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Degassing cascades in a shear-thinning viscoelastic fluid
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Université de Lyon, Laboratoire de Physique, École Normale Supérieure de Lyon,

CNRS, 46 Allée d’Italie, 69364 Lyon cedex 07, France.

(Dated: July 28, 2011)

We report the experimental study of the degassing dynamics through a thin layer of shear-thinning
viscoelastic fluid (CTAB/NaSal solution), when a constant air flow is imposed at its bottom. Over
a large range of parameters, the air is periodically released through series of successive bubbles,
hereafter named cascades. Each cascade is followed by a continuous degassing, lasting for several
seconds, corresponding to an open channel crossing the fluid layer. The periodicity between two
cascades does not depend on the injected flow-rate. Inside one cascade, the properties of the over-
pressure signal associated with the successive bubbles vary continuously. The pressure threshold
above which the fluid starts flowing, fluid deformation and pressure drop due to degassing through
the thin fluid layer can be simply described by a Maxwell model. We point out that monitoring the
evolution inside the cascades provides a direct access to the characteristic relaxation time associated
with the fluid rheology.

PACS numbers: 05.45.-a, 47.57.-s, 83.80.Qr, 83.60.Rs

I. INTRODUCTION

Non-Newtonian fluids peculiar dynamics has focused
a large attention over the last decades. Their ability to
flow or break [1, 2], to exhibit viscous or elastic behavior
[3], thixotropy effects [4–6] or to sustain loads without
flowing [7, 8] opened a wide range of applications, in-
cluding cosmetics, food industry, environment and biol-
ogy. Among them, micellar fluids differ from polymers by
their internal dynamics: they continuously break and re-
structurate [9–11], and their internal kinetics determines
their length distribution - and, hence, their macroscopic
properties [12, 13].

The behavior of bubbles rising through such fluids is
complex, due, in particular, to the non-trivial coupling
between the bubble and the fluid rheology [14]. This has
prevented, up to now, a complete theoretical description
of the system, and favored experimental studies. Due to
the viscoelastic properties, the bubble shape is generally
elongated [3, 14–17], its tail ends by a cusp [14, 15], and
both its geometry and velocity oscillate during its rising
through the fluid [15, 16, 18]. In shear-thinning fluids,
the local perturbation due to a rising bubble - or a falling
sphere - creates a negative wake [19] and a corridor of re-
duced viscosity [20, 21]. As a consequence, successive
bubbles may interact one with the other [22–25], if the
emission period is shorter than the time for the pertur-
bation created by the bubble to vanish.

An extensive study of the degassing regimes when a
constant air flux is imposed at the bottom of a com-
plex, yield-stress fluid column (gel or immersed granu-
lar material) has revealed the existence of three different
regimes [25–27]. On the one hand, at low flow-rate, bub-
bles rise independently one from the other. On the other
hand, at high flow-rate, an open channel connects the
bottom nozzle to the fluid surface; this channel develops
instabilities, forming a ‘bubble chain’ [28]. Finally, at in-
termediate flow-rate, the system spontaneously oscillates

between the two previous regimes, exhibiting a complex
intermittent dynamics [25].

In this article, we extend these previous works to the
case of a fluid without yield stress, and for a thin fluid
layer, i.e., when the fluid height is smaller than the typ-
ical size of a bubble. We report the existence of a pe-
culiar degassing regime in a thin layer of micellar fluid
(CTAB/NaSal mixture). When a constant air flow is
imposed at its bottom, in the bubbling regime, the air
is released through periodic series of successive bubbles,
hereafter named cascades. When the layer is thin enough,
the cascades merely consists in successive opening and
closing of the fluid layer above the air injection point.
For convenience, these periodic degassing apertures will
also be named bubbles in the following. We measure the
overpressure at the base of the fluid column, at the in-
jection point. The main characteristics of the cascades
(periodicity, maximum overpressure) are analyzed in re-
gards with the fluid rheology. We show that inside a cas-
cade, the bubble properties vary continuously: the mean
overpressure drops, whereas the emission time increases.
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FIG. 1. Experimental setup. A constant air-flow is sup-
plied at the base of a thin layer of micellar fluid by an air-flow
controller F (flow-rate Q), via a chamber of volume V . h is
of the order of a typical bubble diameter (a few millimeters
to centimeters).
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The transition between two regimes inside the cascades
is directly linked to the fluid rheology and, in particular,
provides a direct measurement of the viscoelastic charac-
teristic time associated with the Maxwell fluid.

II. EXPERIMENTAL SETUP

The experimental cell consists of a cylinder made of
plexiglass (diameter 74 mm, height 270 mm), filled with
the fluid up to a height h (Fig. 1). Air is injected at
constant flow-rateQ (from 0.17 to 1.72 mL/s) through an
injection hole (diameter d = 2 mm) at the bottom of the
fluid column. The air-injection system consists of a mass-
flow controller (Bronkhorst, Mass-Stream series D-5111)
connected to a chamber of volume V , from which the air
flows at the column bottom. The volume of the chamber
can be easily tuned by changing the water level into the
chamber (see Fig. 1). The water itself makes it possible to
inject humid air inside the fluid, thus avoiding any drying
of the sample over the experimental time. A differential
pressure sensor (223 BD-00010 AB, MKS Instruments)
measures the variations of the overpressure δP inside the
chamber, corresponding to the pressure variations at the
bottom of the cell.

The fluid is a semi-dilute micellar system obtained
by a mixing at equimolar concentration, inside pure
water, sodium salicylate (NaSal, Sigma Aldrich) and
hexadecyltrimethylammonium bromide (CTAB, Sigma
Aldrich). The mixture of this two chemical components
causes the formation of a network of giant entangled mi-
celles, which break down and reform continuously [9].
On a macroscopic point of view, the fluid exhibits shear-
thinning, viscoelastic properties [29, 30], which can be
tuned by varying the fluid concentration c (from 0.03 to
0.5 mol.L−1). The rheology of these well-controlled mix-
tures is characterized by rheometer measurements (see
Appendix A and B). The height h of the thin layer ranges
from 5 to 35 mm. Unless specified, the results presented
here are for a typical height of 5 mm and a concentration
c = 0.1 mol.L−1.

III. DEGASSING REGIMES

When varying the system parameters (c, V,Q, h), we
observe three different degassing regimes through the
thin layer: a bubbling regime, for which bubbles are emit-
ted one after the other; an open channel regime, for which
the system is able to sustain a stable channel connecting
the injection nozzle at the base of the fluid column to the
fluid free surface; and an intermittent regime, for which
the system alternates spontaneously between the bub-
bling and the open channel regime – this latter pinching
off intermittently. Similar degassing regimes have been
reported in yield-stress fluids: gels [25] or in immersed
granular media [26, 27].
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FIG. 2. Phase diagram of the different degassing regimes
depending on the parameters (V,Q) for c = 0.1 mol.L−1 (a)
and c = 0.5 mol.L−1 (b) [(•) bubbles, (N) intermittence, (�)
open channel]. Dashed lines are eyeleads. The gray zone
correspond to the space of parameters where bubble cascades
are observed [h = 5 mm].

Typically, when increasing the injected air flow-rate
Q, all other parameters being constant, the system goes
from the bubbling, intermittent and finally open channel
regime (Fig. 2). When increasing the fluid concentra-
tion, it becomes easier for the system to sustain an open
channel, and it is necessary to go to higher volumes V
and smaller flow rate Q to observe the bubbling regime
(Fig. 2a and b) [31]. On the contrary, increasing the fluid
column height makes it more difficult to open a channel,
and shifts the regime boundaries toward smaller volumes
and higher flow rates. Note that the precise boundary be-
tween two different regimes is difficult to determine, due
to the finite acquisition time (the system may not have
the time to switch from bubbles to an open channel, or
vice-versa).

The formation of an open-channel can be qualitatively
explained. Indeed, due to the fluid shear-thinning prop-
erties (Appendix A), when a bubble rises through the
fluid, its wake is characterized by a local viscosity smaller
than the surrounding fluid. If the flow rate is large
enough, the following bubble will rise through a fluid
with a smaller effective viscosity – and thus, will rise
faster, and so on, until the system is able to sustain an
open channel through the fluid column. Note that this
channel does not resemble a cylinder, but rather a bub-
ble chain, similar to previous observations in yield-stress
and non yield-stress fluids [25, 28].
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FIG. 3. Top: Pressure signal displaying the gas discharge via bubble cascades. δPmax indicates the maximum overpressure
reached in the cascades. Middle: (a) The first bubbles in the cascade exhibit a linear pressure increase. The fluid starts flowing
only when the bubble is about to be emitted (pressure jump). (b) The last bubbles in the cascade exhibit a curved pressure
increase, characteristic of fluid deformation (flowing) and bubble growth. (c) Between two bubble cascades, an open channel
connects the air nozzle to the fluid free surface. The overpressure is constant, almost equal to zero (see text). Bottom: Detail
of the pressure signal for a bubble formation and emission inside a cascade: (1) linear pressure increase; the dashed gray line
corresponds to the linear pressure increase in the fixed volume V , δP = (P0/V )Qt, without any ajustable parameters (see text);
(2) bubble formation and growth; (3) the bubble pierces the free surface and the gas is released. Note the pressure oscillations
subsequent to the bubble emission [c = 0.1 mol.L−1, V = 147 mL, Q = 0.65 mL/s].

IV. BUBBLE CASCADES

In a wide range of fluid concentration (from c = 0.04 to
0.14 mol/L), when the fluid layer height h is of the order
of the size of a bubble (typically, h < 10 mm), we do
not observe, in the bubbling regime, successive bubbles
but rather periodic series of bubbles, hereafter named
bubble cascades. These cascades are clearly observed in
the overpressure signal δP recorded at the bottom of the
fluid column (Fig. 3, top).
The pressure signal corresponding to one cascade ex-

hibits successive rises and drops, each of them corre-
sponding to the pressure increasing in the chamber, fol-
lowed by a bubble emission (Fig. 3 middle, a and b).
After each bubble cascade, the overpressure remains at
δP ∼ 0 for a few seconds, before the next bubble cas-
cade (Fig. 3 middle, c). During this time interval, the air
escapes continuously through the thin fluid layer. The
value of the overpressure is given by the charge loss of
the air flow through the hole (roughly a few Pa, Fig. 3,
middle, c). This hole then suddenly closes, and the next

cascade starts. The sequence consisting of a bubble cas-
cade followed by a hole opened through the fluid layer
repeats periodically in time. The main goal of this work
is to describe thoroughly the cascades properties.

The general properties of the cascades are reported in
Figure 4. On the one hand, we observe that the time
interval between each sequence (cascade + hole) is very
stable and, over the range of parameters explored, does
not depend neither on the injected flow rate Q, nor on
the chamber volume V . The same observation is reported
for the maximum overpressure reached inside each cas-
cade (Fig. 4, inset). On the other hand, the number of
bubbles emitted per cascade, n, depends linearly on the
injected flow rate (Fig. 5a). The associated slope, dn/dQ,
varies with the chamber volume V . For h = 5 mm and
small volumes, we report a linear, decreasing relation-
ship dn/dQ = −ζV , where ζ is a constant (Fig. 5b, black
dots). For large values of V (> 105 mL) or larger height,
however, dn/dQ is independent of the chamber volume.
These results can be interpreted as follows.

For small h, the layer is of the order of a bubble height,
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FIG. 4. Time interval ∆tcasc separating a sequence ‘bubble
cascade + hole’, as a function of the air flow-rate Q. Inset

: Maximum overpressure δPmax reached in the cascades (see
Fig. 3). (Symbol, V [mL]): (•, 56), (◦, 71), (△, 83), (�, 161).
Dashed lines indicate the mean value of all the data.

and whenever a bubble is emitted, it pierces the layer.
Via the open channel thus formed, the overpressurized
air escapes the chamber. For small chamber volume V ,
the chamber reservoir quickly empties, and a dependence
on V is clearly seen. When V reaches higher values, it
acts as a pressure reservoir and dn/dQ remains roughly
constant.
For larger h, the air is no longer able to pierce the fluid

layer, and bubbles are emitted in the fluid, rise and burst
without connecting anymore the injection nozzle to the
fluid free surface. In this case, the overpressurized air
trapped in the chamber cannot escape directly through
the fluid, but via the successive bubbles. The bubble
size is fixed by the nozzle size and the fluid rheological
properties, and dn/dQ is independent of V .

The total volume of gas emitted during a cascade can
be written VT ∼ Q∆tcasc. As the number of bubbles
emitted per cascade always depends linearly on Q, we
can write n = αQ, where α = dn/dQ is a constant for a
given series of experiment (c, h and V fixed). We thus
find that the average gas volume emitted per bubble,
〈vb〉 = VT /n, is constant. For h > 5 mm, this constant
does not depend anymore on V (Fig. 5b).
Inside a cascade, however, the bubble properties (max-

imum overpressure and emission duration) vary continu-
ously (Fig. 3, top and middle). In the next two sections,
we investigate these variations, and see which informa-
tions they bring on the system.

V. EVOLUTION INSIDE A CASCADE

During the release of a single bubble, the overpressure
δP exhibits three different stages (Fig. 3, bottom). First,
we observe a linear pressure increase (Fig. 3, bottom, re-
gion 1). The overpressure signal then departs from the
linear tendency (Fig. 3, bottom, region 2) until the bub-
ble is emitted (sudden pressure drop, Fig. 3, bottom,
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FIG. 5. (a) Number of bubbles per cascade n as a function of
the air flow rate Q. (Symbol, V [mL]): (N, 48), (•, 56), (◦, 71),
(�, 105), (�, 161). The gray lines correspond to the linear
interpolation for each series of experiments (V fixed) [h =
5 mm]. (b) dn/dQ as a function of V . The series reported in
(a) display a linear, decreasing relationship up to V = 105 mL.
For larger fluid layer height, the slope is almost constant.
(Symbol, h [mm]): (•,5); (◦,8); (△,18); (�,27); (N,35). Inset:
dn/dQ as a function of the fluid concentration [V = 147 mL,
Q = 0.65 mL/s, h = 5 mm]. No apparent relationship is
found.

region 3). In this section, we describe each part of the
pressure signal, and show that a simple Maxwell model
can account for the different observations.

A. Linear pressure increase

When submitted to a sudden stress (pressure increase),
at a short time scale, the CTAB/NaSal mixture does not
flow, and the system is equivalent to a chamber of volume
V continuously filled by a gas flow Q. The overpressure
is given by

δP =

(

P0

V

)

Qt (1)

where P0 = 105 Pa denotes the atmospheric pressure.
The experimental slope is consistent with this linear pres-
sure increase (dashed gray line, Fig. 3 bottom, region 1),
without any adjustable parameters. In the following sec-
tion, we estimate the threshold pressure δPY above which
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FIG. 6. Maxwell model for the CTAB/NaSal. This simple
model consists in an ideal elastic spring (elastic modulus G′)
and a dashpot representing the viscous loss (viscosity η). r
and rn indicate the displacements generated by the rising bub-
ble and the dashpot shift after the nth bubble, respectively.

the fluid starts flowing when the pressure at its bottom
increases.

B. Threshold pressure δPY

After a certain time tY , associated with an overpres-
sure δPY (point Y , Fig. 3, bottom), the overpressure de-
parts from its linear increase. At this point, the fluid
starts flowing, and a bubble is nucleated and grows at
the tip of the injection hole (Fig. 3, bottom, region 2).
In order to estimate this threshold pressure, we describe
the fluid with a Maxwell model, consisting of an ideal
elastic spring attached to an ideal dashpot (Fig. 6). This
simple model represents the viscoelastic behavior of en-
ergy storage and viscous loss, which can be quantified by
the elastic (G′) and viscous (G”) modulus, respectively.
These modulii can be considered constant as a function of
the applied stress in a given frequency range (ω ∼ 1 Hz)
representative of the frequency of bubbles rising through
the fluid. The modulii are estimated from the plateau ob-
tained from oscillation measurements (see Appendix B,
Fig. 10) to G′ ∼ 50 Pa and G′′ ∼ 10 Pa.
The equation describing the opening of a hole of radius

r due to a bubble rising in the fluid layer can be written:

ξρr
d2r

dt2
= −

2γ

r
− αG′(r − rn) + δP − ρg∆h (2)

where ξ is a constant. The first term in the right-hand
side represents the closing force due to the fluid surface
tension γ, where γ ≃ 40 mN/m. The second term de-
scribes the elastic force which tends to shift the spring
back to its initial length, where α is a constant which
can be approximated to the inverse of the nozzle radius
2/d. δP is the pressure inside the chamber (Fig. 1) – and,
thus, inside the bubble which starts being generated at
the injection nozzle. Finally, the last term quantifies the
weight associated with the fluid layer height ∆h above
the newborn bubble. At the limit where the fluid starts
flowing, r ∼ d/2, ∆h = h and the threshold pressure,
given by the condition d2r/dt2 ≥ 0, can be written

δPY =
4γ

d
+ ρgh+

2G′

d

(

d

2
− rn

)

. (3)
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Before the emission of the first bubble in the cascade,
r0 = 0 and we can estimate δPY ∼ 180 Pa, which is
consistent with the pressure signal measured in the ex-
periments (Fig. 3, top).
As the bubble properties vary continuously inside the

cascade, we investigate the evolution of δPY as a function
of the bubble number. We find that, in the main part of
the cascade, δPY is a linear, decaying function of the
bubble number (Fig. 7). The corresponding slope, con-
stant from one cascade to the other, increases with the
fluid concentration (Fig. 7, inset). This linear relation-
ship can be explained by a simple heuristic model, based
on the key ingredients of the Maxwell model (Fig. 6).
We consider successive bubbles rising through or pierc-

ing the thin fluid layer. When the bubble rises during the
characteristic time tb, r ∼ d/2 (Fig. 6) and we can write
the differential equation describing the temporal evolu-
tion of rn:

G′

(

d

2
− rn

)

= η ṙn (4)

which gives, right after the bubble rise

rn(tb) =

(

rn−1 −
d

2

)

e−tb/τ +
d

2
(5)

where rn−1 is the initial condition from which rn evolves
and τ = η/G′ the characteristic time associated with the
Maxwell fluid.
After the bubble rise, we suppose that the fluid layer

closes almost immediately, due in particular to the sur-
face tension. The fluid is hence at rest, and rn relaxes
towards 0 during a time T − tb, where T is the average
time between bubble emission. For sake of convenience,
we consider here that T and tb are the same for each
bubble. During this stage of relaxation, rn obeys the
following equation:

τ ṙn + rn = 0 , (6)
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which gives, after a time t = T − tb, rn = rn(tb)e
−t/τ .

We can therefore write the recurrence equation giving the
displacement after the nth bubble:

rn = rn−1e
−T/τ +

d

2
e−T/τ

(

e−tb/τ − 1
)

. (7)

By recurrence, and considering that r0 = 0, we thus get
the equation describing the displacement rn:

rn =
d

2

(

e−tb/τ − 1
)

(

e−T/τ − e−nT/τ

1− e−T/τ

)

. (8)

For tb < τ and T < τ (both the characteristic times of
bubble rising through the fluid layer and bubble forma-
tion and emission are smaller than the Maxwell time),
the slope drn/dn can be approximated to (d/2)(tb/τ).
From Eq. 3, we thus obtain the following expression for
the threshold pressure:

δPY ∼

(

4γ

d
+ ρgh+G′

)

−
1

2
G′

(

tb
τ

)

n (9)

The average time for a bubble emission (formation and
growth, regions 2 and 3 in Fig. 3, bottom) inside a cas-
cade, for c = 0.1 mol.L−1, can be estimated to tb ∼ 0.2 s.
The characteristic time τ = η/G′ is obtained from rhe-
ological measurements (see Appendix) and can be esti-
mated to τ ∼ 0.5 s, with η ∼ 25 Pa.s and G′ ∼ 50 Pa.
We thus estimate a slope −(G′/2)(tb/τ) of about −10, in
agreement with the experimental results (see Fig. 7 for
c = 0.1 mol.L−1).

C. Fluid deformation

Above the threshold overpressure δPY , the fluid starts
flowing and a bubble grows at the tip of the injection
hole (Fig. 3, bottom, region 2). The overpressure then
departs from its linear increase, as a consequence of the
volume increase due to the bubble growth.
By deriving the general equation for an ideal gas, and

denoting vb the volume of the bubble hence formed, we
get

dP

dt
+

(

P

V

)

dvb
dt

=

(

RT

V

)

Q

Vmol
(10)

Further integration leads to the general expression of the
pressure variation in time:

P (t) =

(

RT

V

)(

Q

Vmol

)

t−

(

P

V

)

vb (11)

where R = 8.314 J K−1 mol−1 is the ideal gas constant
and Vmol = 24.7 L is the molar volume of air at 25◦C.
Here we do not develop further the calculation, but note
that the departure from the linear trend is linear with
the bubble volume, which provides a rough estimation of
this latter, from about vb ∼ 1 mL to 10 mL from the
beginning to the end of the cascade.

D. Bubble emission

Finally, the bubble reaches the free surface – we remind
here that the fluid layer is of the order of the bubble
size –, the gas is suddenly released and the overpressure
quickly drops (Fig. 3, bottom, region 3). In order to
get an estimate of the characteristic time over which the
pressure drops, we write, on the one hand, Bernoulli’s
equation to describe the air flowing from the chamber of
volume V through the opening of diameter d, up to the
surface of the fluid layer: 1/2ρv2 = δP , which gives the
flow velocity through the opening [32]:

v =

√

2δP

ρ
. (12)

On the other hand, by considering the air as an ideal gas,
we get δP/P ∼ vb/V , where V is the initial gas volume,
equal to the chamber volume, and vb the volume variation
corresponding to the volume of the bubble connected to
the injection point. The typical time to empty the cham-
ber can be written τ∗ = δV/Qv, where Qv = π(d2/4)v
is the volumetric flow-rate through the hole. By using
Eq. 12, we get the characteristic time for the pressure
drop:

τ∗ =

(

V

P

)

1

πd2

√

ρa
32δP

(13)

where ρa = 1.2 kg.m−3 is the air density, and P = 105 Pa
the atmospheric pressure. τ∗ is of the order of a few
milliseconds, compatible with the measurements of the
pressure drop (region 3 in Fig. 3, bottom).
Note that the drastic pressure decrease due to the hole

opening is followed by oscillations observed right after the
bubble emission, which correspond to the elastic response
of the fluid to the sudden stress imposed by the closing
of the bubble walls, after the air release [13].

E. Open channel lifetime

Here, we develop qualitative arguments to estimate the
lifetime of the open channel. We note r∗ the hole radius
for which the channel remains open at the end of a cas-
cade, and r∗n the associated value of the inner displace-
ment from the Maxwell model developped above (Fig. 6).
When the channel from the injection nozzle to the fluid
free surface remains open, d2r/dt2 = 0 and we can write,
based on Eq. 2:

−
4γ

d
−G′

(

d/2− r∗n
d

)

+ δP − ρgh = 0 (14)

and

−
2γ

r∗
−G′

(

r∗ − r∗n
d

)

− ρgh = 0 (15)
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Eq. 14 provides the value of r∗n after the last bubble in
the cascade, while Eq. 15 gives the channel radius right
after the pressure drop in the system. By substracting
Eqs. 14 and 15 and neglecting the capillary forces when
the channel if fully open, we find that the channel re-
mains open when the overpressure δP ∼ G′. This rough
approximation is consistent with the experimental value.
Indeed, from Fig. 3, the channel remains open once the
overpressure reaches a value close to 50 Pa, of the order
of G′ for an excitation frequency of the order of the fre-
quency of bubbles rising through the fluid (ω ∼ 1 Hz, see
Appendix B).
After the channel opening, we can write the balance

between the main forces at stake, the weight and viscous
dissipation, ηṙ/d ∼ ρgh/2. The characteristic lifetime of
the open channel can therefore be roughly estimated to
τc ∼ 2η/ρgh, of the order of a second. Experimentally,
τc is of a few seconds. This discrepancy can be explained
first, by the rough approximation for the radius dynamic
equation; then, by the effective fluid viscosity which, for
micelles, can be larger during elongational flowing than
the viscosity measured under shear [33, 34].

VI. FROM CASCADES TO RHEOLOGY

The bubble emission characteristics vary continuously
inside the cascade: through time, a bubble inside the
cascade is emitted with a smaller pressure drop δP , and
a longer emission time δt (Fig. 3). Note that for the
heuristic model developped in section VB, we consid-
ered δt roughly constant and equal to T = 〈δt〉. In this
section, we investigate the variations of both δt and δP
for the successive bubbles inside one cascade.
Figure 8 displays the mean value of the overpressure

〈δP 〉, over a bubble release, as a function of the time in-
terval δt over which the same bubble is emitted, for a se-

ries of bubble cascades. All data from different cascades,
from the same experimental series, have been superim-
posed. Over different cascades, the data all collapse in
the same curve, for a given set of parameters (c, h, Q,
V ). The curves remain unchanged when both the volume
V and the flow rate Q vary.
Two different regimes can be distinguished, at short

and long time scales, respectively (Fig. 8, solid lines).
The limit between both regimes defines a pressure and
time threshold, respectively δPc and δtc. A statistical
study over different volumes (56 ≤ V ≤ 161 mL) and
flow rates (0.2 ≤ Q ≤ 1.2 mL/s) gives a constant pres-
sure threshold δPc = 71.6 ± 5.2 Pa. By comparing the
characteristic time δtc to the Maxwell characteristic time
τ of the fluid (see Appendix), we get the direct relation-
ship

δtc ∼ τ . (16)

This relationship holds true for the three different
fluid concentrations where bubble cascades are observed
(Fig. 8, inset). Measuring the characteristic time linked
with the bubble cascades therefore provides a direct sig-
nature on the fluid rheology.

VII. CONCLUSION

Injecting air through a thin layer of micellar fluid dis-
plays a wide range of dynamic behavior. We report the
existence of a peculiar degassing regime, the bubble cas-

cades regime, for which the air is released via succes-
sive bubbles which properties (maximum overpressure
and emission duration) vary continuously through time.
This regime is observed over a wide range of parame-
ters (air flow-rate Q, chamber volume V and fluid height
h). The cascades repeat periodically in time, separated
by a few seconds during which a channel remains open
between the injection nozzle and the fluid free surface,
through which the air degass continuously. Measuring
the overpressure at the injection point makes it possi-
ble to investigate the different stages: pressure increase
in the chamber, bubble formation and fluid flow, bubble
emission and pressure drop. We find that the cascade
periodicity and maximum overpressure depend neither
on Q nor V . The number of bubbles emitted per cas-
cade depends linearly on the injection flow-rate Q. All
the different steps of the overpressure evolution can be
explained by a simple heuristic model, following the clas-
sical Maxwell description of a viscoelastic fluid.
Finally, we underline the interest of such simple exper-

iment. In addition to reporting a new phenomenon (the
bubble cascades), we point out that measuring the evo-
lution of the overpressure inside the cascades provides
a direct insight into the fluid viscoelastic characteristic
time, linked with its rheology. Further work will con-
centrate on the microscopic behavior of the micelles. In
particular, the time over which the rising bubble shears
the fluid (typically, 0.2 s) suggests a partial alignment of
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FIG. 9. The flow curve, shear stress σ vs shear rate γ̇ ob-
tained by increasing γ̇ [c = 0.1 mol.L−1]. Inset: Viscosity
as a function of shear rate. The arrow indicates the shear-
thinning behavior [C-VOR 150 Bohlin rheometer, plate-plate
geometry, diameter 60 mm, gap 400 µm, waiting time 60 s
per point].

the micelles (see Fig. 9, Appendix A). Visualizing the
fluid by birefringence will make it possible to determine
if the micelles are aligned through time by the shear flow
generated by the successive bubbles, and how this align-
ment is linked with the local rheology. We also propose
to investigate the effective fluid viscosity under elonga-
tion, which can be much larger than the shear viscosity,
and could explain the discrepancy between the estimated
and measured time for the open channel lifetime (sec-
tion VE).

Appendix A: Flow curve

The rheology of the CTAB/NaSal mixtures is char-
acterized by measurements on two different rheometers:
C-VOR 150, Bohlin Instruments and AR1000, TA In-
struments. All measurements are performed with a plate-
plate geometry. Sand paper is glued to the plates in order
to prevent any sliding at the walls (typical rugosity of the
order of 1 µm). The following results do not aim at a full
rheological characterization of the samples used in our
experiments. They only provide the general mechanical
behavior of the different mixtures, and a support for the
interpretation proposed in section VI. More detailled in-
formations on the rheology of such systems can be found,
for instance, in [9, 10, 12, 13, 29, 30, 35–37].
The semi-dilute solution behaves as a Newtonian fluid

at low shear rate (γ̇ < γ̇1 = 2.1 s−1), with a viscosity
plateau η ∼ 25 Pa, and exhibits non-Newtonian proper-
ties for higher shear rate (Fig. 9). The flow curve is classi-
cal for micellar fluids under shear [13, 36], with a plateau
in σ vs. γ̇ between γ̇1 = 2.1 s−1 and γ̇2 = 31.6 s−1. The
first transition in the flow curve (γ̇1) provides an access
to the characteristic time associated with the viscoelastic
Maxwell model (Fig. 6), τ = 1/γ̇1 ∼ 0.5 s.
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FIG. 10. Elastic (G′) and viscous (G′′) modulii as a function
of the applied stress for the CTAB/NaSal mixture at c =
0.1 mol.L−1 [oscillation test ω = 1 Hz, AR1000 rheometer,
plate-plate geometry].
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FIG. 11. Average elastic (G′) and viscous (G′′) modulii cor-
responding to the plateau value in Fig. 10] as a function of
the fluid concentration. Lines are given as eyeleads.

For γ < γ̇1, the flow is homogeneous and isotropic;
for γ̇1 < γ < γ̇2, shear-bands appear and the flow is
strongly inhomogeneous; for γ > γ̇2, finally, the flow is
homogeneous and nematic, with the micelles aligned in
the shear direction [13]. As the typical time for a bubble
to rise up the fluid layer is tb ∼ 0.2 s (section VB),
we expect to be in the stress plateau and, therefore, to
observe a partial alignment of the micelles (section VII).

Appendix B: Elastic and viscous modulii

Figure 10 displays the elastic (G′) and viscous (G”)
moduli for the fluid c = 0.1 mol.L−1, for an oscillation
test (ω = 1 Hz, typically the period between two bub-
bles in our experiments). We observe that over a large
range of applied stress, the elastic and viscous modulii
are constant. The average plateau values of G′ and G”
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displayed in Fig. 10 provide another estimation of the
Maxwell time:

τ =
G′

G′′ω
(B1)

We find τ ∼ 0.5 s for c = 0.1 mol.L−1, consistent with
the estimation from the previous viscosity measurements
(Appendix A).

The average plateau value strongly increases as a func-

tion of the fluid concentration (Fig. 11). The values
of τ for different fluid concentrations (Fig. 8 inset, sec-
tion VB) have been estimated from the oscillatory mea-
surements and Eq. B1.
Note, finally, that another estimation of the character-

istic time τ can be obtained by

τ =
η

G′
(B2)

which, again, gives τ ∼ 0.5 s, in agreement with the
above estimations.
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