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Abstract—The economic stakes of advertising on the Internet -
and in particular, of auctions for keywords in search engines- are
enormous and still increasing. We focus in this paper on situations
where bidders (advertisers) on sponsored search auction systems
have a limited budget, so that they may not be able to afford to
participate in all auctions.

Using a game-theoretical model of the strategic interactions
among advertisers, we analyze the equilibrium strategies in terms
of bidding frequencies, in the case of one monopoly search
engine and when two search engines are in competition. Our
results exhibit the importance for search engines to develop their
attractiveness to customers, due to the impact this has on auction
revenues.

Index Terms—Sponsored auctions, Budget limit, Game Theory

I. INTRODUCTION

While the Internet continues to soar in terms of available

bandwidth and number of users, the economics of online

services has evolved so that more and more services are

proposed for free, the providers basing their business models

on advertising. The most famous example is Google, that

offers a multiplicity of free services (e-mail, data storage,

website hosting, ...) and yet raised US$10 billion in 2006 in

advertising revenues [1].

For search engines, a large part of those revenues comes

from the so-called sponsored search auctions, or adword

auctions, that are auctions run among advertisers to have

their ad displayed next to -or above- the normal (called

organic) results of the user search for some given search words.

Indeed, advertisers expect that ads related to the searched

words are likely to interest the user and lead to a sale; they

are therefore willing to pay to have their ad appear in a

good position on the screen, and/or get clicked, when users

search for particular keywords. Since the economic stakes

of adword auctions are enormous, it can be expected that

advertisers rationalize their strategies, possibly taking into

account the competitors decisions. Therefore, game-theoretic

models and tools [2] seem (highly) appropriate to analyze

the strategic decisions of interacting advertisers, and several

models have been developed for that context (see [3] and

references therein).

Nevertheless, the case when advertisers have a limited

budget to devote to advertising is often difficult to analyze,

and only few papers consider that constraint. We focus on that

issue in this paper, and on its effect on the bidding strategies

of advertisers. In particular, we investigate how the budget

limit affects advertisers depending on their willingness-to-pay

to have their ad displayed. We consider that advertisers know

only the distribution of the willingness-to-pay of their competi-

tors (but not the exact values), and that they use that knowledge

to anticipate the bidding behavior of the other advertisers as

well as to determine their own bidding strategy. Both the case

of one search engine and several competing search engines

are considered. In that latter case, search engines are actually

in competition since each advertiser decides how to split his

budget between them.
The remainder of this paper is organized as follows. Sec-

tion II presents our general model in terms of auction rules,

advertiser valuations, and knowledge. The equilibrium bidding

strategies are analyzed for the case of a single search engine

in Section III, while the case of two competing search engines

is treated in Section IV. Section V draws our conclusions and

suggests directions for future work.

II. THE MODEL

Table I provides an overview of the notation used in this

paper. Note that the last four variables in the table will

be indexed by the search engine when we consider several

competing search engines.

λ Arrival rate of user search requests
K Total number of advertisers
Bi Budget of advertiser i
f Probability density of valuation repartition among advertisers

q Click-Through Rate of the search engine
p(v) Probability of participating in an auction when one’s valuation

is v
H(v) Probability of winning an auction with bid v
E(v) Expected price paid per auction with bid v

Table I
MAIN VARIABLES AND NOTATIONS, FOR THE CASE OF ONE SEARCH

ENGINE.

A. Auction model

In the first part of this paper, we consider only one search

engine. We also consider searches for a single keyword along



the paper, user requests on the search engine occurring with

an average frequency of λ requests per time unit.

To simplify the analysis, we assume as in [4], [5] that

only one slot is available to display ads in the search engine

interface. The auction mechanism that we consider the search

engine implements is called Generalized Second Price: adver-

tisers submit bids, which are ordered according to a ranking

rule, and the ad of the highest ranked bidder is displayed in

the ad slot of the search engine. The price that the winner then

has to pay is charged only when the ad is clicked on by the

user who performed the search, and equals the minimum bid

that the winning advertiser could have set to keep his position

in the ranking.

Remark that the ranking can be based on the bid value only,

or can involve the probability of the ad being clicked on,

called its click-through rate (CTR). In the model presented

in this paper, we assume that the ads of all advertisers have

the same click-through rate q, so that bid-based and revenue-

based rankings are equivalent: the advertiser with the highest

bid wins the slots, and pays the value of the second-highest

bid when the ad is clicked on.

When only one slot is available to display ads, the Gen-

eralized Second Price mechanism is equivalent to the well-

known Vickey-Clarke-Groves mechanism [6], [7], [8], that has

good properties in terms of incentives: that scheme is incentive

compatible (i.e., truthfully bidding one’s value for the good

-here, the ad slot- is a dominant strategy) and individually

rational (i.e., when bidding truthfully the price paid is always

below the value for the good). As a result, it is expected that

advertisers always participate in the auctions and declare the

value that the slot has to them. Nevertheless, in our context

auctions occur repeatedly over time, and advertiser classically

have a limited advertising budget so that participating to all

auctions is not always feasible.

B. Bidders (advertisers) model

We consider a set K of K advertisers interested in a given

keyword. Each advertiser i knows the value of his ad being

clicked on by a customer: this is classically estimated as the

probability of the user ending up buying the product proposed

by the advertiser, multiplied by the average benefit on that

sale. That value is denoted by vi for each advertiser i ∈ K.

We assume that it is a private knowledge of each advertiser.

However, we consider that advertisers have some knowledge

regarding their opponents, as formalized below.

Assumption A: All advertisers know the total number K of

advertisers interested in the considered keyword. Moreover, all

advertisers assume that the valuations of their competitors are

drawn from a probability distribution that is common knowl-

edge, with cumulative distribution function F and density f ,

whose support is denoted by SF .

In other words, each advertiser knows how many com-

petitors he is facing in the auction game, and can use the

distribution of valuations to determine his bidding strategies,

possibly by inferring the strategies of the other advertisers.

Due to the incentive compatibility property of the auction

scheme, we assume that each advertiser i ∈ K bids truthfully,

i.e., declares his valuation vi, when he decides to participate

in an auction. The bidding strategy of an advertiser then

consists in decisions regarding whether to participate or not

in any auction when the keyword is searched for by a user.

The objective of each advertiser will be to participate in

the maximum number of auctions (because of the individual

rationality property) while not spending more on average that

his budget limit Bi per time unit.

Remark that the more advertisers participate in a given

auction, the fewer chances they have of winning the auction

and the more likely the winner is to pay a high charge.

Therefore advertisers should try to participate in different

auctions when it is possible, and thus a strategy consisting

in participating to all auctions until the budget is spent is

clearly not optimal. Since advertisers are not supposed to

be able to coordinate their actions so as to minimize the

price paid, the most natural way for them is to randomize

their participation: at each auction, each provider i ∈ K

chooses to participate with probability pi, and stays out of

the auction with probability 1 − pi. The strategic variable of

each provider i ∈ K is then his bidding probability pi, that

has to be computed so as to satisfy the budget constraint.

That bidding probability should depend on the value vi of a

clicked ad, and on the budget Bi of the advertiser. However, to

simplify the analysis we do not consider that latter parameter,

by considering advertisers with equal budgets.

Assumption B: All advertisers have the same budget limit

B. Formally, ∀i ∈ K, Bi = B.
Even if this assumption restricts the model, it still allows to

highlight the impact of other parameters in a strategic game

among advertisers, such as for example the click-through-rate,

the purpose of this paper.

III. EQUILIBRIUM STRATEGIES OF THE AUCTION GAME

A. Bidding function

In our model, advertisers differ only by their valuation vi,
so that the bidding probability should be a function of vi. We

denote by p that function: ∀i ∈ K, pi = p(vi).
The analysis of the game played among advertisers will then

consist in determining that bidding function p, so that bidding

with probability p(v) is the optimal strategy for an advertiser

with valuation v. In other words, we are looking for a function

p that constitutes a Nash equilibrium of the bidding game: for

each advertiser i ∈ K, bidding with probability p(vi) is the

best strategy when all competitors follow the same policy.

In the rest of this section, we derive conditions for p to be

an equilibrium bidding function, and we prove its existence.

B. Expected distribution of competitor bids

We consider an advertiser i ∈ K, with valuation vi. From

his point of view (i.e., given the information he has), all

K − 1 competitors are identical in distribution: each one has

a valuation v taken from the distribution F and participates in

each auction independently with probability p(v).



So advertiser i could reason by conditioning for a given

auction: a given competitor will a priori

• not participate in the auction, with probability

N :=

∫

v

(1− p(v))f(v)dv = 1−

∫

v

p(v)f(v)dv (1)

• participate in the auction with a bid in the interval [v, v+
dv] with probability p(v)f(v)dv.

Each advertiser can then compute the a priori cumulative

distribution H of the bid of one particular competitor, H(v)
being the probability that the competitor does not bid, or bids

a value below v:

H(v) = N+

∫ v

u=0

p(u)f(u)du = 1−

∫

u>v

p(u)f(u)du (2)

C. Expected winning probability and price paid per auction

An advertiser i ∈ K bidding vi in a given auction will win

the auction if all of his K − 1 competitors:

• either do not bid in that auction,

• or (non-exclusively) have a valuation below vi.

Given the information available to advertiser i, each com-

petitor submits a bid below vi or no bid at all with probability

H(vi), independently of each other. The a priori probability

Pwin(vi) of i winning an auction where he bids vi is thus

Pwin(vi) = H(vi)
K−1 =

(

1−

∫

v>vi

p(v)f(v)dv

)K−1

. (3)

We now compute the price that advertiser i expects to pay

when bidding vi. To do so, we compute the distribution

of the maximum value among the K − 1 potential bids

from the competitors. That cumulative distribution, giving the

probability that this maximum value is below some value v
(or that no other advertiser bids in that auction) is simply

Hmax(v) := (H(v))K−1. (4)

Indeed, the maximum of the potential bids of competitors is

smaller than v if and only if all bidders place a bid below v
or do not participate.

Finally, an advertiser is charged only if he wins the auction

and the user clicks on the ad. Therefore the price E(vi) that

advertiser i expects to pay when bidding vi in an auction can

be expressed as

E(vi) = q

∫ vi

v=0

vdHmax(v) (5)

= q

∫ vi

v=0

(K − 1)(H(v))K−2vh(v)dv, (6)

where h(v) is the right derivative of H at v, and equals

p(v)f(v) from (2).

Note that E(vi) can be written only in terms of the number

K of advertisers, the bidding function p, and the density f of

the valuation distribution:

E(vi) = q(K−1)

∫ vi

v=0

(

1−

∫

u>v

p(u)f(u)du

)K−2

vp(v)f(v)dv.

(7)

D. Equilibrium condition

We now express the condition for p to be an equilibrium

bidding function, i.e., for each advertiser i ∈ K with valuation

vi to choose to participate in each auction with probability

p(vi) if he knows that his competitors apply the same strategy.

So consider such an advertiser i, that assumes that all the

other providers j 6= i participate in each given auction with a

probability pj linked to their valuation vj through the formula

pj = p(vj). Recall that there are on average λ auctions per

time unit, and that when advertiser i bids his valuation vi on a

given auction, he expects to pay E(vi) on average as expressed

in (7); consequently his average budget spent per time unit is

λpiE(v) if advertiser i bidding probability is pi.
Now, if advertiser i wants to bid as often as possible while

conforming to his budget constraint B, his bidding probability

should be

pi = min

(

B

λE(vi)
, 1

)

, (8)

which should also equal p(vi) if p is an equilibrium bidding

function. Formally, the equilibrium condition is thus expressed

by the following (functional) fixed point relation:

∀v, p(v) = min

(

1 ,

B/(λq(K − 1))
∫ v

w=0

(

1−
∫

u>w
p(u)f(u)du

)K−2
wp(w)f(w)dw

)

(9)

We now prove that, under mild assumptions, such a bidding

function exists.

Proposition 1: Assume that the valuation distribution F
admits a density f and has a finite mass, i.e.

∫

f(v)dv < +∞.

Then there exists an equilibrium bidding strategy function p(·).
Proof: Let us denote by X the topological vector space

of functions from SF to R, with the topology of pointwise

convergence (a sequence (gn) in X converges towards g ∈ X
if and only if (gn(x)) converges towards g(x) for all x ∈ SF ).

Let Y ⊂ X be the set of functions in X with values in the

interval [0, 1]. That set is convex, and also compact from the

Tychonoff theorem.

We consider here the mapping T : Y 7→ Y such that for a

function g ∈ Y , T (g) is the function Tg ∈ Y defined by

Tg(v) = min

(

1 ,

B/(λq(K − 1))
∫ v

w=0

(

1−
∫

u>w
g(u)f(u)du

)K−2
wg(w)f(w)dw

)

(10)

for all v ∈ SF .

The function Tg can be interpreted as the bidding strategy

that an advertiser would implement if he considers that his

K − 1 opponents will apply the bidding strategy g.

Under the assumptions of the proposition, the mapping T
is continuous: consider a sequence (gn) in X that converges
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Figure 1. Equilibrium bidding strategies.

towards g ∈ X , then for any v ∈ SF the value Tgn(v)
converges towards Tg(v). Indeed,

• for any w ∈ SF , the term
(

1−
∫

u>w
gn(u)f(u)du

)K−2
gn(w) converges towards

(

1−
∫

u>w
g(u)f(u)du

)K−2
g(w) by dominated

convergence;

• those terms being smaller than 1, again by dominated

convergence (using here the assumption of F having a

finite mass) the integral in the denominator in (10) for the

functions (gn) also converges towards the corresponding

integral for the limit function g;

• finally we apply the continuity of the inverse function and

of the function x 7→ min(1, x).

T being a continuous mapping and the set Y being convex

and compact, the Schauder fixed point theorem [9] ensures the

existence of a fixed point of T . That fixed point is a solution of

the equation (9), i.e., an equilibrium bidding strategy function.

E. Numerical analysis

We present here some numerical results that have been ob-

tained for a uniform distribution of valuations over the interval

[0, 1], i.e., f(v) = 1 if v ∈ [0, 1] and 0 otherwise. Starting with

an initial bidding strategy function, we successively computed

the corresponding best-reply functions (the functions p(v) that

maximize the utilities), applying the right-hand side of (9),

until the bidding function stabilizes. It appeared that this

algorithm converged quite rapidly, the pointwise difference

between the current function and its best-reply being less than

10−6 after less than 25 iterations.

For the same set of parameters, we tried with different initial

bidding functions and always reached the same convergence

function. Although we were not able to prove the uniqueness

of the equilibrium bidding strategy function, those results

suggest that the equilibrium is unique, or at least that there

is a unique stable equilibrium.

Figure 1 displays that equilibrium bidding function when

advertisers have a budget limit B = 1, λ = 10 user searches

for the considered keyword occur on average per time unit,

with users clicking on the ad with probability q = 0.5.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Valuation v

W
in

n
in

g
p

ro
b

ab
il

it
y

K = 5

K = 10

K = 20

K = 50

K = 100

Figure 2. Winning probabilities at equilibrium (knowing that the player bids).

We remark that low-valuation advertisers bid more often

than high-valuation advertisers, since the latter are more likely

to win the auction and to spend their whole budget within few

auctions. For valuations below a given threshold, advertisers

simply participate in all auctions since they do not manage

to spend their whole budget. This for two reasons: first, since

GSP auctions ensure that the price paid is below the valuation,

then advertisers with valuation v will expect to pay less than

λqv per time unit; thus if v < B/(λq) then on average it is

impossible to spend the budget B. Second, as highlighted in

Figure 2 the probabilities of winning the auction are extremely

small when submitting a low bid.

Interestingly, we note in Figure 1 that equilibrium bidding

functions are not monotone in the number K of players (here,

advertisers): for example advertisers with valuation in the

interval [0.43, 0.7] bid more often when K = 10 than when

K = 5, while it is the opposite for advertisers with valuation

above 0.7. This can be interpreted as follows: when the number

of bidders is small, then high-valuation advertisers are almost

sure to win the auction they participate in, but they face few

other bids, whose maximum (the corresponding charge for the

winner) is more likely to be small. Therefore to spend the

whole budget those advertisers may have to bid more often. On

the contrary, for medium-valuation advertisers the difference in

the probabilities of winning the auction (the more competitors,

the fewer chances of winning) overcomes the effect of the

number of competitors on the price paid per auction won

(which diminishes when the winner has a low valuation).

The distribution H(v) expressed in (2) is plotted in Figure 3.

It increases linearly for low values of v since all corresponding

advertisers bid with probability 1, and then slows down.

Remark that the limit value of H at 0 is the a priori (i.e.,

not knowing his valuation) probability that a given competitor

decides not to bid, that is expressed in (1).

Finally, Figure 4 displays the price E(v) that an advertiser

expects to pay each time he bids v. In accordance with the

observations from Figure 1, low-valuation advertisers pay less

per auction when the number of competitors increases (since

they have fewer chances to win the auction), while high-

valuation advertisers will pay more (since they still frequently

win the auctions they participate in, but tend to face higher
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bids).

IV. BUDGET REPARTITION BETWEEN TWO SEARCH

ENGINES

We now consider that two search engines (e.g., Google and

Yahoo!) run auctions among advertisers for the considered

keyword, and we investigate the budget repartition of adver-

tisers between those two search engines.

A. Model

As in the previous section, we analyze the symmetric case

in terms of budgets and click-through rates: all advertisers are

assumed to have the same total budget B, and the same click-

through rate qℓ on search engine ℓ.
Consequently, at an equilibrium (if any), all advertisers will

apply the same bidding strategy (that will be a function of their

valuation v). Note that we implicitly make the assumption here

that advertiser valuations are identical on both search engines,

i.e., the probability of a click on the ad to lead to a sale is

independent of the search engine chosen by the user.

Both search engines differ by their success that is charac-

terized by the number of requests per time unit λℓ, and by the

probability qℓ of users clicking the ad. Differences in qℓ may

stem from differences in the populations choosing each search

engine, and/or in the interfaces that search engines propose.

From the previous analysis, actually only the product λℓqℓ

matters: it indeed represents the average number of clicked

ads per time unit, which is what advertisers want to “buy”

through the auction.

Each advertiser i has a total advertising budget B to spend,

and decides, depending on his valuation, how to spread that

budget between the two search engines. Equivalently, that

budget repartition decision can be interpreted in terms of

bidding probabilities pℓ,i on each search engine ℓ = 1, 2.

B. Equilibrium analysis

Using the same principles as before, we denote by pℓ(v) the

probability that an advertiser with valuation v bids, on each

auction of search engine ℓ, for ℓ = 1, 2.

Then for a given search engine ℓ, the probability Hℓ(v) that

some (random) advertiser does not bid or bids below the value

v is

Hℓ(v) = 1−

∫

u>v

pℓ(u)f(u)du. (11)

Likewise, when there are K advertisers, the probability

Pwin,ℓ(v) that an advertiser bidding v wins the auction is given

by

Pwin,ℓ(v) = (Hℓ(v))
K−1

=

(

1−

∫

u>v

pℓ(u)f(u)du

)K−1

, which is also the distribution of the maximum bid among

the K − 1 competitors.

Consequently, the expected price Eℓ(v) that an advertiser

pays when he decides to bid v on search engine ℓ while his

competitors follow the strategy pℓ is

Eℓ(v) = qℓ

∫ v

u=0

udHmax,ℓ(u)

= qℓ

∫ v

u=0

(K − 1)(Hℓ(u))
K−2uhℓ(u)du

where hℓ is the right derivative of Hℓ. The expected cost per

time unit of the bidding policy (p1, p2) is therefore

C = λ1p1(v)E1(v) + λ2p2(v)E2(v), (12)

where Eℓ(v) can be rewritten as a function of pℓ and f only:

Eℓ(v) =

(K−1)qℓ

∫ v

u=0

(

1−

∫

w>u

pℓ(w)f(w)dw

)K−2

upℓ(u)f(u)du.

When all advertisers have the same total budget B per time

unit, they should fix their bidding strategy so as to maximize

the expected payoff under the constraint that C ≤ B. For an

advertiser with valuation v, that expected payoff is

P := λ1p1(v)(vq1Pwin,1(v)− E1(v))

+λ2p2(v)(vq2Pwin,2(v)− E2(v)). (13)

The question becomes how to distribute the budget among

the two search engines: if for an advertiser with valuation v
an optimal solution is such that p1(v) > 0 and p2(v) < 1,

then this means that transferring one infinitesimal amount of



budget from search engine 1 to search engine 2 could only

decrease the payoff. From (12), to represent the same total

budget such a change in the budget repartition should translate

into probability changes dp1 < 0 and dp2 > 0 such that

dp2λ2E2(v) = −dp1λ1E1(v).

From (13), the optimality of (p1, p2) thus implies that such

a change would correspond to a revenue decrease:

0 ≥ dP = λ2dp2

(

(vq2Pwin,2(v)− E2(v))

−(vq1Pwin,1(v)− E1(v))
E2(v)

E1(v)

)

,

which gives

E1(v)(vq2Pwin,2(v)−E2(v)) ≤ E2(v)(vq1Pwin,1(v)−E1(v)),

i.e.,
E1(v)

q1Pwin,1(v)
≤

E2(v)
q2Pwin,2(v)

. This is natural, since the ratios

compared are the average prices for a won (clicked) auction: if

it is cheaper to have a customer click one’s ad on search engine

1 than on search engine 2, then transferring some budget from

SE1 to SE2 is not beneficial. Inverting the roles of the search

engines, we obtain the following optimality conditions, that are

necessary conditions for (p1, p2) to describe an equilibrium:

p1(v) > 0, p2(v) < 1 ⇒
E1(v)

q1Pwin,1(v)
≤

E2(v)

q2Pwin,2(v)
,(14)

p1(v) < 1, p2(v) > 0 ⇒
E2(v)

q2Pwin,2(v)
≤

E1(v)

q1Pwin,1(v)
.(15)

We can therefore infer the behavior (p̄1(v), p̄2(v)) of a

profit-maximizing advertiser with total budget B that assumes

that the opponents follow the bidding strategy (p1(v), p2(v)),
as described in Alg. 1.

Relation (16) corresponds to the case where the advertiser

budget is large enough to participate in all auctions. On the

other hand, (17)-(20) give the best-reply strategy when the

budget does not allow to always bid: advertisers then prefer the

most efficient search engine in terms of the metric
Eℓ(v)

qℓPwin,ℓ(v)
:

they put as much budget as they can on it, and devote the

possible remaining budget to the other search engine. For the

special case when both search engines have the exact same

value of the efficiency metric, then any splitting of the budget

B among the two search engines is a best reply.

Now, applying iteratively that best-reply algorithm to a

given starting bidding strategy does not converge in general.

Indeed, (19)-(20) describe an infinity of best replies, while the

choice of one of those best-replies affects the next iterations of

the algorithm: imagine that in case 2c the choice favors search

engine 1, then at the next iteration the bidding probabilities

will be such that search engine 2 becomes more interesting,

hence an oscillation.

Therefore, we look for symmetric equilibrium strategies,

i.e., equilibrium strategies (p1, p2) that verify the property

p1 = p2: each advertiser bids on both auctions with the

same probability. Indeed, such strategies will ensure that
E1(v)

q1Pwin,1(v)
= E2(v)

q2Pwin,2(v)
, which means that each advertiser

Alg. 1 Best-reply bidding strategy (p̄1(v), p̄2(v))

Input:

• distribution F of valuations of advertisers

• bidding strategy (p1(·), p2(·)) of competing advertisers

• valuation v and budget B of the considered advertiser.

For each search engine ℓ = 1, 2, compute the expected cost

per auction according to (7). and the probability of winning

an auction with bid v

Pwin,ℓ(v) =

(

1−

∫

u>v

pℓ(u)f(u)du

)K−1

.

1) if λ1E1(v) + λ2E2(v) ≤ B set

p̄1(v) = p̄2(v) = 1. (16)

2) else

a) if
E1(v)

q1Pwin,1(v)
< E2(v)

q2Pwin,2(v)
set







p̄1(v) = min
(

1, B
λ1E1(v)

)

p̄2(v) = max
(

0, B−λ1E1(v)
λ2E2(v)

) (17)

b) else if
E1(v)

q1Pwin,1(v)
> E2(v)

q2Pwin,2(v)
set







p̄1(v) = max
(

0, B−λ2E2(v)
λ1E1(v)

)

p̄2(v) = min
(

1, B
λ2E2(v)

) (18)

c) else if
E1(v)

q1Pwin,1(v)
= E2(v)

q2Pwin,2(v)
then choose any

p̄1(v) such that

max

(

0,
B − λ2E2(v)

λ1E1(v)

)

≤ p̄1(v) ≤ min

(

1,
B

λ1E1(v)

)

(19)

and set

p̄2 =
B − p̄1λ1E1(v)

λ2E2(v)
(20)

is indifferent between both search engines, but conforms to

(p1, p2) so that his competitors are also indifferent between

the search engines (typical of mixed equilibrium outcomes).

Furthermore, with the model we have defined it is natural to

look for symmetric strategies since search engines only differ

by their numbers of requests per time unit, and the click-

through rate on the ads they display: because only clicked

ads are charged, advertisers can consider that there are a total

of λ1q1 + λ2q2 clicked ads per time unit to compete for. The

question of selecting which auctions to participate in is exactly

the same as for a single search engine; we had considered

symmetric solutions (the probability of participating being the

same at each auction) based on intuitive arguments, and we

only apply here the same reasoning.

Remark that based on those arguments, the results presented

here can easily be generalized to the case of more than two

search engines in competition.



0 0.2 0.4 0.6 0.8 1
0

0.5

1

Valuation v

B
id

d
in

g
p

ro
b
ab

il
it

y
p
1
(v
)
=

p
2
(v
)

K = 5

K = 10

K = 20

K = 50

K = 100

Figure 5. Equilibrium bidding strategies at each SE.
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Figure 6. Winning probabilities at equilibrium (knowing that the player bids)
at SE i.

C. Numerical results

We present here the results that have been obtained when

applying successive (symmetric) best-replies to an initial sym-

metric bidding strategy (p1, p2) = (p, p). As in the previous

section, the bidding strategies converge rapidly (about 20

iterations for a 10−6 pointwise distance between the current

strategy and its best-reply). The curves displayed here are for

the set of parameters λ1 = λ2 = 10, q1 = 0.8, q2 = 0.5,

B = 1 and valuations uniformly distributed on [0, 1]. The

results are shown in Figures 5 to 8.

Note that the shapes of the bidding probability functions,

the winning probabilities, and the expected price paid per bid,

are similar to what we obtained for the case of a single search

engine. This is because from a mathematical point of view only

the total number of clicked ads per time unit has changed (it

was λq = 5 in Section III, and now equals λ1q1+λ2q2 = 13).

Since that number has increased, advertisers tend to bid less

frequently on each auction. Also, note that the expected prices

paid per auction on both search engines, displayed on Figure 7,

only differ by proportionality coefficients that are their click-

through rates, in accordance with (7). The budgets spent by

advertisers on both search engines differ as well by the same

coefficients.

We finally observe the effect of those coefficients, by

studying the impact of some variations in the click-through
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Figure 7. Expected price E1(v) paid by a user who bids v on SE 1 (multiply
by q2/q1 to get E2(v)).
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Figure 8. Budget spent on each SE.

rate of search engine 2, while the other parameter values are

unchanged (λ1 = λ2 = 10, q1 = 0.5, and B = 1). The

expected revenue of search engine 2 is plotted in Figure 9.

Interestingly, that total revenue appears to be a concave

nondecreasing function of its click-through rate. Similarly, it

would also be a concave nondecreasing function of its user

request frequency since advertisers are only sensitive to the

product request frequency×CTR.

This suggests that, when search engines can improve their

request rates (and possibly CTR) through some investments

to attract more customers and/or to target specific consumer

segments, anticipating the advertisers’ reaction should be taken

into account to make the optimal investment decisions.
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Figure 9. Expected revenue of search engine 2, per time unit, per advertiser.

V. CONCLUSIONS AND FUTURE WORK

Based on a game-theoretic model to analyze the bidding

decisions of information-limited and budget-limited advertis-

ers, we have shown that a bidding strategy equilibrium exists,

where each advertiser participates in each auction with a

fixed probability that depends on his valuation. At such an

equilibrium, high-valuation advertisers tend to bid less often

than low-valuation ones, because they win the auction more

often and reach their budget limit faster. When several search

engines run auctions to make revenue, they actually compete

to attract more advertisers and more users so as to raise higher

profits from ad auctions. We have observed that the expected

profit of a search engine is a nondecreasing concave function

of its number of requests per time unit, and of the click-

through rate on its ads. Consequently, a higher-level game

played among search engines who would anticipate advertiser

bidding strategies would be interesting to analyze.

Other directions for future work include relaxations of some

of the assumptions made in this paper: advertiser budgets could

differ among advertisers, and the case of several displayed ad

slots could be studied. The model could also be extended to

consider advertiser-related click-through rates, which would

moreover add another strategic decision for search engines,

that is to base their ranking scheme on bids only or on the

products bid×CTR (the so-called revenue-based mechanism).

Analyzing the game then played between search engines, as

has been done in [5], [10] for different advertiser models,

would be of interest.

Finally, we have assumed that advertisers bid truthfully,

based on the incentive properties of the (one-shot) auction

scheme. Nevertheless, here we have repeated auctions, which

opens the possibility for advertisers to bid below their valua-

tion so as to reduce the price paid when they win an auction.

Advertisers may have an interest to follow such a strategy

when their budget limit does not allow them to bid truthfully

on all auctions. That approach deserves some attention.
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