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INVERSE SOUND SOURCE RECONSTRUCTION BY
EXTERIOR SPHERICAL ACOUSTICAL HOLOGRAPHY
WITH MODEL ADAPTATION
Alexander Mattioli Pasqual, Vincent Martin
Institut Jean le Rond d’Alembert (UMR 7190), UPMC Univ Paris 06, CNRS, 2 place de la
Gare de Ceinture, 78210, Saint-Cyr-l’Ecole, France, e-mail: ampasqual@gmail.com

Spherical acoustical holography (SAH) can be used to reconstruct the 3D sound field from
acoustic data on a spherical surface, called the hologram sphere. In exterior SAH, the holo-
gram sphere encloses all the sound sources and free-field conditions are assumed. Then, the
acoustic variables can be reconstructed at any point exterior to the smallest sphere surrounding
the sources (called the source sphere) by using a radiation model written in terms of spherical
Hankel functions and spherical harmonics. This work deals with the inverse problem of re-
constructing the radial particle velocity on the source sphere from the sound pressure field on
the hologram sphere. This requires prior knowledge of the position of the source sphere inside
the hologram sphere; as far as possible, these spheres must be made concentric to simplify
the reconstruction equations. If the relative position of the hologram and source spheres is not
known, an estimated position must be used. This may yield an inadequate propagator, so that
the acoustic velocity field is poorly reconstructed. This contribution discusses the role of the
relative position of the spheres in inverse source reconstruction. In addition, some strategies
to improve the radiation model by adapting the source position from the hologram data are
investigated.

1. Introduction

Spherical acoustical holography (SAH) is an imaging technique to reconstruct a 3-D sound field
from available data on a spherical surface (the “hologram sphere”), which requires a wave propagation
model [1]. The reconstruction equations differ essentially whether the problem of interior or exterior
SAH is dealt with. In interior SAH, the sound sources surround the acoustic domain, and thus they
are located outside the hologram sphere. In exterior SAH, the sources are located inside the hologram
sphere and free-field conditions are assumed, so that the acoustic field can be reconstructed at any
point exterior to the smallest imaginary sphere surrounding the sources (the “source sphere”). This
work deals with exterior SAH. In particular, we focus on the inverse problem of reconstructing the
radial particle velocity on the source sphere from the sound pressure on the hologram sphere.

Since the sound pressure is known on a spherical surface, it is naturally subjected to spherical
harmonic analysis [1, 2]. The spherical harmonics representation of a sound field depends on the po-
sition and orientation of the coordinate system, i.e., translations and rotations have significant effects
on the expansion coefficients [3]. Moreover, unlike rotation of the coordinate axes, translating the
origin also changes the number of harmonics that must be retained to obtain an accurate representa-
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tion of the acoustic field. Some recent studies [4–6] have described the effects of the translation on
the spherical harmonics decomposition of sound pressure fields, and proposed some cost functions to
obtain an optimal decomposition center that minimizes the high-order spherical harmonics content,
so that a more compact description of the acoustic field is obtained. However, these works do not deal
explicitly with inverse sound source reconstruction.

In this paper, the origin of the coordinate system is the center of the source sphere. Clearly,
its position inside the hologram sphere is a parameter of the radiation model, which is assumed to
be known in conventional exterior SAH; as far as possible, the spheres must be made concentric in
order to simplify the reconstruction equations. However, in practice, the source may not be precisely
positioned inside the hologram sphere. If so, a nominal position can be used, which may degrade
the holography results. This work investigates the effects of the source position on the inverse recon-
struction of its radial particle velocity. In addition, we discuss some strategies to estimate the source
position from the sound pressure field it radiates on the hologram sphere. The paper is organized as
follows: Section 2 provides a description of the problem to be addressed. Section 3 deals with the
spherical harmonic analysis of the pressure field on the hologram sphere with a given but arbitrary
position of the decomposition center. Section 4 focuses on the reconstruction equations and on two
cost functions that can be used to estimate the source position. Finally, Sec. 5 gives simulation results
in order to illustrate the ideas presented throughout the paper.

From a general point of view, the problem addressed in this paper consists in adapting a param-
eter of a propagation model in order to minimize a given cost function. Here, the model describes
the sound radiation from the source, and the parameter that is to be adapted is its position. If an
adequate cost function is used, the optimal position leads to the lowest reconstruction error, which
corresponds obviously to the real position of the source. It is worth mentioning that Martin et al. [7]
applied this approach to a related acoustical problem, that of planar near-field acoustical holography
with generalized impedance boundary conditions.

2. Problem description

Throughout this paper, a harmonic time dependence e−ιωt is assumed, where ι ≡
√
−1, ω is

frequency, and t is time. Lower and upper case bold letters indicate vectors and matrices, respectively.
Let Γh and Γs be imaginary spheres with radius rh and rs, centered at C and O, respectively.

They enclose all the sources in the acoustic domain, such as the hermetic compressor depicted in
Fig. 1a. Γs is the smallest sphere surrounding the sources, which will be referred to as “source
sphere”. Also, let P be the space of continuous functions defined on Γh and p(x) : |x| ≥ rs be the
free-field sound pressure produced by the sources, where x is the position vector in relation to the
origin O. The sound pressure is given only at xh ∈ Γh, which defines the “hologram sphere”.

C C

(a) (b) (c)

Figure 1: Illustration of the exterior SAH: (a) Two imaginary spheres Γh and Γs enclose a source
that radiates under free-field conditions; (b) d known: The radial particle velocity (vs) on Γs is re-
constructed from the sound pressure (ph) on Γh; (c) d unknown: The radial particle velocity (ṽs) on a
translated sphere Γ̃s is reconstructed from ph and a nominal source position (d̃).
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Exterior SAH can be used to reconstruct the sound field at any point exterior to or on Γs from
ph ≡ p(xh) ∈ P. In particular, we are interested in the inverse problem of determining the radial
particle velocity vs ≡ v(xs) : xs ∈ Γs, as shown in Fig. 1b, where d ≡

−→
CO. This requires a radiation

model that satisfies the Helmholtz equation and the geometrical configuration of the problem. Since
d is clearly a parameter of the model, it must be known a priori. As far as possible, the sources
position must be set so that Γh and Γs are concentric (d = 0) to simplify the reconstruction equations.
However, in practice, the sources may not be precisely positioned inside the hologram sphere. If so,

a nominal position d̃ ≡
−→
CÕ can be used in the holographic reconstruction, which leads to the radial

particle velocity (ṽs) on a translated source sphere (Γ̃s), as illustrated in Fig. 1c. Γ̃s will be referred to
as “equivalent source sphere”. This work investigates the effects of δd ≡ d − d̃ on the inverse sound
source reconstruction, as well as some strategies to estimate d from a given ph.

3. Spherical harmonic analysis of the sound pressure field

Let r ≥ 0, 0 ≤ θ ≤ π, and 0 ≤ ϕ < 2π be spherical coordinates. Accordingly, the position
vector is x̃ = r sin θ cosϕex + r sin θ sinϕey + r cos θez, where ex, ey, and ez are the versors of the
Cartesian coordinate system centered at the origin Õ. If the equivalent source sphere in Fig. 1c has a
number sufficiently large of degrees of freedom, it is able to produce a given sound pressure field ph
on Γh regardless of d̃. The sound pressure it radiates, p̃(x̃) : |x̃| ≥ rs, can be written as [1]

p̃(x̃) =
N∑

n=0

n∑
m=−n

Cm
n (ω, d̃)hn(kr)Y m

n (θ, ϕ) =
N∑

n=0

n∑
m=−n

γmn (r, d̃)Y m
n (θ, ϕ), (1)

where k is the wave number, Cm
n are expansion coefficients, hn are the spherical Hankel functions of

the first kind, Y m
n are the spherical harmonics, and

γmn (r, d̃) = Cm
n (ω, d̃)hn(kr) (2)

is the so-called “spherical wave spectrum” of p̃ on a sphere defined by |x̃| = r [1]. Note that Cm
n are

obtained from ph, and thus they depend on d̃.
Here, we only deal with band-limited functions, i.e., Cm

n = 0 if n > N , so that the series has
N ′ ≡ (N + 1)2 terms. In fact, the order N required to ensure that p̃(x̃h) = ph : x̃h ∈ Γh depends on
d̃ in a difficult to predict way [3–6]. In this work, N is made large enough so that p̃(x̃h) ≈ ph for the
whole d̃ range considered. Clearly, if d̃ = d, one has p̃(x̃) = p̃(x) ≈ p(x) : |x| ≥ rs.

3.1 Concentric spheres

It is known that Y m
n are orthonormal functions over the unit sphere (see, e.g., Ref. [2]). There-

fore, if Γh and Γ̃s are concentric (d̃ = 0), the expansion coefficients in Eq. (1) are given by

Cm
n (ω, 0) =

1

hn(krh)

∫ π

0

∫ 2π

0

phY
m
n (θ, ϕ)∗ sin θdθdϕ, (3)

where the asterisk indicates complex conjugate.
Since Cm

n depends on frequency and |hn| increases rapidly with n for small arguments, it is
helpful to use the set of coefficients γmn (rh, 0), which is the spherical wave spectrum of ph. In this
case, the Parseval’s theorem,∫ π

0

∫ 2π

0

|ph|2 sin θdθdϕ =
∞∑
n=0

n∑
m=−n

|γmn (rh, 0)|2 ≈
N∑

n=0

n∑
m=−n

|γmn (rh, 0)|2, (4)

shows that γmn rather than Cm
n gives the contribution of the mode nm to the total energy of ph.
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3.2 Non-concentric spheres

For the sake of notation convenience, it is useful to combine the coefficientsCm
n into the column

vector c ∈ CN ′ , and the functions hn(kr)Y m
n (θ, ϕ) into the column vector s(x̃), so that ci ≡ Cm

n and
si(x̃) ≡ hn(kr)Y

m
n (θ, ϕ), with i = n2 + n+m+ 1 for linear indexing. Then, Eq. (1) becomes

p̃(x̃) = s(x̃)Tc. (5)

If d̃ ̸= 0, the sphere Γh is described by a radial coordinate, r, that depends on (θ, ϕ). As
a consequence, unlike for d̃ = 0, there is not a simple integral to evaluate ci because si are not
orthogonal over Γh. In this case, c can be obtained by solving the least-squares minimization problem,

min
ĉ
R(ĉ) = min

ĉ
||s(x̃h)

Tĉ − ph||, (6)

where ĉ ∈ CN ′ , || · || = ⟨· , ·⟩1/2 is the 2-norm, ⟨· , ·⟩ is the inner product, and R is the residual norm.
Throughout the paper, the norms and inner products of P and CN ′ will be denoted by || · || and ⟨· , ·⟩.
We omit indices indicating the space because it will become clear from the context.

Problem (6) is convex and has an analytical solution given by

c = A−1b, (7)

where A ∈ CN ′×N ′ with Aij = ⟨sj(x̃h), si(x̃h)⟩, and b ∈ CN ′ with bi = ⟨ph, si(x̃h)⟩.
Notice that, for low frequencies and largeN , the matrixAij = ⟨sj(x̃h), si(x̃h)⟩ is ill-conditioned

due to the very different decay rates of hn. In order to overcome this difficulty, γmn (rh, d̃) can be used
instead of Cm

n . In matrix/vector notation, Eq. (2) becomes

γ = Hc, (8)

where H ∈ CN ′×N ′ is a diagonal matrix with Hii ≡ hn(krh), and γi ≡ γmn (rh, d̃), i = n2+n+m+1.
Then, by letting γ̂ ≡ Hĉ, substitution of Eq. (8) into problem (6) leads to

min
γ̂

R(γ̂) = min
γ̂

||s(x̃h)
TH−1γ̂ − ph||, (9)

whose solution is given in Eq. (7), with γ = γ̂opt = A−1b, Aij =
⟨
sj(x̃h)H

−1
jj , si(x̃h)H

−1
ii

⟩
, and

bi =
⟨
ph, si(x̃h)H

−1
ii

⟩
.

For rh >> |d̃|, the arguments of the spherical Hankel functions in H and s(x̃h) are nearly the
same. If so, d̃ has no appreciable effects on the conditioning of problem (9), which is well-posed.

4. Reconstruction of the radial particle velocity

4.1 Reconstruction equation

The solution of problem (9) leads to γmn (rh, d̃). Then, ṽs can be calculated by [1]

ṽs =
1

ιρc

N∑
n=0

n∑
m=−n

h′n(krs)

hn(krh)
γmn (rh, d̃)Y m

n (θ, ϕ) =
N∑

n=0

n∑
m=−n

ψm
n (rs, d̃)Y

m
n (θ, ϕ), (10)

where ρc is the characteristic impedance of the fluid, h′n is the first derivative of hn,

ψm
n (rs, d̃) =

1

ιρc

h′n(krs)

hn(krh)
γmn (rh, d̃) ≡

1

ιρc
Gn

(
krs,

rh
rs

)
γmn (rh, d̃) (11)
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is the spherical wave spectrum of ṽs, and Gn is the inverse propagator.
Figure 2 shows |Gn| as a function of krs for rh/rs = 2, 4, and 6. It can be noticed that |Gn|

increases significantly as krs decreases, and n and rh/rs increase. Therefore, inverse sound source
reconstruction is usually an ill-posed problem, i.e., small measurement errors on ph (and thus on
γmn (rh,d)) can be greatly amplified, so that large errors may occur on the reconstructed velocity. This
can be dealt with by using a low-pass filter in the spherical harmonic domain [8], which, however,
reduces the spatial resolution of the reconstructed velocity field.
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Figure 2: Inverse propagator up to order n = 4 as a function of krs for rh/rs = 2, 4, and 6.

In this work, it is assumed that ph is free from errors and that Gn can be accurately evaluated
in a digital computer. Thus, if d̃ = d, one has ṽs = vs with no need of low-pass filtering. It is worth
noting that, unlike measurement errors, the use of a nominal d̃ ̸= d leads to biased errors on the
reconstructed field, so that they cannot be reduced by low-pass filtering. In the following, we discuss
two cost functions that can be used to estimate d from ph, and thus to reduce such biased errors.

4.2 Model parameter estimation

As stated before, the number of spherical harmonics required to accurately describe ph depends
on d̃. As |δd| = |d−d̃| increases, more terms must be retained in the spherical harmonic expansion [4,
6]. Thus, the minimal point of a cost function that penalizes high-order harmonics can be a good
estimation of d. This paper investigates the following two cost functions:

J1(d̃) =
∑N

n=0 n
∑n

m=−n |ψm
n (rs, d̃)|2∑N

n=0

∑n
m=−n |ψm

n (rs, d̃)|2
, (12)

and

J2(d̃) = 1−
∑N̄

n=0

∑n
m=−n |ψm

n (rs, d̃)|2∑N
n=0

∑n
m=−n |ψm

n (rs, d̃)|2
. (13)

Because of the factor n in the summation, J1 increases significantly as the contribution of high-order
spherical harmonics increases. Unlike J1, J2 requires a cut-off order N̄ < N , so that this function
measures the contribution of the spherical harmonics of orders n > N̄ ; note that 0 ≤ J2 ≤ 1. J2
would benefit from prior knowledge of the spatial resolution of the source velocity pattern, so that N̄
could be easily determined. In this case, J2 = 0 if d̃ = d.

These cost functions were proposed by Rafaely [4] in order to evaluate the spectral changes in
the pressure field due to translation of the coordinate system, and thus this author formulated them in
terms of γmn instead of ψm

n . Since we are interested in reconstructing the velocity field on a source
sphere whose radius is known, it is more natural to use ψm

n for the purposes of this work.

5



18th International Congress on Sound and Vibration, 10–14 July 2011, Rio de Janeiro, Brazil

5. Simulation results

In order to illustrate the ideas discussed throughout the paper, this section presents simulation
results corresponding to a source sphere (Γs) of radius rs placed at d = (0, 0, 0.1rs). We investigate
four axisymmetric velocity fields (vs) on Γs with the following wave spectra (ψm

n = 0 if not specified):

(a) ψ0
0 = 1;

(b) ψ0
1 = 1;

(c) ψ0
0 = 1, ψ0

1 = 0.3, ψ0
2 = 0.1;

(d) ψ0
0 = 0.2, ψ0

1 = 1, ψ0
4 = 0.1.

Figure 3 shows these radial velocity fields, where the shape and the color map indicate, respectively,
the amplitude and phase (in degrees) of vs. Notice that the vertical axis, z, is the symmetry axis.
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Figure 3: Axisymmetric radial velocity fields (vs) on Γs. The shape and the color map indicate,
respectively, the amplitude and phase (in degrees) of vs.

To obtain the “measured” pressure fields (ph) on Γh corresponding to the velocity fields shown
in Fig. 3, we let ρc = 415kg.m−2.s−1 and rh = 2rs. Two different krs values are considered:
krs = 0.1 and krs = 5.

For the inverse problem of determining ṽs from ph, we only deal with points Õ located on the
z axis due to the axisymmetry of ph. Therefore, only positions given by d̃ = (0, 0, zs) are considered
here. In addition, we let N = 11 in the spherical harmonics decomposition of ph (problem (9)) —
we have observed that this value ensures that ||p̃(x̃h) − ph|| < 0.001||ph|| for the whole d̃ range
considered, namely, −0.5rs ≤ zs ≤ 0.5rs. Since the spherical harmonics with m ̸= 0 are not
axisymmetric, only the harmonics with m = 0 are taken into account, which greatly reduces the
computational cost because we deal with N +1 instead of (N +1)2 functions. Finally, the usual inner
product of P is approximately evaluated from 30 samples, which correspond to the co-latitudinal
circumferences shown in Fig. 3. Area weighted factors are applied to the samples in order not to
privilege densely sampled regions on the sphere.

Figure 4 shows the normalized least-square error (||ṽs−vs||/||vs||) in velocity reconstruction, as
well as the cost functions J1 and J2 (cut-off order N̄ = 2) as functions of zs. These results correspond
to the velocity fields shown in Fig. 3 for krs = 0.1 and krs = 5. The vertical dotted line indicates the
real position of the source sphere.

The results reveal that even a small δd leads to a large error in the reconstructed velocity, so that
d̃ is a very important parameter of the radiation model. For krs = 0.1, the global minimal point of J1
occurs at: (a) zs = 0.1rs, (b) zs = 0.1rs, (c) zs = 0.34rs, and (d) zs = 0.1rs. Similarly, the global
minimal point of J2 occurs at: (a) zs = 0.1rs, (b) zs = 0.1rs, (c) zs = 0.1rs, and (d) zs = 0.09rs.
Thus, J1 and J2 give the correct source position for the cases (a) and (b). For the case (c), unlike J2,
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Figure 4: Error in velocity reconstruction (||ṽs − vs||/||vs||), and cost functions J1 and J2 (cut-off
order N̄ = 2) as functions of zs. Results corresponding to the real velocity fields shown in Fig. 3 for
krs = 0.1 and krs = 5. The vertical dotted line indicates the real position of the source sphere.

J1 fails significantly. For the case (d), J1 is able to correctly identify the source position, whereas J2
leads to a small error.

For krs = 5, the global minimal point (or points) of J1 occurs at: (a) zs = 0.1rs, (b) zs =
(−0.21, 0.41)rs, (c) zs = 0.13rs, and (d) zs = 0.35rs. For J2, it occurs at zs = 0.1rs in the four
cases under study. The source position is now easily identified for the case (a) by J1, but this cost
function fails for the remaining cases. Nevertheless, for the case (c), the “high-frequency” (krs = 5)
simulations lead to an optimal position that is closer to the real position of the source sphere when
compared to the “low-frequency” simulations (krs = 0.1). For the case (b) (dipole source), the real
position of the source corresponds to a local maximum point of J1, which is located between its two
symmetrical global minima. This has also been observed by Deboy [5]. Unlike J1, J2 presents a
similar behavior at low and high frequencies. Note that J2(0.1rs) = 0 for the cases (a), (b), and (c).
This is due to the fact that the chosen cut-off order (N̄ = 2) is larger than or equal to the spatial
resolution of the source, whereas J2(0.1rs) > 0 for the case (d).

The results show that using J1 to identify the source position might lead to very large errors in
inverse source reconstruction. On the other hand, if N̄ is properly set, the real position of the source
is ensured to be a minimal point of J2. However, J2 is less sensitive to zs than J1 in the neighborhood
of the real position. Hence, in practice, J2 cannot be sufficiently robust to identify the source position.
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6. Conclusion

This paper has addressed the issue of inverse sound source reconstruction by exterior SAH. In
particular, the effects of the source position on the reconstructed velocity field have been studied. In
addition, we have investigated two cost functions to estimate the position of the source sphere from
the sound pressure it radiates on the hologram sphere.

It has been shown that using a nominal position with a small deviation from the real position
leads to large errors in the reconstructed velocity field. Thus, the position of the source sphere inside
the hologram sphere must be precisely known in order to produce meaningful results. However, the
cost functions investigated here are not always able to accurately identify the source position. Hence,
the discussion of source position identification based on spherical harmonic analysis is left open for
future work.
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