xm0 , identified with a dm0 dimensional

vector, we can think of (Tm0x(t1), . . . , Tm0x(tn)) = Gt
m0

Dx. So that in matrix notation also

T ∗
m0

Tm0 = D2. We introduce the following assumptions

SV: There exist positive constants k1 < k2 such that k1j
−p ≤ λj ≤ k2j

−p.

SF: Let νj , j = 1, . . . , dm0 be the eigenvalues of matrix GtG, then there exist constants

a1 < a2 such that a1n ≤ νj ≤ a2n.

Remark 2.2. Assumption SV is slightly stronger than AS as it establishes the exact order

of the γm. It is seen to hold, for instance, in example (2.2). Assumption SF is necessary to

assure convergence results further on. It holds also in example (2.2).

Assume also, that the images by the linear operator T of x⋆ and x0 are close, in the sense

that

IG identifiability condition: x0 − x⋆ ∈ Ker(T )⊥,

where Ker(T )⊥ is the orthogonal complement of the null space of the operator T .

The following approximation result ([14]) assures uniqueness of the sought solution if the

initial guess is sufficiently close.

Lemma 2.3. Assume AF holds with cT < 1/2 and assume for x, x′ ∈ Bρ(x
⋆), F (x) = F (x′)

and x − x′ ∈ Ker(T )⊥. Then x = x′.
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This lemma guarantees the identifiability of the estimation problem (1.1) since the solution

is uniquely chosen. We are now ready to build adaptive estimators for non linear inverse

problems.

3. Adaptive Tikhonov Regularization for non linear estimators

A straightforward generalization of the Tikhonov regularization procedure to non linear

operators is to seek xm ∈ x⋆ + Xm, in such a way that F (xm) is close to the data y, in the

sense given by the Tikhonov regularization scheme.

To begin with, project the data onto the finite dimensional space, Xm0 , where we assume that

m0 is such that

‖(I − ΠXm0
)(x0 − x⋆)‖ ≤ inf

m∈Mn

[‖(I − ΠXm)(x0 − x⋆)‖ +

√

dm

n

1

γm
].

This quantity can be chosen so as to not depend on the unknown regularity of the solution

x0. Under assumption SC the above inequality is satisfied if the dimension of the set is such

that d2νp
m0

≥ n
2νp

4νp+2p+1 . Thus it is enough to choose m0 such that dm0 ≥ n1/(2p+1).

Let K be a set of indices and consider the corresponding smoothing sequences αk, k ∈ K.

Let T be as defined in assumption AF and for a fixed k ∈ K consider the non linear Tikhonov

regularized estimator as

(3.1) x̂αk
= x⋆ + (T ∗

m0
Tm0 + αkIm0)

−1T t
m0

y.

This estimator belongs to the class of regularized estimators where the regularization operator

is given by

Rαk
= (T ∗

m0
Tm0 + αkIm0)

−1T t
m0

.

Let xαk
= x⋆ + Rαk

Tx0 be the regularized true function, which measures the accuracy of the

estimation procedure without observation noise. We highlight, that in the non linear case

and contrary to the linear case, (3.1) is different from the usual expression for the Tikhonov

estimate

(3.2) x⋆ + arg min
x∈Xm

[

‖Πn
Ym0

(y − F (x))‖2 + αk‖x − x⋆‖2
]

.

In this part, we consider the problem of selecting a data driven smoothing sequence of the reg-

ularized estimator (3.1) achieving the best rate of convergence among the set of all sequences.

Consider the following penalty

pen(αk) = rσ2(1 + Lk)[Tr(Rt
αk

Rαk
) + ρ2(Rαk

)],
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with r > 2. Here, Lk is a sequence of weights chosen to assure that

(3.3) Σ(d) :=
∑

k∈K
2

[
√

dLkTr(Rt
kRk)

ρ2(Rk)
+ 1

]

[
d

ρ2(nRk)
]−1e−

√
dLk[Tr(Rt

kRk)+ρ2(Rk)]/ρ2(Rk) < ∞

for d as in Lemma 6.2.

The optimal regularization sequence indexed by k̂ is selected as the solution of

k̂ := arg min
k∈K

{

‖Rαk
(y − F (x̂αk

))‖2 + pen(αk)
}

,

which defines the estimator x̂α
k̂

= x⋆ + Rα
k̂
y. The following result provides a control over the

estimation error of the estimator x̂α
k̂
.

Theorem 3.1. Assume AN, SF, SV, IG and AF are satisfied. For any x ∈ x⋆ + Xm and

any k such that dm0 ≥ α
−1/(2p)
k , the following inequality holds true

(3.4) IE‖ΠXm0
(x̂α

k̂
−x0)‖2 ≤ 1

1 − cT

inf
k∈K

[C(1+cT )‖ΠXm0
(xαk

−x0)‖2+2pen(αk)]+
Σ(d)

(1 − cT )n
,

where Σ(d) was defined in (3.3).

Proof. From condition AF, F (x1) − F (x2) = TR(x1, x2)(x1 − x2) with ‖I − R‖2 ≤ cT . On

the other hand, since Rαk
is a sequence of regularization methods (see [9, 21]) it follows that

there exist constants C1 < C2, such that C1 ≤ ‖Rαk
T‖ ≤ C2. Hence there exists a constant

C such that for any k,

(1 − cT )‖ΠXm0
(x1 − x2)‖2 ≤ ‖Rαk

(F (x1) − F (x2))‖2 ≤ C(1 + cT )‖ΠXm0
(x1 − x2)‖2.

Thus, for any x ∈ x⋆ + Xm0 ,

(1 − cT )‖ΠXm0
(x̂α

k̂
− x0)‖2 ≤ C(1 + cT )‖ΠXm0

(x − x0)‖2

+ 2pen(αk) + 2 sup
k

[‖Rαk
ε‖2 − pen(αk)].

The result follows directly from Lemma 6.2.

�

It is important to stress that computing the estimator (3.1) may be complicated in practice

since it involves inverting a matrix and recquires a particular attention. But the major

drawback in this approach is that the bias term in the oracle inequality ‖ΠXm0
(x̂α

k̂
− x0)‖2

may not be sharp, thus leading to other estimation methods.
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4. Model selection

4.1. Ordered selection.

Let Mn be a set of indices and consider Ym, m ∈ Mn a sequence of nested subspaces. We

consider projection estimators and define ordered selection as the problem of choosing the

best m based on the observations. For this we will construct penalized estimators that require

finding the first m that minimizes

‖Πn
Ym

(y − F (xm))‖2
n + pen(m),

where pen(m) is an increasing function. From a deterministic point of view this is essentially

equivalent to choosing m based on the discrepancy principle (see [17] for an application of

the discrepancy principle to non linear problems). More precisely, for a chosen m, define the

projection estimator

x̂m := x⋆ + arg min
x∈Xm,x∈Bρ(x⋆)

‖Πn
Ym

(y − F (x))‖2
n.

The optimal m is chosen as

(4.1) m̂ = arg min
m∈Mn

‖Πn
Ym

(y − F (x̂m))‖2
n + pen(m)

where pen(m) = r(1 + L)σ2dm/n, r = 2 + θ, for some θ > 0, and L > 0.

Numerically, minimization in the above expression is more complicated than it would be

in the linear case because we must calculate the projection matrix at each step. However,

choosing an efficient sampling scheme will do the job, i.e., such that the projection matrix is

diagonal or block diagonal.

We will assume the following condition over the sampling scheme holds true

CB: There exist constants, l1 < l2 such that for u ∈ Ym0

l1‖u‖ ≤ ‖u‖n ≤ l2‖u‖.

The next theorem provides an oracle inequality which proves optimality of the estimator

x̂m̂.

Theorem 4.1. Assume AN, IP, AS, IG, AF and CB hold true. There exist constants

C(r, σ), and k(r, σ) such that with probability greater than 1 − 2e−ku1/(2(p+1))

(4.2) ‖x̂m̂ − x0‖2 ≤ C(r, σ) inf
m∈Mn

(‖(I − ΠXm)x0‖2 +
pen(m)

γ2
m

) +
u

n
.
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Remark 4.2. For each fixed m, the quantity

∆m := ‖(I − ΠXm)x0‖2 +
pen(m)

γ2
m

is of the same order as the MISE for this problem , that is, IE‖x̂m − x0‖2. Hence, the bounds

are equivalent to those found in [4] under the appropriate source conditions. We do stress,

however, that this knowledge is not required in order to establish our results.

Proof: For each m, assume xm = x⋆ + zm, zm ∈ Xm, and xm ∈ Bρ(x
⋆). Set

w(xm) =
Πn

Ym
(F (xm) − F (x0))

‖Πn
Ym

(F (xm) − F (x0))‖n
.

We divide the proof in a series of steps.

• Control of dm̂. Recall the penalization is defined by pen(m) = r(1 + L)σ2[dm + 1]/n,

with 2 < r a certain constant.

We have, following standard arguments, that

‖Πn
Ym̂

(F (x̂m̂) − F (x0))‖2
n + pen(m̂)

≤ |‖Πn
Ym

(F (xm) − F (x0))‖2
n + 2 < Πn

Ym̂
(F (x̂m̂) − F (x0)), ε >n

−2 < Πn
Ym

(F (xm) − F (x0)), ε >n −‖Πn
Ym̂

ε‖2
n + ‖Πn

Ym
ε‖2

n + pen(m).

Let 0 < κ < 1. Since 2ab ≤ κa2 + 1
κ
b2, for any a, b we have for any m and xm ∈ Xm

2 < Πn
Ym

(F (xm) − F (x0)), ε >n

≤ κ‖Πn
Ym

(F (xm)) − F (x0))‖2
n +

1

κ
| < w(xm), ε >n |2.

Set for q, x > 0, t(m) = c[dm + 1] + (1 + q)−1x and assume κ and g, c are chosen in

such a way that 1
κ
((1 + g) + (1 + 1/g)c) = c1 < r(1 + L). Remark, κ can be chosen

very close to one.

Thus,

(1 − κ)‖Πn
Ym̂

(F (x̂m̂) − F (x0))‖2
n + (r(L + 1) − c1)

σ2[dm̂ + 1]

n

≤ (1 + κ)‖Πn
Ym

(F (xm) − F (x0))‖2
n +

1

κ
| < w(x̂m̂), ε >n |2 − c1

σ2([dm̂ + 1])

n

−‖Πn
Ym̂

ε‖2
n + ‖Πn

Ym
ε‖2

n

+
1

κ
| < w(xm), ε >n |2 − c1

σ2([dm + 1])

n
+ (r(L + 1) + c1)

σ2[dm + 1]

n
.

Now since κ < 1 and c1 = c1(q) < r(L + 1), we have,
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σ2(dm̂ + 1)

n

≤ 2

r(1 + L) − c1
(‖Πn

Ym
(F (xm) − F (x0))‖2

n + pen(m))

+
2

κ(r(1 + L) − c1)
sup

m,‖um‖n=1

(| < um, ε >n |2 − c1

2
κ(

σ2[dm + 1]

n
)),

for um ∈ Sm a countable dense subset of Xm. Note that

(4.3) sup
y∈Ym, ‖y‖n=1

| < ε, y >n | = ‖Πn
Ym

ε‖n.

Hence,

sup
‖um‖n=1

(

1

κ
< um, ε >n

)

= c‖Πn
Ym

ε‖n.

Since Πn
Ym

is a projection, ρ(Πn t
Ym

Πn
Ym

) = 1 and Tr(Πn t
Ym

Πn
Ym

) = dm, and by Lemma

6.2 there are constants d and c2 such that

P

[

sup
m

sup
‖um‖=1

(

| < um, ε >n |2 − c1/2κ(
σ2[dm + 1]

n
)

)

>
x

n

]

≤
∑

m

P ( sup
‖um‖n=1

| < um, ε >n |2 − c1/2κ(
σ2[dm + 1]

n
) >

x

n
)

≤
∑

m

exp{−
√

d(x + c2L[dm + 1])} ≤ C2e
−
√

dx/2,

setting C2 =
∑

m e−
√

c2L[dm+1]/2.

Hence with probability greater than 1 − C2e
−
√

dx/2 we have

σ2[dm̂ + 1]

n
(4.4)

≤ inf
m

inf
xm∈x⋆+zm

2

r(1 + L) − c1
(‖Πn

Ym
(F (xm) − F (x0))‖2

n + pen(m)) +
x

n
.

On the other hand let, for any given m, x̃m stand for the “projection” of x0 over

x⋆ + Xm, i.e. x̃m = x⋆ + zm is such that

(4.5) Πn
Ym

F (x̃m) = Πn
Ym

F (x0).

Let K2 = 1+cT

1−cT
for cT defined in AF. We have the following lemma, the proof of

which is exactly as that of Lemma 2 in [14].
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Lemma 4.3. Assume K2 and x⋆ are such that

K2‖[I − ΠXm ](x0 − x⋆)‖ + ‖ΠXm(x0 − x⋆)‖ ≤ ρ.

Then if IP, AF and IG there exists x̃ ∈ x⋆ + Xm, such that (4.5) is satisfied.

Now let dmopt be such that

dmopt = arg min
dm

[

(γ(m))2(
1 + cT

1 − cT
)2‖(I − ΠXm)(x⋆ − x0)‖2 + pen(m)

]

.

Since we are looking at ordered selection,

g(m) = (γ(m))2(
1 + cT

1 − cT
)2‖(I − ΠXm)(x⋆ − x0)‖2

is a decreasing sequence, so that the minimizer must be such that g(m) ∼ pen(m).

Hence we have

P

[

(dm̂ + 1 − 4r(1 + L)

r(1 + L) − c1

(dmopt + 1))+ > u

]

≤ C2e
−
√

du/2,

and dm̂ ≤ 4r(1+L)
r(1+L)−c1

(dmopt + 1) − 1 + u with probability greater than 1 − C2e
−
√

du/2.

• Error bounds: Set

∆ = (‖Πn
Ym

(F (x̂m̂) − F (x0))‖2
n − inf

m
inf
xm

2

1 − κ
‖Πn

Ym
(F (xm) − F (x0))‖2

n + pen(m))+ .

Lemma 6.2 also yields

P (∆ > x/n) ≤ C2e
−dx/2.

• We are now able to prove optimal rates for our estimator. For this we need to bound

‖Πn
Ym

(F (x̂m̂) − F (x0))‖n from below. Under CB

‖Πn
Ym

(F (x̂m̂) − F (x0))‖ ≤ ‖Πn
Ym

(F (x̂m̂) − F (x0))‖n

l1
.

Let Ωdim(u) be the set such that dm̂ ≤ 4r(1+L)
r(1+L)−c1

[dmopt + 1] + u − 1. Let Ωfit(u) be

the set where ∆ < u. In this section we assume we are always in Ωdim(u) ∪ Ωfit(u).

We require the following lemma

Lemma 4.4. Let x ∈ R(T ∗T ) + x⋆. There exists a constant C such that

‖Πn
Ym

(F (x) − F (x⋆ + ΠXm(x − x⋆)))‖ ≤ C(1 + cT )γ(m)‖(I − ΠXm)(x − x⋆)‖.
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Proof. Let x − x⋆ = T ∗y, with y ∈ R(T ). By definition

(I − ΠXm)x = T ∗(I − Πn
Ym

)y = T ∗w,

with w ∈ Y ⊥
m .

‖Πn
Ym

[F (x) − F (x⋆ + ΠXm(x − x⋆))]‖

≤ ‖Πn
Ym

TR((x − x⋆) − (ΠXm(x − x⋆) − x⋆)))‖

= ‖Πn
Ym

TR(I − ΠXm)(x − x⋆)‖

≤ sup
w∈Y ⊥

m ,‖w‖=1

‖Πn
Ym

TRT ∗w‖‖(I − ΠXm)(x − x⋆)‖.

The first term in the latter is in turn bounded by

‖Πn
Ym

TR‖ sup
w∈Y,‖w‖=1

‖T ∗(I − Πn
Ym

)w‖

≤ C(1 + c) sup
x∈ker(T )⊥,‖x‖=1

‖(I − Πn
Ym

)Tx‖

since T ∗ is the adjoint operator of T . �

With this lemma we have, for xm = x⋆ + zm, zm ∈ Xm

‖Πn
Ym

(F (xm) − F (x⋆ + ΠXm(x0 − x⋆)))‖2

≥ ‖Πn
Ym

TRΠXm(zm − (x0 − x⋆))‖2 − [C(1 + cT )γ(m)]2‖(I − ΠXm)(x0 − x⋆)‖2.

On the other hand, we have

‖Πn
Ym

TRΠXm(zm − (x0 − x⋆))‖2

≥ ‖zm − (x0 − x⋆)‖2( inf
y∈Ym

‖Πn
Ym

TRT ∗y‖
‖T ∗y‖ )2

≥ ‖zm − (x0 − x⋆)‖2( inf
y∈Ym

< Πn
Ym

TRT ∗y, y >n

‖T ∗y‖ ‖y‖n

)2

≥ ‖zm − (x0 − x⋆)‖2( inf
y∈Ym

< RT ∗y, T ∗y >n

‖T ∗y‖ ‖y‖n

)2

≥ ‖zm − (x0 − x⋆)‖2( inf
y∈Ym

‖T ∗y‖2− < (I − R)T ∗y, T ∗y >

‖T ∗y‖ ‖y‖n
)2

≥ ‖zm − (x0 − x⋆)‖2(1 − cT )2( inf
y∈Ym

‖T ∗y‖
‖y‖n

)2

= ‖zm − (x0 − x⋆)‖2(1 − cT )2γ2
m
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Thus, since (I − ΠXm)(x0 − xm) = (I − ΠXm)(x0 − x⋆) under assumption AS,

(4.6) ‖xm − x0‖2 ≤ l2‖Πn
Ym

(F (xm) − F (x0))‖2

l1(1 − cT )2γ2
m

+ (1 +
C2(1 + cT )2U

l1(1 − cT )2
)‖(I − ΠXm)(x0 − x⋆)‖.

Inequality (4.6) is true for whatever xm ∈ x⋆ + Xm. Over Ω(u), we know

dm̂ ≤ 4r(1 + L)

r(1 + L) − c1
[dmopt + 1] + u − 1.

We distinguish then two cases according to whether m̂ < mopt or not.

– In the first case it is clear that xm̂ ∈ x⋆ + Xmopt and m in (4.6) can be replaced

by mopt.

– In the second case we have:

‖(I − ΠXm̂
)(x0 − x⋆)‖ ≤ ‖(I − ΠXmopt

)(x0 − x⋆)‖.

In any case we have, over Ω(u) ∩ Ωfit(u)

‖x̂m̂ − x0‖2

≤ ‖(I − ΠXmopt
)(x0 − x⋆)‖2(1 +

C2(1 + cT )2U

l1(1 − cT )2
) +

2(pen(mopt) + u/n)

(1 − κ)(1 − cT )2γ2
m̂

≤ ‖(I − ΠXmopt
)(x0 − x⋆)‖2(1 +

C2(1 + cT )2

l1(1 − κ)(1 − cT )2
)

+
2(pen(mopt) + u/n)

(1 − κ)(1 − cT )2γ2
mopt

1

dp
mopt

(

4r(1 + L)

r(1 + L) − c1
[dmopt + 1] + u − 1

)p

≤ C(r)

(

‖(I − ΠXmopt
)(x0 − x⋆)‖2 +

pen(mopt)

γ2
mopt

)

+ K(r)
up+1

n
,

for some appropriate constants C(r, σ) and K(r, σ). Thus,

P ((‖x̂m̂ − x0‖2 − C(r, σ){‖(I − ΠXmopt
)(x0 − x⋆)‖2 +

pen(mopt)

γ2
mopt

})+ >
K(r, σ)up+1

n
)

≤ 2e−
√

d/2u,

which ends the proof.

4.2. Non ordered selection.

Ordered selection has the advantage of working directly on the observation space. It has the

disadvantage that the expansion of the solution x0 over the resulting subspace Xm might not

be efficient. This introduces the need for non ordered selection, or equivalently, for threshold

methods. The combination of both ill-posedness and non linearity makes this a difficult
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problem. Indeed, the former yields that it is no longer possible to work on the observation

space as this would require simultaneous control of γm and dm. Working on the solution space

requires considering the inverse of a certain matrix. The goodness of fit of the estimator is

then defined by the trace and spectral radius of this inverse matrix restricted to the sequence

of subspaces, which in turn depends on the degree of non linearity of the problem.

More precisely as in Section 3, let m0 be such that

‖(I − ΠXm0
)(x0 − x⋆)‖ ≤ inf

m
[‖(I − ΠXm)(x0 − x⋆)‖ +

√

dm

n

1

γm
].

For this fixed m0, let Mn be a set of indices such that {Ym}m∈Mn ⊂ Ym0 be a collection of

not necessarily nested subspaces. We will use the notation m ⊂ m0 to express the embedding

of such subsets. Our goal is to find the best subspace along this collection using penalized

estimation.

Set Am0 = T+
m0

Πn
Ym0

. For fixed x, Dm(x) := ΠXm0
R(x)ΠXm is a linear operator, Dm(x) :

Xm → Xm0 . Let Sm be the matrix whose entries are defined by

Sm(i, j) = sup
x∈Bρ(x⋆)

|At
m0

Dm(x)(i, j)|.

Set ρm = ρ(St
mSm) and tm = Tr(St

mSm). Let Rm = tm/ρm. From the definition of Am0

under SF and AF both nρm and ntm do not depend on n. Introduce Lm a certain weight

factor and in the notation of Lemma 6.2, assume

(4.7) Σ1 :=
∑

m⊂m0

e−
√

d/2rLm(Rm+1) < ∞

and for q ≥ 1

Σ2(q)(4.8)

:=
∑

m⊂m0

(nρmσ2/d)q[(d/2rLm(Rm + 1))q−1/2 + (d/2rLm(Rm + 1))q−1]e−
√

d/2rLm(Rm+1)

< ∞.

As before we will consider penalized estimation. The penalty term in this case will be set to

pen(m) = rσ2(1 + Lm)[tm + ρm],

with r > 2. The projection estimator is defined for a fixed m as

x̂ = x⋆ + arg min
x∈Xm

‖Am0(y − F (x))‖2.
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The optimal model is chosen as

(4.9) m̂ = arg min
m⊂m0

‖Am0(y − F (x̂m))‖2 + pen(m).

Then, the following theorem proves optimality of the corresponding model selection esti-

mator x̂m̂.

Theorem 4.5. Assume AN, IG, AF and SF are satisfied. Assume (4.7) and (4.8) hold

true. Then, if 0 < κ < 1, with probability greater than 1 − Σ1e
−
√

d/(2nρm0 )u

‖x̂m̂ − x0‖2 ≤ ‖(I − ΠXm0
)(x0 − x⋆)‖2

+
2

(1 − cT − κ)
inf

m⊂m0

{arg min
xm∈Xm

(1 + cT )‖xm − x0‖2 + pen(m)} + σ2u/n

and for q ≥ 1 there exists a constant Cq depending on q such that

IE[‖x̂m̂ − x0‖2]q ≤ [‖(I − ΠXm0
)(x0 − x⋆)‖2

+
2

1 − cT − κ
inf

m⊂m0

{arg min
xm∈Xm

(1 + cT )‖x0 − xm‖2 + pen(m)}]q +
CqΣ2(q)

nq

The estimator x̂m̂ looks complicated, but in the linear case, it has a nice expression. Indeed,

in this case T = F and x⋆ = 0, so the minimization problem in (4.9) is similar to a hard

thresholding scheme, since it is equivalent to minimizing

x̂m̂ = arg min
m⊂m0

arg min
xm∈Xm

{−2 < Am0y, Am0Txm > +‖Am0Txm‖2} + pen(m)

= arg min
m⊂m0

arg min
xm∈Xm

{−2 < ΠXmAm0y, xm > +‖xm‖2} + pen(m).

Let {ej}j∈m be the canonical base over Xm. Define for each m,

xm,j =< Am0y, ej >=< y, At
m0

ej >, j = 1, . . . , m.

Thus, m is selected by minimizing

−
∑

j∈m

x2
m,j + rσ2(1 + Lm)[

∑

j∈m

λm,j + sup
j∈m

λm,j ].

In the non linear case the problem is equivalent to minimizing

arg min
m⊂m0

arg min
xm∈Xm

{−2 < Am0(y−F (x⋆)), ΠXm0
R(xm, x⋆)(xm−x⋆) > +‖xm−x⋆‖2}+pen(m).

Set F(x⋆) = (F (x⋆)(ti))
n
i=1. Hence,

(xm − x⋆)j =< Am0(y − F (x⋆)), ΠXm0
R(xm, x⋆)ej >

=< y − F(x⋆), At
m0

ΠXm0
R(xm, x⋆)ej >, j = 1, . . . , m.



PENALIZED ESTIMATORS FOR NON LINEAR INVERSE PROBLEMS 19

Then m is chosen as above. We point out that, in this case, the problem must be solved

numerically which is troublesome as Am0 is a badly conditioned matrix. However practical

implementation of the estimator is a difficult task which lies beyond the scope of this paper

and will be tackled in a future work.

Remark 4.6. For each fixed m, the quantity

∆′
m := ‖xm − x0‖2 + pen(m)

is of the same order as the MISE for this problem, and the same comment as that at the end

of Theorem 4.1 applies.

Proof. From the definition for any m and xm,

‖Am0(F (x0) − F (x̂m̂))‖2 ≤ ‖Am0(F (x0) − F (xm))‖2 + pen(m)

+2 < ε, At
m0

Am0(F (x0) − F (x̂m̂)) >n +2 < ε, At
m0

Am0(F (x0) − F (xm)) >n −pen(m̂).

We have

Am0(F (x1) − F (x2)) = Πm0R(x1, x2)(x1 − x2).

Hence, the left hand side is bounded from below by (1 − cT )‖ΠXm0
(x̂m̂ − x0)‖2 and

‖Am0(F (x0) − F (xm))‖2 ≤ (1 + cT )‖ΠXm0
(xm − x0)‖2.

Thus,

(1 − cT )‖ΠXm0
(x̂m̂ − x0)‖2

≤ (1 + cT )‖ΠXm0
(xm − x0)‖2 + pen(m)

+2 < ε, At
m0

R(x̂m̂, xm)(x̂m̂ − xm) >n −pen(m̂).

For any m, m′ set Πm\m′ = ΠXm\Xm′
and Πm∩m′ = ΠXm∩Xm′

. With this notation

‖xm′ − xm‖2 = ‖Πm∩m′(xm′ − xm)‖2 + ‖Πm\m′(xm′ − xm)‖2 + ‖Πm′\m(xm′ − xm)‖2,

and

| < ε, At
m0

R(x̂m̂, xm)(x̂m̂ − xm) > |

= | < ε, At
m0

R(x̂m̂, xm)Πm∩m̂(x̂m̂ − xm) >n + < ε, At
m0

R(x̂m̂, xm)Πm\m̂(x̂m̂ − xm) >n

+ < ε, At
m0

R(x̂m̂, xm)Πm̂\m(x̂m̂ − xm) >n |

≤ κ‖x̂m̂ − xm‖2 + 2/κ‖εSm̂‖2 + 1/κ‖εSm‖2.
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The first term in the latter is bounded by

κ[‖x̂m̂ − (ΠXm0
x0 + x⋆)‖2 + ‖xm − (ΠXm0

x0 + x⋆)‖2].

The proof then follows directly from Lemma 6.2.

5. Concluding Remarks

Penalized estimation enables to construct estimators which are optimal in the sense that

without prior knowledge of the regularity of x0 they achieve the best estimation error for all

the possible choice of tuning sequences. Rates of convergence depend on the choice of the

projection spaces and their approximation properties. Under SC we have if ν ≤ 1/2,

‖(I − ΠXm)x0‖ ≤ ‖(I − Πn
Ym

)T‖2ν = O(d−2νp
m ).

This leads to the rate

(5.1) ‖x̂m̂ − x0‖ = OP(n− 2νp
4νp+2p+1 ).

Interpreting this rate in the statistical literature reads s = 2νp: the regularity depends on

the ill-posedness of the problem. Similar rates can be encountered in the statistical literature

under similar kind of assumptions, see for instance Bissantz et al. [3]. Hence, the rates of

convergence under source conditions SC are the same as in the case of linear inverse problems.

So, what is the price to pay here for non linearity ? Since we consider the operator T , a

linear expansion of the operator F in a neighborhood of x0, the introduction of non linearity

requires controlling the linear part of the Fréchet differential operator F
′

in balls around

the true solution x0. As opposed to linear problems, this fact entails the need of finding

a ”good” initial guess which is denoted by x⋆. Moreover, the ill-posedness of the problem

requires relating the non linearity to the smoothing properties of F
′

(x⋆), see condition AF. We

remark that this kind of condition is at the heart of probabilistic control of noise amplification.

So, the whole procedure, heavily relies on the assumption that there exists this good starting

point, namely x⋆. Asking for a good initial point is a common requirement in the literature

for ill-posed inverse problems in a deterministic setting, see for instance [14]. From a practical

point of view, this means that some prior knowledge about the solution is required. Another

method to find this initial starting approximation point is to use, either a preliminary estimate,

or to iterate the estimation process, starting from a randomly chosen point.
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6. Appendix

In this section we give some technical lemmas.

The following result is a deviation inequality based on a functional exponential inequality

(Theorem 7.4) due to [5] (2003).

Lemma 6.1. Set η(A) = sup‖u‖=1

∑n
i=1 εi(A

tu)i for A : IRn → IRk. Let

v = IE
n
∑

i=1

sup
‖u‖=1

(Atu)2
i

ρ(AtA)
(
εi

σ
)2 + 2IEη(A)/(σρ1/2(AtA)).

Then,

P (
η(A)

σρ1/2(AtA)
> IE

η(A)

σρ1/2(AtA)
+
√

2vx + x) ≤ e−x.

Proof. Since the application u → Atu is continuous, we have η(A) = supu∈S

∑n
i=1 εi(A

tu)i for

S some countable subset of the unit ball. On the other hand,

sup
‖u‖=1

[Atu]i ≤ sup
‖u‖=1

‖Atu‖ ≤ ρ(A).

Thus sup‖u‖≤1 |(Atu)i/ρ
1/2(AtA)| ≤ 1. Also, following the proof of Corollary 5.1 in [1]

sup
‖u‖=1

(Atu)2
i

ρ(AtA)

≤ sup
‖u‖=1

(
∑m

j=1 uj(A
tej)

2
i )

ρ(AtA)

≤ sup
‖u‖=1

(
∑m

j=1(A
tej)

2
i )
∑m

j=1 u2
j

ρ(AtA)

:= zi.

Set Z = Z(ε1, . . . , εn) = η(A)/(σρ1/2(AtA)). Let IEj stand for the conditional expectation

given εi for i 6= j. Hence, in the proof of Theorem 7.4 in [5] we may bound

|Z − IEjZ|q ≤ |εj|q
σq

sup
‖u‖=1

(Atu)2
j

ρ(AtA)
sup
‖u‖=1

max
i

(
(Atu)2

i

ρ(AtA)
)q−2 ≤ (|εj|/σ)qzj.

Thus, IE|Z − IEjZ|q ≤ zjq!/2. Finally, note that

n
∑

j=1

zj =
Tr(AtA)

ρ(AtA)
.

Thus, the proof follows from Theorem 7.4 in [5].

�
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As a corollary, we have the following lemma

Lemma 6.2. • There exists a positive constant d that depends on r such that the fol-

lowing inequality holds

P (η2(A) ≥ σ2[Tr(AtA) + ρ(AtA)]r/2(1 + L) + σ2u)(6.1)

≤ exp{−
√

d(1/ρ(AtA)u + r/2L[Tr(AtA)/ρ(AtA) + 1])}

• Set k1 = d/(ρ(AtA)σ2) and k2 = dr/2L[Tr(AtA)/ρ(AtA) + 1]. Then, there exists a

constant Cq, which depends only on q, such that,

IE[η2(A) − σ2[Tr(AtA) + ρ(AtA)]r/2(1 + L)]q+(6.2)

≤ Cqk
−q
1 [k

q−1/2
2 + kq−1

2 ]e−
√

k2

holds.

Proof. As a first step we will bound v. Since IEZ ≤ IE1/2Z2, we have

v ≤ IE
n
∑

i=1

zi(
εi

σ
)2 + 2

√

√

√

√IE
n
∑

i=1

zi(
εi

σ
)2 ≤ (1 + ν)IE

n
∑

i=1

zi(
εi

σ
)2 + Tr(AtA)/ρ(AtA).

Moreover, following, [1] p. 480, for all q ≥ 2, the following version of Rosenthal’s inequality

holds:

IEq/2
n
∑

i=1

zi(
εi

σ
)2 ≤ 2q/2Tr(AtA)/ρ(AtA)IE

|ε1|q
σq

.

Hence, we have

v ≤ (1 + ν)Tr(AtA)/ρ(AtA) +
1

ν

and

v2 ≤ 2[22(1 + ν)2Tr(AtA)/ρ(AtA)IE
|ε4|
σ4

+ (
1

ν
)2].

Set 0 < α < 1. Choose δ and β such that if

224!δ2(1 + 1/α)(1 − ν)2 < c1,

2δ2(1 + 1/α)(
1

ν
)2 < c2
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and c = max((1+β) max(c1, c2), (1+β)(1+α)), then r/2 > c. Let u > 0 and without loosing

generality, assume σ = 1. Thus,

P (η2(A) ≥ (Tr(AtA) + ρ(AtA))r/2(1 + L) + u)

≤ P (η2(A) ≥ (Tr(AtA)(1 + α) + (1 + 1/α)δ2ν2ρ(AtA))(1 + β)

+[r/2 − c](Tr(AtA) + δ2v2ρ(AtA)) + r/2L(Tr(AtA) + ρ(AtA)) + u)

≤ P (η2(A) ≥ (Tr(AtA)(1 + α) + (1 + 1/α)δ2ν2ρ(AtA))(1 + β)

+r/2L(Tr(AtA) + ρ(AtA)) + u)

Set

x′ = (1 +
1

β
)−1

[

r

2L
(
Tr(AtA)

ρ(AtA)
+ 1) +

u

ρ(AtA)

]

.

The last term is equal to

P (
η2(A)

ρ(AtA)
≥ (

Tr(AtA)

ρ(AtA)
(1 + α)

+ (1 + 1/α)v2δ2)(1 + β) + r/2L
Tr(AtA)

ρ(AtA)
+ 1) + u)

= P (
η2(A)

ρ(AtA)
≥ (

Tr(AtA)

ρ(AtA)
(1 + α) + (1 + 1/α)v2δ2)(1 + β) + (1 + 1/β)x′)

Finally, we may bound

≤ P (
η2(A)

ρ(AtA)
≥ (IE

η(A)

ρ1/2(AtA)
+ δv)2(1 + β) + (1 + 1/β)x′)

≤ P (
η2(A)

ρ(AtA)
≥ (IE

η(A)

ρ1/2(AtA)
+ δv +

√
x′)2)

= P (
η(A)

ρ1/2(AtA)
≥ IE

η(A)

ρ1/2(AtA)
+ δv + (1 + 2/δ)x′′)

≤ P (
η(A)

ρ1/2(AtA)
≥ IE

η(A)

ρ1/2(AtA)
+
√

2vx′′ + x′′) ≤ e−x
′′

= e−
√

g(A),

where we have used repeatedly that for any constant c > 0, ca2 + 1/cb2 ≥ 2ab and set

g(A) = ((1 + 1/β)−1(1 + 2/δ)2)(r/2L[Tr(AtA)/ρ(AtA) + 1] + u/ρ(AtA)).

Set also d = [(1+1/β)−1(1+2/δ)2]−1 and b(A) = Tr(AtA)/ρ(AtA). Thus we have shown the

first part of the lemma.

Moreover, using the above inequality,
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E[η2(A) − σ2(Tr(AtA) + ρ(AtA))r/2(1 + L)]q+

≤
∫ ∞

0

σ2qquq−1e−
√

dr/2L[b(A)+1]+du/(ρ(AtA))du.

Consider the change of variable w = du/(ρ(AtA)) + dr/2L[b(A) + 1], so that

IE[η2(A) − σ2(Tr(AtA) + ρ(AtA))r/2(1 + L)]q+

≤
(

σ2ρ(AtA)

d

)q ∫ ∞

dr/2L[b(A)+1]

(w − dr/2L[b(A) + 1])q−1e−
√

wdw.

The last expression is in turn bounded by
(

σ2ρ(AtA)

d

)q ∫ ∞

dr/2L[b(A)+1]

e−
√

w[wq−1 + (dr/2L[b(A) + 1])q−1]dw

≤ Cqk
−q
1 [k

q−1/2
2 + kq−1

2 ]e−
√

k2,

ending the proof.
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