N

N

Designing operational control architectures of critical
systems by reachability analysis
Thibault Lemattre, Bruno Denis, Jean-Marc Faure, Jean-Francois Pétin,

Patrick Salaiin

» To cite this version:

Thibault Lemattre, Bruno Denis, Jean-Marc Faure, Jean-Francois Pétin, Patrick Salaiin. Designing
operational control architectures of critical systems by reachability analysis. IEEE 7th International
Conference on Automation Science and Engineering, Aug 2011, Trieste, Italy. pp.USB. hal-00612273

HAL Id: hal-00612273
https://hal.science/hal-00612273

Submitted on 14 Sep 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00612273
https://hal.archives-ouvertes.fr

Designing operational control architectures of critical systems
by reachability analysis

Thibault Lemattre, Bruno Denis, Jean-Marc Faure, Jean-Francois Pétin and Patrick Salaiin

Abstract— This paper presents a method that eases the
design of the operational architecture of a control system by
providing, from the knowledge of some characteristics of the
functions that the control system must ensure and a generic
model of controller, an assignment solution of these functions
that satisfies capabilities and distribution constraints. This
method relies on the verification of a reachability property
on a network of communicating automata that models the
assignment process. The benefit of this proposal is illustrated
by a non-trivial case study from industry.

I. INTRODUCTION

Whatever the process, the operational control architecture
of an industrial process is composed of several controllers
(PLCs or real-time industrial computers) which gather in-
formation from the process through sensors, execute the
functions that are required to control correctly the process
(physical parameters regulation, tasks synchronization, oper-
ation modes management,) and generate signals towards the
process. A controller is then a physical device that permits
to implement one or several control functions by providing
the necessary hardware resources and in particular logic and
analogic interfaces from/to the process.

Moreover, for critical processes like for instance power
production and distribution, several kinds of controllers with
different integrity levels are to be used to build the opera-
tional architecture. Safety-related functions must indeed be
implemented in controllers with a high integrity level, with
several internal redundancies, while implementation of less
critical functions requires controllers with lower integrity
levels.

Design of the operational control architecture of a critical
process requires then to assign all the necessary control
functions to controllers, while satisfying constraints that are
related to:

« the capabilities (numbers of the different kinds of re-

sources) of the controllers;

o the distribution of functions, because two functions
may or may not be combined into a single controller
according to their safety levels.

In the current industrial practice, the assignment of func-

tions to controllers is performed in a non-automated way,

T. Lemattre, B. Denis, J.-M. Faure are with LURPA, ENS
Cachan, 61 av. du President Wilson, 94235 Cachan Cedex, France
{lemattre,denis, faure}@lurpa.ens—-cachan.fr

T. Lemattre, P. Salaun are with Electricite de France,
Recherche & Developpement, 6 quai Watier, 78400 Chatou, France
{thibault.lemattre, patrick.salaun}@edf.fr

J-FE. Petin is with CRAN, UMR 7039 CNRS,Nancy
Universite, BP 70239, 54506 Vandoeuvre les Nancy, France
jean-francois.petin@cran.uhp-nancy.fr

Generic model
of controller

Controller ¢!

Set of functions

NO|

e Function [7>> ‘};’" N
i s k NO, Function
| A M| fi NO,

A
NI NG
Function

z ¥

’ Assignment process

Constraints
on the
assignment
of functions

Controllers of the
operational architecture

Fig. 1. Aim of the study

based on the expertise of designers, and is a tedious and time-
consuming task. This paper aims to address this problem
by proposing a method (Figure 1) which provides, from the
knowledge of the characteristics of the control functions to
implement and a generic model of controller, an assign-
ment solution respecting the capabilities and distribution
constraints.

This proposal is based on the verification of a reachability
property in a discrete state space. Such an approach has
been already used successfully in [1] and [2]. This con-
tribution differs from these two references because time is
not considered in an assignment problem. It should be also
emphasized that this work constitutes a prerequisite for the
evaluation of the time performances of the operational archi-
tecture. The results obtained in this field by using simulation
techniques ([3], [4], [5]), formal verification [6], or algebraic
approaches [7], assume indeed that the processing times of
the controllers are known, which of course requires that all
functions have been previously assigned.

The paper is organized as follows. The elements of
the problem (control functions, controllers, and assignment
constraints) are formally defined in Section II. Section III
describes the way to obtain automatically an assignment
solution by reachability analysis, while the implementation
of this principle by using a formal verification tool is detailed
in Section IV. The value of this contribution is shown in
Section V thanks to two cases studies: a simple case with an

illustrative purpose, and a larger one to emphasize scalability.
Prospects for further work are given in Section VI.

II. MODELLING OF THE ELEMENTS OF THE
PROBLEM

This section aims at presenting all the notations used and
at illustrating the assignment process on a toy example. The
following assumptions are retained for this study:

« a controller can host between O to n functions, as long
as the assignment constraints are met;

o a function must be assigned to one and only one
controller;

« a function cannot be decomposed into smaller ones;

« there is no hierarchy of functions.

A. Notations used

Let F be the set of functions f', with i € {1,..,L} and C
the set of controllers ¢/, with j € {1,..,M}, L and M € N*.
The assignment of the function f' to the controller ¢/ will
be denoted by ¢/ « f'.

1) Formal definition of a function: A function f' € F is
defined as a 5-tuple (SL',NI},NI;,NO},NO},) with:

e SL' € SL (Safety Level); the lower the safety level is,
the more critical the function is. In the sequel of this
paper, the functions are ranked in four levels; hence, the
set SL is SL=1{1,2,3,4};

o NI, NI\ € N: numbers respectively of logic and analogic
input data of the function;

« NO},NO!, € N: numbers respectively of logic and ana-
logic output data of the function.

2) Formal definition of a controller: A controller deCis
defined as a 5-tuple (CF/, LIjay, Alax, LOYax, AOjnay) with:

« CFJ € CF (Criticality Factor) !, the lower the criticality
factor is, the more reliable the controller is; the initial
value (when no function is assigned to controller ¢/) of
CFJ is 0, Vj. CF/ is changed during the assignment
process while respecting the distribution constraints
given in 3;

o LI}, ALl € N maximum numbers of respectively
logic and analogic input interfaces of the controller;

o LO}ax,AOhax € N maximum numbers of respectively
logic and analogic output interfaces of the controller.

3) Assignment constraints: Two types of constraints de-
termine the assignment of functions in this study:
1) capabilities constraints in terms of numbers of in-
puts/outputs of the controllers,
2) constraints on distribution of functions.
« capabilities constraints ;
Let:
- Fj={f €F|c/ + f} be the set of functions f
which are assigned to ¢/;
- Ii={ie{l,...,L}|c/ « f'}.

I'This feature is also termed Integrity Level.

Then the following four conditions must hold:
vie{l,..,M}

Y NI < LEjg,)
i€l;
Y NIL <AL,)
iEIj
) NOj <LO},, 3)
iEIj
Y NO., < A0},)
iE[j

« distribution constraints ;

A relation R from SL to CF then defines the possible
associations between the safety level of a function and
the criticality factor of a controller :

Vje€{1,...M} such that Card(F;) >0, SL' ® CF/. For
safety reasons, the functions must be assigned to the
controllers according to their safety levels. The most
critical functions (SL' = 1) must be gathered in con-
trollers which do not host any less critical function. The
other functions may be gathered in a single controller
as follows:

— safety level 2 functions with safety level 3 func-

tions;
— safety level 3 with safety level 4 functions.
Hence, a controller ¢/ must host, when all functions
have been assigned:
— only safety level 1 functions, its criticality factor is
then equal to 1;

— safety level 2 and 3 functions only, its criticality
factor is then equal to 2;

— safety level 3 and 4 functions only, its criticality
factor is then equal to 3.

The relation R is then defined as follows:
This relation is depicted graphically in figure 2.

Fig. 2. Relation between Safety Level and Criticality Factor

B. Illustration of the assignment of functions

This toy example is based on a set of five functions
L2 3 4, f3, whose safety level is in {1,2} C SL, and
which are defined as follows:

o f1=1(2,54,1,3)

o f2=(1,5,6,2,4)

. 3=1(2,1,3,6,4)

° f4 = (1767875’2)

o 2=1(1,3,4,5,2)
These functions have to be assigned on a set of three
controllers ¢!, ¢?,c3, whose capabilities are the same:
Vj € {1,2,3}, Lax = Aljpax = LOmay = AOax = 10
One possible assignment of these functions to the three
controllers is described in Figure 3. This solution was
obtained by first assigning the function f' to the controller
¢!, thus fixing the value of its criticality factor to CF! = 2.
The function f> was then assigned to the controller ¢, thus
fixing the value of its criticality factor to CF> = 1. Then
the function f> was assigned to the controller ¢! because
its safety level is consistent with CF!' =2 and the sums of
the numbers of inputs/outputs of the two functions do not
exceed the capabilities of the controller. The function f* was
then assigned to the controller ¢> because the sums of logic
and analogic inputs of functions f> and f* are beyond the
capabilities of the controller ¢>. The function f> was finally
assigned to controller ¢?, because the remaining capabilities
of the controller ¢ were too small for f3 be assigned to it.
It should be noted that this solution is not unique. As the
controllers have the same numbers of inputs/outputs, other
satisfactory solutions can be obtained through a circular
permutation of controllers or simply by swapping two con-
trollers. These solutions are equivalent to the one detailed
above, provided no other constraint is introduced.

5 1 S 2 1 6 (9 5 3
! Fu||1c1mn 7> 7> Function 7> 7> Fm}]clmu 7> 7> Fugclmn 7> 7 Fugclmn 7>
ad o | Eagliwad o | P > >
4f3 6fm4 3f4 sfmz 4'/mz
Controller ¢! Controller ¢ Controller ¢*
6 7 8 10 6 8
!’ z ‘ o :
i I
V¥ 7} §e sy ¥
~> Logic 1O

- Analogic /0

Fig. 3. Example of assignment of five functions to three controllers

III. METHOD PROPOSED

The method proposed for the automatic assignment of

functions is based on two principles:

« modelling the assignment problem as a set of compet-
ing question-response mechanisms between models, in
the form of communicating automata, of assignment
requests and of requests acceptances;

« investigating whether the execution of this set, which
is a network of communicating automata, can lead to a
state reachable from the initial state where all functions
are assigned.

This section first presents the formalism used to construct
the request and acceptance models, which are then detailed.
The state of the network of automata characterizing the
assignment of all functions is then defined, which allows
to state the reachability property searched.

A. Definition of the formalism used

The formalism used is a network of automata communicat-
ing through shared variables and synchronized by transition
labels.

An automaton A is a N-tuple A = (S,X,L,T,Su,50,v0),
where:

« S is a finite set of locations;

« X is a set of n integer variables;

o L is a set of labels which can be decomposed into three

disjoint sets L;, L,, L;, where
— L; is the set of reception labels;
— L, is the set of emission labels;
— L; is the set of local labels (internal labels of an
automaton).

o T is asetof transitions (s,/,g,m,s") ESXLxGXxM xS,
where G is the set of guards (conditions on the variables
of X) and M is the set of updates on the valuations of
variables;

e S, is a set of marked locations;

e S0 is the initial location;

e Vg is the initial valuation of variables.

A trace (or execution) of A is a succession of evolutions from
the initial state: (so,vo) LN (s1,v1) 3 (52,12) - B (50, V).

A network of automata NA = A'||A?||...||[A” is defined as
NA = (S,X,L,T,Su,s0,v0), with:

e SCSIxSx.. x5

o« X=X'UX?U...UX"

« L=L'Ur?u..ur"

e TCSXLXGXMXS, where G is the set of guards
(conditions on the variables of X) and M is the set of
updates on the valuations of variables

o Spu=S8L x5 x..x8"

o 50 =5 X 53X . X 5

e Vo :X < N is the initial valuation of variables.

An evolution of NA(s,v) = (s/,v/) is possible if:

« an evolution occurs in one of the automata by firing
a transition ¢ containing a local label, the guard being
satisfied;

o two transitions 7, 8 ofa pair of automata (A%, AP) with

t¥ containing the label [€ L* and i containing the

label l,l,z € LP such that l,f‘ = l,l,i are fired simultaneously,
the guards of these transitions being satisfied.

B. Generic models of assignment request and of requests
acceptance

Figures 4 and 5 present respectively the generic model
of an assignment request sent by a function and of the
acceptance of requests by a controller; these models are
denoted 6 and «. The following conventions are used in
these models:

« the initial locations are indicated by a source arc;

o the marked locations are indicated by two concentric
circles;

« the location names are in bold;

« the label names are in italics and followed by an ! (resp.
?) for emission (resp. reception) labels;
« the variables updates are underlined.

Moreover, the guards which are always true and the internal
labels are not shown for brevity.

1) Assignment request model: The initial location of the
model is *Function not assigned’. Only one transition, which
corresponds to the emission of an assignment request can be
fired from this location. Once this request has been emitted,
the model waits (in the location *Assignment Possible?’) for
the response from an acceptance model, which can be:

o Refusal, then the model returns to the initial location;
o Ok, then the model evolves to the location “Function
assigned” which is a terminal marked location.

Function not

Request!

Assignment
possible ?

Ok?

Function
assigned

Fig. 4. Generic model of assignment request (&)

2) Requests acceptance model: From the initial loca-
tion, which is also marked, this model can evolve to the
location ’Checking constraints’ only upon reception of a
request from an instance of a model & for the function
% = (SLK,NIF,NI¥, NO¥,NOX)’. From this location, three
transitions may be fired:

o The first transition whose guard is termed ’Violation of
one of the assignment constraints’ represents the viola-
tion of one of the assignment constraints of distribution
or capabilities, and the label Refusal is then emitted. The
guard ’Violation of one of the assignment constraints’ is
then true iff at least one of the following fifth conditions
is not satisfied:

Y NIl +NIf < LI}, (©6)
ielj
Y NI+ NI} <AL, (7)
iGIj
Y NO|+NOj <LO},, (8)
i€lj
Y NO,+NOk < A0},)
iEIj

((CF/ =1ASLF =1)v
(CF/ =2 (SLF =2V SLF =3))v
(CF/ =3 A (SLF =3V SLF = 4))) (10)

The second transition whose guard is termed ’First
assignment’ represents the acceptance of a request
whereas no other function has been previously assigned
to the controller (guard ’First assignment’ true). This
guard is true iff conditions (6) to (9) are satisfied and:

CF/ =0 (11)
The variables Z NI;; Z Nlé; Z NOi; Z NO;, are then
iEIj iEIj iEIj iEIj

updated and the criticality factor CF/ is set to the value
of the safety level of the function if this level is smaller
than 4 for SL* = 4 then CF/ is set to 3.

The third transition whose guard is termed ’Additional
assignment’ represents the acceptance of a request
whereas at least one other function has been previously
assigned (guard ’Additional assignment’ true). This
guard is true if all conditions (6) to (10) are satisfied.
Only the variables: Z NIi; ZN (’l ZNO;; Z NOL, are

i€l i€l; i€l; i€l;
updated. The criticality factor CF/ remains unchanged.

In the latter two cases, the label Ok is emitted.

From the location *Analysis of the state of the controller’,

two evolutions are possible which correspond to:

the fact that all capabilities of the controller have been
reached :

Y NI = LIy i) NIy = Al

i€l j i€l j

ZNO? =LOJ,. ; ZNOL = AOJ,,. ; the guard "No
i€l; i€l;

other possible assignment’ is then true and the model
evolves to the marked location *Controller saturated’;
the fact that at least one capability of the controller is
not reached (guard ’other possible assignment’ true),
then the model evolves to the initial location ’Controller
waiting’.

Controller waiting

Violation of one

of the assignment
constraints

Refusal!

Additional
assignment
Ok!

assignment
Ok!

Othe Variables Variables
possible undate
assignment L

Analysis of
the state of the
controller
No other possible

assignment

Controller
Saturated

Fig. 5. Generic model (@) of requests acceptance

C. Instantiated model for a given functional architecture

This model is a network of communicating automata
NA = §'||82]...]|8% |t | o?]|....]|a™ that includes:
« as many instances (&', 82, ..., 8%) of the model in Figure
4 as there are functions,
« M instances (a',a?,...,aM) of the model in Figure 5;
the choice of M will be discussed in Section IV.
A synchronous evolution of two automata is possible only
if these two automata emit and receive one of the following
label pairs:
e Request! and Request?;
e Ok! and Ok?;
o Refusal! and Refusal?.

Controller waiting
Violation of one
of the assignment
constraints
Refusal!
Lock:=0

Function not
assigned

Lock ==
Request!

Checking constraint

Additional

assignment
Ok!

Update

Analysis of the
state of the controller
No other possible
assignment
Lock:=0
Controller
satured

Firstfassignment

Assignment
possible ?

Ok?

©

Lock := 1 (or 0) represent updates of the valuation of the variable Lock
(the variable is set (reset) when the transition is fired)

assignment

Lock:=0

Function
assigned

Lock == 0 represents a guard that is true when the valuation of Lock is
equal to 0
Fig. 6. Semaphore use

To avoid inconsistencies such as the fact that an instance
o emits a reply to an instance 8/ which is not the one
having emitted the assignment request, the question-response
mechanism must be designed as a critical section protected
by a semaphore. The achievement of this critical section is
described in figure 6 with the semaphore *Lock’.

An instance &/ can emit a request only when Lock is
equal to zero. As this Boolean variable is set by an instance
o' when it receives a request and reset when it emits
the response (Refusal or Ok) to this request, the question-
response mechanism between an instance 8% and an instance
o cannot be interrupted, i.e. only these two instances may
be involved in the assignment process from the emission of
the request to the response.

D. Definition of the reachability property searched

All the functions are assigned when the marked location
is reached in all the instances of 8. In this case, the active
location of the instances of @ may be the terminal location

or the initial location, which are both marked. Hence, the
reachability property to check can be informally stated as
follows:

From the initial state, is it possible to reach a state of the
network of automata such that the active location is a marked
location in all the automata of the network?

IV. IMPLEMENTATION WITH A FORMAL
VERIFICATION TOOL

A. Finding a solution

The techniques of formal verification by model checking
[8] aim to prove that a model satisfies or does not satisfy a
formal property, which may be a reachability property. It is
hence natural to consider the implementation of the method
proposed by using such a technique. This requires first to
formally state the property searched, given in textual way
in the previous section. Using the quantifiers of the CTL
temporal logic, this property, noted P, can be written:

P: EF Full assignment

Full assignment designating the state of the network such
that the active location is a marked location for all automata.
This property is verified if there exists at least one trace from
the initial state of the network which reaches the state Full
assignment.

The search for an assignment solution can be performed by
proving that the network of automata NA satisfies the above
property, which will be noted: NA |= P. This proof obviously
depends on the number M of instances of . For example, it
is pointless to try to assign two functions (L = 2) to a single
controller (M = 1) if these functions have inconsistent safety
levels. quever, we can note that if: Vi}, vj, NIli < LB,
NI < Alpgx, NOb < LOhax, NO!, < AOpax, M = L surely
leads to a positive proof. An examination of the trace leading
to the state Full assignment generally shows in this case that
some controllers are not used; only a number N < M of
controllers are hosting one or more functions.

B. Lessening the number of necessary controllers

The iterative proof process of algorithm 1 has been then
developed to reduce the number of controllers used in the
operational architecture. The first proof is performed with
M = L. If Card(I) controllers do not hold any function
at the end of the assignment process, then another proof
is attempted with a number of instances of o equal to
M —Card(I) — 1, and so on till the proof is negative.

V. CASE STUDIES
A. Choice of the formal verification tool

Several model-checking-based formal verification tools,
such as NuSMV, SPIN, UPPAAL, may be considered for
achieving the reachability analysis on which the search for
an assignment solution relies. The UPPAAL tool [9] was
selected because it has a very ergonomic graphical interface
and can provide an execution trace even in case of positive
proof. It is important to note that only these features have
motivated this choice; the ability of this tool to check

Algorithm 1 Search of an assignment solution lessening the
number of controllers
INPUTS: Features of the L functions
fleF=(SL,NIl, NI\, NO|,NO.), Vi€ {1,...,L}
Features of a generic controller
LI max Al max LOmax ’ AOmax
OUTPUTS: Minimum number N of controllers for an oper-
ational architecture.
List of the functions assigned to each controller
Fj={f €F|c/ + fi},Vje{l,..,N}
/* Initialization step: */
M+—LN+M
NA = §')|62]|...| 8- ' | a2]]...| o™
/* Iterative construction: */
while NA = P do
if 3F; = 0|j € {1,...,N} then
N+ M —Card(I) — 1 with
I= {Ij,j S {1,..,M}|Ij 20}
else
N+N-1
end if
end while
N+N+1
/* Display step: */
e N;
o Fj, je{l,..,N}.

properties on timed models does not constitute a selection
criterion, as the communicating automata considered in this
work are not timed.

In the following case studies, the UPPAAL parameters
have been set so that reachability analysis be done depth
first to fasten analysis.

B. First case study

This case aims to illustrate the approach. The functional
architecture consists of twenty functions which are defined
in Table 1, and the controllers features are as follows:
Vj€{l,...M}, LI}y = Alpay = LOhax = AOjay = 32

A first reachability analysis with an initial number of
controllers M = 20 provides a solution in which only N =5
controllers are hosting at least one function (15 controllers
are not used). By performing a new analysis with an initial
number of controllers M = 4, a more compact solution can
be found, in which 4 controllers are actually used. It is not
possible to further reduce the number of controllers, as an
analysis with M =3 does not provide any solution. The final
assignment solution for N =4 controllers is detailed in Table
II.

The durations of the various analyses required to obtain
this solution are given in Table III.

C. Second case study

To assess scalability of the proposal, a study based on 200
functions was subsequently undertaken. These 200 functions
are all different from each other, and their characteristics are

TABLE I
FUNCTIONS DESCRIPTION WITH L=20

Functions | SL' | NIj | NI, | NO; | NO,
1 1 3 5 2 4
2 1 4 6 1 3
3 2 3 7 2 1
4 2 3 4 4 3
5 2 7 5 6 2
6 2 7 2 8 6
7 1 4 5 2 4
8 2 3 6 4 5
9 1 3 7 4 2
10 1 7 2 6 4
11 3 3 5 2 4
12 4 4 6 1 3
13 3 3 7 2 1
14 4 3 4 4 3
15 3 7 5 6 2
16 2 7 2 8 6
17 4 4 5 2 4
18 3 3 6 4 5
19 4 3 7 4 2
20 1 7 2 6 4
TABLE II

CONTROLLERS FEATURES AND FUNCTIONS DISTRIBUTION FOR THE SET
OF FUNCTIONS OF TABLE |

/| CFi Fj Y NI | Y NI | Y NOp | Y NO,
icl; icl; icl; icl;
3 {2, 53} 7 13 3 4
X
2]{C{ f{ f{G 30 26 32 23
T (14 715
A3l 3 A 23 32 22 20
f‘7,lf‘82,f'79}
A1 £ flf; féo} 28 27 21 21
TABLE III

DURATION OF THE REACHABILITY ANALYSIS FOR THE SET OF
FUNCTIONS OF TABLE |

Initial number of controllers 20 5 4
Duration Unmeasurable | Unmeasurable | 6 s

Unmeasurable: Too small to be measured by simple means

randomly distributed as follows: Vi € {0,...,L},

SLi € {1,2,3,4}, {NIi €{0,...,9}, NI’ €{0,...,9},

NO; €{0,...,9}, NO, } € {0,...,9}.

The controllers used are all the same and their characteristics
are: Vj € {1,....M}, Ll = Aljpay = LOjnax = AOpay = 32.
A first reachability analysis was conducted, providing an
assignment solution in which some controllers are not host-
ing any function; the number of really useful controllers is
N = 37. The analysis performed with M = 36 also provides
a solution. The number of controllers required to achieve the
operational architecture cannot however be reduced further,
as the analysis performed with M = 35 controllers does not
provide any solution. The assignment solution hence uses at
least N = 36 controllers.

Table IV shows the durations of the different reachability
analyses conducted in this case study. These values show
that the approach proposed is quite feasible in the industrial
context of operational control architectures design.

TABLE IV
DURATION OF THE REACHABILITY ANALYSIS WITH L=200

Initial numbers of controllers 200 37 36
Duration 110s | 46s | 50s

VI. CONCLUSIONS AND FUTURE WORKS

This paper has first shown that assignment of control func-

tions with different safety levels on controllers can be for-
malized as a constraint satisfaction problem with arithmetic
constraints on integers that represent capabilities constraints
and logic constraints that model constraints on distribution of
functions. A novel approach to solve this issue has then been
proposed. This contribution is based on reachability analysis
in a network of communicating automata which models the
assignment process. The treatment of a non-trivial example,
by using a common verification tool has shown scalability
of this proposal.
Ongoing works are aiming at introducing new capabilities
and distribution constraints and to propose not only one
assignment solution but a set of solutions. Comparison to
other methods, like integer linear programming, is also
planned on the basis of several case studies.

REFERENCES

[1] Gerd Behrmann, Ed Brinksma, Martijn Hendriks, and Angelika Mader.
Production scheduling by reachability analysis - a case study. Paral-
lel and Distributed Processing Symposium, International, 3:140-147,
2005.

[2] S. Subbiah and S. Engell. Short-Term Scheduling of Multi-Product
Batch Plants with Sequence-Dependent Changeovers Using Timed
Automata Models. In 20th European Symposium on Computer Aided
Process Engineering, volume 28, pages 1201-1206, 2010.

[3] G. Marsal, B. Denis, J-M. Faure, and G. Frey. Evaluation of Response
Time in Ethernet-based Automation Systems. In Proceedings of the 11th
IEEE International Conference on Emerging Technologies and Factory
Automation, ETFA’06, Prague, Czech Republic, September 2006.

[4] P. Meunier, B. Denis, and J-J. Lesage. Temporal performance evaluation
of control architecture in automation systems. In Proceedings of 6th
EUROSIM Congress on Modelling and Simulation, Ljubljana, Slovénia,
September 2007.

[S] Dmitry A. Zaitsev. An Evaluation of Network Response Time using
a Coloured Petri Net Model of Switched LAN. In Proceedings of 5th
Workshop and Tutorial on Practical Use of Coloured Petri Nets and
the CPN Tools, pages 157-167, Aarhus, Denmark, October 2004.

[6] S. Ruel, O. De Smet, and J-M. Faure. Finding the bounds of response
time of networked automation systems by iterative proofs. In Proceed-
ings of the 13th IFAC Symposium on Information Control Problems
in Manufacturing (INCOM 2009), pages 1365—1370, Moscow, Russia,
June 20009.

[7]1 B. Addad and S. Amari. Modeling and Response Time Evaluation of
Ethernet-based control Architectures using Timed Event Graphs and
Max-Plus Algebra. In IEEE Conference on Automation Science and
Engineering, pages 418-423, United States, 2008.

[8] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
and P. Schnoebelen. Systems and Software Verification. Springer, 2001.

[9] G. Behrmann, J. Bengtsson, A. David, K. Larsen, P. Pettersson, and
W. Yi. UPPAAL implementation secrets. In Proc. of 7th International
Symposium on Formal Techniques in Real-Time and Fault Tolerant
Systems (FTRTFT), Oldenburg, Germany, September 2002.

