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Termination in a r-calculus with Subtyping

loana Cristescu Daniel Hirschkoff
ENS Lyon, Université de Lyon, CNRS, INRIA, France

We present a type system to guarantee terminatioradlculus processes that exploits input/output
capabilities and subtyping, as originally introduced bgrBé and Sangiorgi, in order to analyse the
usage of channels.

We show that our system improves over previously existirappsals by accepting more pro-
cesses as terminating. This increased expressivenessal®to capture sensible programming
idioms. We demonstrate how our system can be extended tdehtwedencoding of the simply typed
A-calculus, and discuss questions related to type inference

1 Introduction

Although many concurrent systems, such as servers, areseghfo run forever, termination is an impor-
tant property in a concurrent setting. For instance, oneldike a request to a server to be eventually
answered; similarly, the access to a shared resource shewdentually granted. Termination can be
useful to guarantee in turn lock-freedom properties [8].

In this work, we study termination in the setting of titecalculus: concurrent systems are specified
asrr-calculus processes, and we would like to avoid situationgtiich a process can perform an infinite
sequence of internal communication steps. Despite itsiseness, ther-calculus can express complex
behaviours, such as reconfiguration of communication tapoland dynamic creation of channels and
threads. Guaranteeing termination is thus a nontrivi&. tas

More specifically, we are interested in methods that protedeaination guarantees statically. There
exist several type-based approaches to guarantee teionimathe rr-calculus [5[ 15, 12,13,14]. In these
works, any typable process is guaranteed to be reactivdheirsénse that it cannot enter an infinite
sequence of internal communications: it eventually teat@s computation, or ends up in a state where
an interaction with the environment is required.

The type systems in the works mentioned above have diffengmtessive powers. Analysing the
expressiveness of a type system for termination amountsutlying the class of processes that are
recognised as terminating. A type system for terminatigricglly rules out some terminating terms,
because it is not able to recognise them as such (by esseneffeative type system for termination
defines an approximation of this undecidable property). Mhgroving expressiveness, one is inter-
ested in making the type system more flexible: more procestsmsld be deemed as terminating. An
important point in doing so is also to make sure that (at Isaste of) the ‘extra processes’ make sense
from the point of view of programming.

Type systems for termination in the r-calculus. Existing type systems for termination in the
calculus build on simple type$s [13], whereby the type of ancieh describes what kind of values it
can carry. Two approaches, that we shall call ‘level-basad ‘semantics-based’, have been studied to
guarantee termination of processes. We discuss below shé&ifid of methods, and return to semantics-
based approaches towards the end of this section. Levetilmasthods for the termination of processes
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2 Termination in art-calculus with Subtyping

originate in [5], and have been further analysed and deeelap [3]. They exploit a stratification of
names, obtained by associatindesel (given by a natural number) to each name. Levels are used to
insure that at every reduction step of a given process, saeliaunded measure defined on processes
decreases.

Let us illustrate the level-based approach on some examplethis paper, we work in the asyn-
chronousrt-calculus, and replication can occur only on input prefixds in previous work, adding
features like synchrony or the sum operator to our settirgs thot bring any difficulty.

According to level-based type systems, the procags.b(x) is well-typed providedvl(a), the level
of a, is strictly greater thaivi(b). Intuitively, this process trades messagesdthat ‘cost’ Ivl(a)) for
messages oh (that cost less). Similarlyalx).(b(x) |b(x)) is also well-typed, because none of the two
messages emitted drwill be liable to trigger messages arad infinitum. More generally, for a process
of the form &(x).P to be typable, we must check that all messages occurrifiydre transmitted on
channels whose level is strictly smaller thiaf{a) (more accurately, we only take into account those
outputs that do not occur under a replicatiorPin— see Sectiohl2).

This approach rules out a process liéx).b(x) | 'b(y).aly) (which generates the unsatisfiable con-
straintlvl(a) > Ivi(b) > Ivi(a)), as well as the other obviously ‘dangerous’ temix).a(x) — note that
neither of these processes is diverging, but they lead twit@fcomputations as soon as they are put in
parallel with a message @

The limitations of simple types. The starting point of this work is the observation that siagisting
level-based systems rely on simple types, they rule ouigssEs that are harmless from the point of view
of termination, essentially because in simple types, afigmtransmitted on a given channel should have
the same type, and hence, in our setting, the same level &s wel

If we try for instance to type the proceBs dif!a(x))‘((w, the constraint isvi(a) > Ivi(x), in other
words, the level of the names transmittedsomust be smaller thaa's level. It should therefore be licit
to putP in parallel witha(p) |a(q), providedlvi(p) < Ivi(a) andlvi(q) < Ivi(a). Existing type systems
enforce thafp andq havethe same typé#or this process to be typable: as soon as two names are sent on
the same channel (hera), their types are unified. This means that if for some reagamir{stance, if
the subterm p(z).q(z) occurs in parallel) we must have(p) > Ivi(q), the resulting process is rejected,
although it is terminating.

We would like to provide more flexibility in the handling of@level of names, by relaxing the con-
straint thatp and g from the example above should have the same type. To do thie pteserving
soundness of the type system, it is necessary to take inbuatthe way names are used in the contin-
uation of a replicated input. In proceBs above,x is used in output in the continuation, which allows
one to send oa any name (of the appropriate simple type) of lesteictly smallerthanlivi(a). If, on the

other hand, we consider procdisdg!b(y).!y(z) .C(2), then typability of the subterny(z).c(z) imposes
Ivi(y) > Ivl(c), which means that any name of lewatfictly greaterthanlvl(c) can be sent ob. In this
case Py uses the namgthat is received alongin input. We can remark that divergent behaviours would
arise if we allowed the reception of names having a biggep(remaller) level ir?) (resp.Py).

Contributions of this work.  These observations lead us to introduce a new type systaerioination

of mobile processes based on Pierce and Sangiorgi’s systanpfit/output typesi/o-types) [11]. I/o-
types are based on the notion acdpability associated to a channel name, which makes it possible to
grant only the possibility of emitting (the output capaiilior receiving (the input capability) on a given
channel. A subtyping relation is introduced to express éleethat a channel for which both capabilities
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are available can be coerced to a channel where only oneds Lgaitively, being able to have a more
precise description of how a name will be used can help inr@sgdermination of a process: Ry, only
the output capability ox is used, which makes it possible to send a name of smaller deve in Py,
symmetrically,y can have a bigger level than expected, as only the input dapaln y is transmitted.

The overall setting of this work is presented in Secfibn Betber with the definition of our type
system. This system is strictly more expressive than pusiyoexisting level-based systems. We show
in particular that our approach yields a form of ‘level polyrphism’, which can be interesting in terms
of programming, by making it possible to send several relgues giverserver(represented as a process
of the form !f (x).P, which corresponds to the typical idiom for functions orvees in ther-calculus)
with arguments that must have different levels, becausgistileg dependencies between them.

In order to study more precisely the possibility to handkenieating functions (or servers) in our
setting, we analyse an encoding of thecalculus in therr-calculus. We have presented iin [3] a coun-
terexample showing that existing level-based approacles@ able to recognise as terminating the
image of the simply-typed -calculus (ST) in the r-calculus (all processes computed using such an
encoding terminate [13]). We show that this counterexanplypable in our system, but we exhibit
a new counterexample, which is not. This shows that dedptenicreased expressiveness, level-based
methods for the termination gf-calculus processes fail to capture terminating sequestdiaputation
as expressed in SiT

To accommodate functional computation, we exploit the wandsented in[[4], where aimpure
ri-calculus is studied. Impure means here that one distihgaibetween two kinds of names. On one
hand,functional namesre subject to a certain discipline in their usage, whichitively arises from the
way names are used in the encoding oASf the rr-calculus. On the other hanuiperative namedo
not obey such conditions, and are called so because theyaadyd forms of stateful computation (for
instance, an input on a certain name is available at somé, jpoitnot later, or it is always available, but
leads to different computations at different points in tkecgition).

In [4], termination is guaranteed in an impurecalculus by using a level-based approach for impera-
tive names, while functional names are dealt with sepagaising a semantics-based approach[[15, 12].
We show that that type system, which combines both appredohndermination in ther-calculus, can
be revisited in our setting. We also demonstrate that thdtineg system improves in terms of expres-
siveness ovef [4], from several points of view.

Several technical aspects in the definition of our type systare new with respect to previous works.
First of all, while the works we rely on for termination adappresentation a la Church, where every
name has a given type a priori, we define our systems a la Qarorder to follow the approach for
i/lo-types in [11]. As we discuss below, this has some coreecgs on the soundness proof of our
systems. Another difference is in the presentation of thgua calculus:[[4] uses a specific syntactical
construction, calledef, and akin to det .. in construct, to handle functional names. By a refinement
of i/o-types, we are able instead to enforce the disciplihunctional hames without resorting to a
particular syntactical construct, which allows us to keemi#orm syntax.

We finally discuss type inference, by focusing on the caséhefdcalised r-calculus (Lm). Lt
corresponds to a certain restriction on i/o-types. Thigim®n is commonly adopted in implementations
of therr-calculus. We describe a sound and complete type inferenocegure for our level-based system
in L7t. We also provide some remarks about inference for i/o-typése general case.

Paper outline. Sectior 2 presents our type system, and shows that it geaatgrmination. We study
its expressiveness in Sectioh 3. Secfibn 4 discusses tfgrenmce, and we give concluding remarks in
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Sectior[b. For lack of space, several proofs are omitted fhosnversion of the paper.

2 A Type System for Termination with Subtyping

2.1 Definition of the Type System

Processes and types. We work with an infinite set ohames ranged over using,b,c,...,X)y,....
Processes, ranged over usit@, R, ..., are defined by the following gramma¥ i€ a constant, and we
usev for values):

P = 0[PP |a\V) | (va)P|a(x).P|!a(x).P vi= x|a.

The constructs of restriction and (possibly replicateghuinare binding, and give rise to the usual
notion of a-conversion. We write ftP) for the set of free names of procé8sandP[b/x] stands for the
process obtained by applying the capture-avoiding suitistit of x with b in P.

We moreover implicitly assume, in the remainder of the pajbet all the processes we manipulate
are written in such a way that all bound names are pairwisidisand are different from the free names.
This may in particular involve some implicit renaming of pesses when a reduction is performed.

The grammar of types is given by:

T o= §T[*T|T|U,
wherek is a natural number that we callevel andU stands for themnit type havingx as only value.
A name having type“T has levek, and can be used to send or receive values of Typehile typeiT
(resp.okT) corresponds to having only the input (resp. output) cdipabi

Figure[1 introduces the subtyping and typing relations. W r both for the subtyping relation
and for the inequality between levels, as no ambiguity isipds. We can remark that the input (resp.
output) capability is covariant (resp. contravariant).twst, but that the opposite holds for levels: input
requires the supertype to have a smaller level.

I" ranges over typing environments, which are partial mapa fiames to types —we wrifga) =T
if T mapsato T. dom(I), the domain of, is the set of names for whidhis defined, andl,a: T stands
for the typing environment obtained by extendingvith the mapping froma to T, this operation being
defined only whem ¢ dom(I").

The typing judgement for processes is of the fdrm P : w, wherew is a natural number called the
weightof P. The weight corresponds to an upper bound on the maximurhdéeechannel that is used
in output inP, without this output occurring under a replication. This ¢ read from the typing rule
for output messages (notice that in the first premise, weiredfoe output capability om, which may
involve the use of subtyping) and for parallel compositiés can be seen by the corresponding rules,
non replicated input prefix and restriction do not changentbigiht of a process. The weight is controlled
in the rule for replicated inputs, where we require that ével of the name used in input is strictly bigger
than the weight of the continuation process. We can alsaredseat working in a synchronous calculus
would involve a minor change: typing a synchronous ougguy.P would be done essentially like typing
a(v) | P in our setting (with no major modification in the correctnpssof for our type system).

As an abbreviation, we shall omit the content of messageeefixps, and write anda for a(x) and
a(x) respectively, whe@'s type indicates thad is used to transmit values of tyfié
Example 1 The proces$a(x).X(t)|a(p)|a(q)|!p(z).q(z) from Sectiolll can be typed in our type system:
we can set a#30°T, p: #°T,q: o T. Subtyping on levels is at work in order to typecheck theesob
a(g). We provide a more complex term, which can be typed usindpsiidéas, in Examplg~15 below.
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Subtyping < is the least relation that is reflexive, transitive, andssigis the following rules:

T<S k <k T<S k <k
T <ikT T < ofT T < kg oS < ofeT
Typing values
Ma=T rca:T  T<U
MN=%:0U M-a:T MN-a:vu
Typing processes
FFa:o T rkv:T FrFa:i‘ T rx:THP:w
r-0:0 r=av):k MEax).P:w

FEa:ikT Fx:TEP:w k>w Ma: THP:w M=Piw MNe=Pw
I Hla(x).P: 0 r=(vaP:w I F PP max(wy, wo)

Figure 1: Typing and Subtyping Rules

a(x).P|av) — Plv/X la(x).P | a(v) —'a(x).P | P[v/X]
P—P P—P Q=P P—P P=Q
P\Q—)P’]Q (va)P — (va) P Q—«Qq

Figure 2: Reduction of Processes

Reduction and termination. The definition of the operational semantics relies on aimslatf struc-
tural congruence, notegt, which is the smallest equivalence relation that is a cosga, contains
a-conversion, and satisfies the following axioms:

PI(QR) = (PIQ)IR PQ = QP PO=P
(va)0=0 (va)(vb)P = (vb)(va)P (va)(P|Q) = P|(va)Qif a¢ fn(P)

Note in particular that there is no structural congrueneefta replication.
Reduction, written—, is defined by the rules of Figulé 2.

Definition 2 (Termination) A process Rlivergesif there exists an infinite sequence of proces&es-o
such that P= Py and for any i, P— B 1. P terminateqor P is terminating) if P does not diverge.

2.2 Properties of the Type System

We first state some (mostly standard) technical properégsfied by our system.
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Lemma 3 If I = P:w and ws 0 then for any W>w, I = P:w.

Proposition 4 (Narrowing) If F,x: T P:wand T <T, thenl,x: T’ - P:w for some w< w.
Lemma5 IfP=Q, thenl - P:wiff[ - Q:w.

Lemma6 If M )x: T+HP:w, T Fb:T'and T <T thenl - P[b/x] : W, for some W< w.

Proof (sketch). This is a consequence of Lemida 4, as we reptdzg a name of smaller type.
Theorem 7 (Subject reduction) If I - P:w and P— P/, thenl" - P’ : w for some W< w.

Proof (sketch). By induction over the derivation & — P’. The most interesting case corresponds to
the case wher® =!a(x).P; | a(v) — P’ =la(x).Py | P1|v/X]. By typability ofP, we havd™ +'a(x).P; : 0.
LetT, =T (a). Typability of P givesT ,x: T + Py :wj for someT andw; such thail, < kT andw; <

k < Ivi(a). Typability ofa(v) givesT, < oKU for somek > Ivl(a), withw =K andl" + v:U. The two
constraints off, entailT <U, and hence, by Lemrm& B, Pi|v/x] : w, for somew, <w; < Ivl(a) <K'.

We then concludg& +~ P’ : wso.

Termination. Soundness of our type system, that is, that every typableepsoterminates, is proved
by defining a measure on processes that decreases at eactioredtep. A typing judgemenit - P:w
yields the weightw of processP, but this notion is not sufficient (for instanca|aja — 3, and the
weight is preserved). We instead adapt the approach! of fit],d&fine the measure as a multiset of
natural numbers. This is done by induction over the dedvatf a typing judgement for the process.
We will use Z to range over typing derivations, and wrife: ' - P : w to mean that7 is a derivation
of T - P:w.

To deduce termination, we rely on the multiset extensiomefwell-founded order on natural num-
bers, that we write>y. M2 >mu My holds if Mg = Nw Ny, M2 = NwW Ny, N being the maximal such
multiset @ is multiset union), and for alt; € N; there ise; € N, such thati; < e. The relation>p is
well-founded. We writéM1 >y M2 if M1 >mu M2 or Mg = M.

Definition 8 Suppose? : T - P:w. We define a multiset of natural numbers, no#&d2), by induction
over 7 as follows:

If2:T - 0then.z(2)=0 If 2T Fa):kthenz(2) = {lvi(a)}
If 2:T Hla(x).P:0then.Z(2)=0
If 2T FaXx).P:w, thenZ(2)=.#(21), whereZ,: T . x: T+ P:w
If 2:T F (va)P:w, thenZ(2) = .#(Z1), whereZ, :T,a:T - P:w
If 2:T F PP max(wi,Wo), then.Z (2) = 4 (1) A (P2), whereZ, : T = R,i=12
Givenl” and P, we definer (P), the measure of P with respectlfoas follows:
A (P)=min(#(2), 2 :T - P:w forsomew .

Note that in the case of output in the above definition, werrgfevl(a), which is the level ofa
according td" (that is, without using subtyping). We have thak if- P : w, thenvk € .71 (P),k < w.
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Lemma 9 Supposé - P:w,[(x)=T,[(v) =T and T < T. Thens (P) >mu .#r (P[v/X)).
Proof. Follows from Lemmal6, and by definition o#r (). O
Lemma 10 If I = P:wand P= Q, thenl - Q: w for some wand.#; (P) = . (Q).

We are now able to derive the essential propertyf(-):
Lemma 1l If I = P:wand P— P, then.Z; (P) >mu 41 (P').

Theorem 12 (Soundness)f I - P : w, then P terminates.

Proof. Suppose thaP diverges, i.e., there is an infinite sequeiRg-n, whereR — B.1, P =F.
According to Theoreml 7 evely is typable. Using Lemmialll we havé (R) >mu -#r (P1) for alli,
which yields a contradiction. O

Remark 13 @ la Curry vs a la Church) Our system is presenteédla Curry. Existing systems for ter-
mination [5,4] area la Church, while the usual presentations of i/o-types [Atga la Curry. The latter
style of presentation is better suited to address type énfeg (see Sectidd 4). This has however some
technical consequences in our proofs. Most importantky,nteasure on processes (Definitidn 8) would
be simpler when working la Church, because we could avoid to consider all possibhévdtions of a
given judgement. We are not aware of Church-style presentbf i/o-types.

3 Expressiveness of our Type System

For the purpose of the discussions in this section, we woekpolyadic calculus. The extension of our
type system to handle polyadicity is rather standard, amdypmo particular difficulty.

3.1 A More Flexible Handling of Levels

Our system is strictly more expressive than the originallmn®eng and Sangiordi [5], as expressed by
the two following observations (Lemrhall4 and Exaniple 15):

Lemma 14 Any process typable according to the first type system]| of[Bjpable in our system.

Proof. The presentation of [5] differs slightly from ours. The fisgtstem presented in that paper can be
recast in our setting by working with the # capability onlgy$ disallowing subtyping), and requiring
type 8T for a in the first premise of the rules for output, finite input angli@ted input. We write
I Fp P :w for the resulting judgement. We establish thatp P : w impliesT = P w by induction
over the derivation of +p P:w. O

We now present an example showing that the flexibility bradmyhsubtyping can be useful to ease
programming. We view replicated processes as servers,natifims. Our example shows that it is
possible in our system to invoke a server by passing namesgdifferent levels, provided some form
of coherence (as expressed by the subtyping relation) isagteed. This form of “polymorphism on
levels” is not available in previous type systems for tefation in therr-calculus.

Example 15 (Level-polymorphism) Consider the following definitions (in addition to polyaitiic we
accommodate the first-order type of natural numbers, withesponding primitive operations):

Fi = !fi(nr).r{nxn)
R = f(mr).(vs)(fi(m+1,s) | s(x).F(x+1))

Q = !g(p,xr).(vs) (P(xs) \S(y)-p<y,'r>)
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F, is a server, running at4f that returns the square of a integer on a continuation clemrgwhich is its
second argument).,Fs a server that computes similarfyn+ 1)? 4 1, by making a call to Fto compute
(m+1)2. Both i and F, can be viewed as implementations of functions of e -> int.

Q is a “higher-order server”: its first argument p is the addi® of a server acting as a function of
type int -> int, and Q returns the result of calling twice the function lamiiat p on its argument
(process Q thus somehow acts like Church num@yal

Let us now examine how we can typecheck the process

Fi|F | Q|O(f1,4,t1) [O(f2,5,t2) .

F, contains a call to { under a replicated input onyf which forcedvl(fz) > Ivi(f1). In the type systems

of [5], this prevents us from typing the processes abovesesifh and % should have the same type
(and hence in particular the same level), both being usedrganaent in the outputs on g. We can
type this process in our setting, thanks to subtyping, fetaince by assigning the following types: g

09 (0%eT,U,V), fp: kT, f: 4T, with k < ko.

It can be shown that this example cannot be typed using anyeafytstems of [5]. It can however
be phrased (and hence recognised as terminating) in thel§pfumctional r-calculus” of [4], that is,
using a semantics-based approach — see also Section hiBultihowever not be difficult to present a
variation on it that forces one to rely on levels-based tyystesns.

3.2 Encoding the Simply-TypedA -calculus

We now push further the investigation of the ability to asalyerminating functional behaviour in the
rt-calculus using our type system, and study an encoding of tb&lculus in therr-calculus.

We focus on the followingparallel call-by-valueencoding, but we believe that the analogue of the
results we present here also holds for other encodinga-té&rmM is encoded agM],, wherep is a
name which acts as a parameter in the encoding. The encadilg§ined as follows:

AxM]p L' (vy) (ty(x,6). [M]q | Ply)) [X]p =" p(x)

MN]p E (va,r) ([MIq | [N]+ | a(F)-r(2).F(z p))
We can make the following remarks:

e A simply-typedA-term is encoded into a simply-typed process (5ee [13])abyity for termina-
tion comes into play in the translation dfabstractions.

e The target of this encoding lsr, thelocalised r-calculusin which only the output capability is
transmitted (see also Sectionl4.1).

[3] provides a counterexample to typability of this encagfar the first type system of [5] (the proof
of this result also entails that typability according to ttleer, more expressive, type systems due to Deng
and Sangiorgi also fails to hold). Let us analyse this exampl

Example 16 (From [3]) TheA-term M, def (AX.(f u (uv)) can be typed in the simply typed

calculus, in a typing context containing the hypothese$éof — 1) — T — T,Vv: O,U: 0 — T.
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Computing[M3]], yields the process:
(va,r)

(vy) (T{y)
| !E/(Xa q).(V01, 1, G, r2,03,13)
H(F) [ T2(u) [ Ga(f2) r2(22). f2(22, ) [f ullg,
| Tt} [T | Gs(f0)13(z0) Tafzary) [y, | XUV

| gu(f1). rl(Zl) 1(z1,9) )
|9(f) [a(f").r(2).T (z p)

If we try and type this term using the first type system of [&].can reason as follows:
1. By looking at the line corresponding fé ufq,, we deduce that the types of f andafe unified,
and similarly for z and u.

2. Similarly, the next line[tu v|J,) implies that the types o fand u are unified.

3. The last line above entails that the types assigned to ffantlst be unified, and the same for the
types of z and y (because of the outpiyb).

If we write §<(Ty, T,) for the type (simple) assigned to f, we have by rerfiark 1 thasutype T,
and the same holds for y by remark 3. In order to typecheckepkcated term, we must hawd(y) >
Ivl(f3) = Ivl(u) by remarK2, which is impossible since y and u have the saree typ

While [M4]], cannot be typed using the approach [of [5], it can be using §rstesn of Sectionl 2.
Indeed, in that setting y and u need not have the same level)as we can satisfy the constraint
Ivi(y) > Ivl(u). The last line above generates an out{y, p), which can be typed directly, without use
of subtyping. To typecheck the outdutl, g;), we “promote” the level of u to the level of y thanks to
subtyping, which is possible because only the output céipabn u is transmitted along f.

It however appears that our system is not able to typechecktage of SR, as the following (new)
counterexample shows:

Example 17 We first look at the following rather simpfe-calculus process:

(vu) (Tu(x).x | (vv) (vadt) [ av))) .
This process is not typable in our type system, althoughrtiteates. Indeed, we can assign a type of
the form#“o"U to u, andf™U to v. Type-checking the subtetri(t) imposes k< m, and type-checking
lu(x).x imposes k> n. Finally, type-checkin@i(v) gives m< n, which leads to an inconsistency.
We can somehow ‘expand’ this process into the encodinghefeam: consider indeed
def
My = (Au((Av(uv) Ay.(ut))) (Ax.(xa)) .
We do not present the (rather complex) process correspgrdifiM,] ,. We instead remark that there is
a sequence of reductions starting frdiivi,]], and leading to

lys(u,0n)- (1y3(V, Q) TV, 0la) | lys(Y,05).T(t, O5) | Va(ys,an) ) | Ya(X.02)-X(a,02) | Vi(y2,P) -

These first reduction steps correspond to ‘administrateguctions’ (which have no counterpart in the
original A-calculus term). We can now perform some communicationsctireespond tq3-reductions,
and obtain a process which contains a subterm of the form

U(v, p) [ 'v(y,05).T(t, G5) | tu(x,02) X(a,02) -
Some channel names appear in boldface in order to stresdrtilasty with the process seen above: for

the same reasons, this term cannot be typed. By subjecttied{@heoreni17), a typable term can only
reduce to a typable term. This allows us to conclude ], is not typable in our system.
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Fx:Te—FP:w k>w L f:o"TFa:o Ff:o"THvV:U
[ef:oT HIf(x).P:0 e f:o“THaW:n

FEc:i" Ix:T,f:ckUe—FP:w n>w
e f:oUFc(x).P:0

FEc:i™ T, f:oUe—FHP:w n>w Fef:oXTHFPL Tef:THP

e f:oU Flc(x).P:0 [ef:oT PP,
Fg:ocTef:oUHP:w Fc:t"TefiokUtP:iw
Feg:ofT + (VF)P:w Fef:oU (VO)P:w

Figure 3: Typing Rules for an Impure Calculus

3.3 Subtyping and Functional Names

In order to handle functional computation as expressed by, &€ extend the system of Sectidn 2 along
the lines of[4]. The idea is to classify names ifitactionalandimperativenames. Intuitively, functional
names arise through the encoding ofASTFor termination, these are dealt with using an appropriate
method — the ‘semantics-based’ approaches discussed toiSg and introduced i [15, 12]. For
imperative names, we resort to (an adaptation of) the ridl€gction 2.

Our type system is a la Curry, and the kind of a name, funation imperative, is fixed along the
construction of a typing derivation. Typing environments af the forml™ e f : o*T — the intuition is
that we isolate a particular namg, f is the name which can be used to build replicated inputs where
is treated as a functional name. The typing rules are giverigure[3. There are two rules to typecheck
a restricted process, according to whether we want to theatestricted name as functional (in which
case the isolated name changes) or imperative (in whichtbaesgping hypothesis is added to theart
of the typing environment).

The typing rules of Figur&€]3 rely on i/o-capabilities and tkelated name to enforce the usage
of functional names as expressed[inl[12]. [Ih [4], a specifittastical construct is instead used: we
manipulate processes of the foaf f = (X)P, in P, (that can be read g¥ f) (! f(x).P1|P,)), where
f does not occur if’, and occurs in output position only .

Let us analyse how our system imposes these constraintke ltule for restriction on a functional
name, the namg, that occurs in ‘isolated position’ in the conclusion of the, is added in the ‘non
isolated’ part of the typing environment in the premise jvattype allowing one to use it in output only.

In the rules for input on an imperative name (replicated dj,rthe typing environment is of the
form I e — in the premise where we typecheck the continuation prodésshas to be understood as
[ e d: okT, for some dummy name that is not used in the process being typed. We writeto stress
the fact that we disallow the construction of replicateduispgon functional names. The functional name
f appears in the aforementioned premise in the ‘non isolatad’ of the typing environment, with only
the output rights on it. Forbidding the creation of replemhinputs on functional names under input
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prefixes is necessary because of diverging terms like thenfivlg (c is imperative,f is functional):

c(x).1F(y).x{y) [T(f) | T(v) .

Note also that typing non replicated inputs (on imperatigenas) involves the same constraints as
for replicated inputs, like inJ4]: the relaxed control ovianctional names requires indeed to be more
restrictive on all usages of imperative names.

The notationl” e — is also used in the rule to type a replicated input on a funetimame, and we
can notice that in this cagecannot be used at all in the premise, to avoid recursion.

In addition to the gain in expressiveness brought by subtypive can make the following remark:

Remark 18 (Expressiveness)As in [4], our system allows one to typecheck the encodingSiaterm,
by treating all names as functional, and assigning themll@ve

Moreover, our type system makes it possible to typechedegses where several replicated inputs
on the same functional name coexist, provided they occuh&asame level’ in the term. For instance, a
term of the form(vf) (1 f(x).P | ! f(y).Q | R) can be well-typed with f acting as a functional name. This
is not possible using thee f construct of [4].

Another form of expressiveness brought by our system isngiyetypability of the following process:
lu(x).x | 'va(t) | a(v) | c(y).u(c). Here, name must be imperative while namemust be functional,
and both are emitted am This is impossible in[4], where every channel carriesegith functional or
an imperative name. In our setting, only the output capatmin c is transmitted along, so in a sense
is transmitted ‘as a functional name’.

Because of the particular handling of restrictions on fiometl names, the analogue of Lemfda 5
does not hold for this type system: typability is not preseriy structural congruence. Accordingly, the
subject reduction property is stated in the following way:

Theorem 19 (Subject reduction) If [ e f : oKT I P: w and P— P/, then there exist Q and'wl w s.t.
P=Qandlef:oT - Q:w.

Theorem 20 (Soundness)f I e f : oKT - P: w, then P terminates.

Proof (sketch). The proof has the same structure as the corresponding pr@ff iAn important aspect
of that proof is that we exploit the termination property foe calculus where all names are functional
without looking into it. To handle the imperative part, we shadapt the proof along the lines of the
termination argument for Theordm]12.

4 Type Inference

We now study type inference, that is, given a prodeghe existence dof, w such that” - P:w. There
might a priori be several sudh(and severalv: see Lemmal3). Type inference for level-based systems
has been studied inl[2], in absence of i/o-types. We firstgmies type inference procedure in a special
case of our type system, and then discuss this question getieral case.

4.1 Type Inference for Termination in the Localisedrt-calculus

In this section, we concentrate on tleealised-calculus L1, which is defined by imposing that chan-
nels transmit only the output capability on names: a prolikess(x).x(y).0 does not belong tof, as it
makes use of the input capability @nFrom the point of view of implementations, the restricttorlt
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makes sense. For instance, the language JoCaiml [10] imptemeariant of ther-calculus that follows
this approach: one can only use a received name in outputla8imthe communication primitives in
Erlang [9] can also be viewed as obeying to the discipline mf Asynchronous messages can be sent
to a PiD (process id), and one cannot create dynamicallyeiviag agent at that PiD: the code for the
receiver starts running as soon as the PiD is allocated.

Technically, Uit is introduced by allowing the transmission of o-types oye writel” F-T P :w
if T + P:w can be derived in such a way that in the derivation, whenewgpe of the formnkn’® T
occurs, we have)’ = o (types of the form*T and#KT appear only when typechecking input prefixes
and restrictions). Obviously, typability for-" entails typability for, hence termination. It can also be
remarked that in restricting tort, we keep an important aspect of the flexibility brought by system.
In particular, the examples we have discussed in Setlion 3xamigle[I5, and the encoding of the
A-calculus — belong to b.

We now describe a type inference procedureHbf. For lack of space, we do not provide all details
and proofs.

We first check typability when levels are not taken into acito&or this, we rely on a type inference
algorithm for simple types [14], together with a simple sgtical check to verify that no received name
is used in input. When this first step succeeds, we regl@cgpes withoT types appropriately in the
outcome of the procedure for simple types (a type variablg In@aassigned to some names, as, e.g., to
namex in processa(x).b(x)).

What remains to be done is to find out whether types can be akecbwith levels in order to ensure
termination. As mentioned above, we suppose w.l.0.g. tleahawe a terni® in which all bound names

are pairwise distinct, and distinct from all free names. @& the following sets of names:
e name¢P) stands for the set of all names, free and bound®; of
e bn(P) is the set of names that appear bound (either by restrictiby mput) inP;

e rcv(P) is the set of names that are bound by an input prefR (r € rcv(P) iff P has a subterm of
the forma(x).Q or !a(x).Q for somea, Q);
e regP) stands for the set of names that are restricteB (a € reP) iff P has a subterm of the
form (va) Q for someQ).
We have b(P) = rcv(P) wregP) (wherew stands for disjoint union), and nant® = bn(P) wfn(P).
Moreover, for anyx € rcv(P), there exists a unique € fn(P) UregP) such thatP contains the prefix
a(x) or the prefix &(x): we write in this case = father(x) (a € fn(P) UreqP), because we are inm).
We build a graph as follows:

e For every namen € fn(P) UreqP), create a node labelled by and create a node labelled by
son(n). Intuitively, if n has typet“S of okS, sor(n) has typeS. In case type inference for simple
types returns a type of the form, wherea is a type variable, fon, we just create the node

e For everyx € rcv(P), leta = father(x), addx as a label to saa).

Example 21 We associate to the process=Pa(x).(vb)x(b) | la(y).(c(y) | d(2).y(2)) the following set
of 8 nodes with their labelsfa}, {sona),x,y},{b},{son(b)},{c},{son(c),y},{d},{son(d),z}.

The next step is to insert edges in our graph, to represembtigraints between levels.
e For every output of the form(m), we insert an edge labelled witk* from son(n) to m.

e For every subterm dP of the form la(x).Q, and for every output of the form(m) that occurs in
Q without occurring under a replication @, we insert an edga = .
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Example 22 The graph associated to process(z).b(z) | a(c) | a(b) has nodes

{a},{son@)}, {b}, {son(b)}, {c},{son(c),z} ,

and can be depicted as follows: a b<—= _cC

sora) sonb) —= {son(c),z}

The last phase of the type inference procedure consist®king for an assignment of levels on the

graph: this is possible as long as there are no cycles im@lat least one™s edge in the graph.
At the beginning, all nodes of the graph are unlabelled; vedl $bel them using natural numbers.

1. We go through all nodes of the graph, and collect thosehtinag no outgoing edge leading to an
unlabelled node in a se¥’.

2. If .7 is not empty, we label every nodein . as follows: we start by setting's label to O.

We then examine all outgoing edgesrof For everyn 2 m, we replacen’s label, sayk, with
max(k, k'), wherek’ is m's label, and similarly fon = medges, with magk k' +1).
We then empty”, and start again at stép 1.

3. If ¥ =0, then either all nodes of the graph are labelled, in whadedhe procedure terminates,
or the graph contains at least one oriented cycle. If thisecyontains at least oné> edge, the

procedure stops and reports failure. Otherwise, the cyetehies onIy3> edges: we compute the
level of each node of the cycle along the lines of §llep 2 (fangginto account nodes of the cycle
among outgoing edges), and then assign the maximum of thlesks o all nodes in the cycle. We
start again at steég 1.

This procedure terminates, since each time we go back t@sttpctly more nodes are labelled.

Example 23 On the graph of Example 22, the procedure first assigns Gehodes ab and{son(c),z}.
In the second iteration,” = {son(b),c}; level 0 is assigned tsonb), and1 to c. Finally, levell is
assigned t@on(a). This yields the typing bo%°T,c: #20°T,a: 0% T for the process of Examglel22.

As announced above, for lack of space we have described loalynéin steps of our type inference
procedure. Establishing that the latter has the desirguipties involves the introduction of an auxiliary
typing judgement (that characterise§™), and explaining how types are reconstructed at the endeof th
procedure. This finally leads to the following result:

Theorem 24 There is a type inference procedure that given a processténel,w s.t.I -7 P w iff
there exists”,w s.t.T" FLT P w.

4.2 Discussion: Inferring i/o-Types

If we consider type inference for the whole system of Sed@oife situation is more complex. We start
by discussing type inference without taking the levels mtoount. If a process is typable using simple
types (that is, with only types of the foriT), one is interested in providing a more informative typing
derivation, where input and output capabilities are used.

For instance, the procesg$x).x(t) can be typed using different assignmentsdorioT, foT, ifT,
and#T — if we supposé : T. Among theseioT is the most informative (intuitively, types featuring
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‘less #' seem preferable because they are more precise)edVier, it is a supertype of all other types,
thus acting as a ‘candidate’ if we were to look for a notion ohg@pal typing. Actually, in order to
infer i/o-types, one must be able to compute lubs and glbgpEs, using equations likglb(iT,iU) =
iglb(T,U), glb(iT,oU) = tglb(T,U), andglb(oT,oU) = olub(T,U). The contravariance af suggests
the introduction of an additional capability, that we shadte, which builds a supertype of input and
output capabilities (more formally, we add the axioms<{ T andoT <1 T).

[7] presents a type inference algorithm for (an enrichménif@-types, where such a capabilityis
added to the system df [11] (the notations are differentwaiadapt them to our setting for the sake of
readability). The use of can be illustrated on the following example process:

Q1 E'a(t).b(u).( 1t(2).a(2) | T(t) [Tu) ) .

To typecheckQs, we can see that the input (resp. output) capability @asp.u) needs to be received on
a (resp.b), which suggests the types iiT,b:ioT. Sincet andu are emitted on the same chanoghnd
because of contravariance of output, we compugeertypeof iT andoT, and assign type 1 T to c.

Operationally, the meaning df is “no i/o-capability at all” (note that this does not prevdérom
comparing names, which may be useful to study behaviounaivagnces|[[6]): in the typing we just
described, since we only have the input capability and the output capability am we must renounce
to all capabilities, and andu are sent without the receiver to be able to do anything wighrtame
except passing it along. Observe also that depending onhmaontext uses, a different typing can be
introduced. For instanc&, can be typed by setting: ifT,b:ioT,c: 00oT. This typing means that the
output capability oru is received, used, and transmitted@mand both capabilities anare received, the
input capability being used locally, while the output capghbis transmitted orc.

The first typing, which involves, is the one that is computed by the procedurélof [7]. Itis ‘imad”,
in the terminology of([7]. Depending on the situations, argaike the second one (or the symmetrical
case, where the input capability is transmittedcpmight be preferable.

If we take levels into account, and try and typech€zk(which contains a replicated subterm), the
typings mentioned above can be adapted as follows: we cam:s&t'T,b : i%°T,c: 02T, in which
case subtyping on levels is used to deduce!T in order to typecheck(u). Symmetrically, we can
also seta: i%T,b: i%°T,c: o%°T, and typecheck(t) using subsumption to dedutei’T.

It is not clear to us how levels should be handled in relatidth ¢he 1 capability. One could think
that sincel prevents any capability to be used on a name, levels haveenang one could simply adopt
the subtyping axiom&T <1 T ando*T <1 T. This would indeed allow us to typeche€.

Further investigations on a system for i/o-types witand levels is left for future work, as well as
the study of inference for such a system.

5 Concluding Remarks

In this paper, we have demonstrated how Pierce and Sarigidmitypes can be exploited to refine
the analysis of the simplest of type systems for terminatibprocesses presented in [5]. Other, more
complex systems are presented in that work, and it would teeeisting to study whether they would
benefit from the enrichment with capabilities and subtypi@ge could also probably refine the system
of Sectior 2 by distinguishing betwedinear andreplicated input capabilitiesas only the latter must
be controlled for termination (if a name is used in lineaninnly, its level is irrelevant).

The question of type inference for our type systems (diffdyefrom existing proposals, these are
presented a la Curry, which is better suited for the studyp inference) can be studied further. It would
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be interesting to analyse how the procedure of Seétidn 4ilddme ported to programming languages
that obey the discipline of i for communication, like Erlang or JoCaml. For the moment, oméy
have preliminary results for a type inference proceduréhfersystem of Sectidd 2, and we would like to
explore this further. Type inference for the system of ®®¢8.3 is a challenging question, essentially
because making the distinction between functional andiaijye names belongs to the inference process
(contrarily to the setting of [4], where the syntax of pra&escontains this information).
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