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Abstract

The goal of this paper is to investigate jump conditions for unsteady small pertur-
bations at impermeable interfaces, slip or bonded, plane or not, between fluids and
structures in the presence of initial flow and prestress. Based on conservative equa-
tions obtained from a mixed Eulerian-Lagrangian description, interface conditions
are first derived in an elegant and straightforward manner thanks to the concept
of generalized functions in distribution theory. These conditions are validated with
exact conditions derived from a direct linearization of the standard jump conditions.
For a straightforward comparison between both approaches, all conditions are writ-
ten in terms of a curvilinear coordinate system attached to the interface. The normal
Lagrangian displacement continuity across the interface is proved to be a sufficient
condition. The jump conditions for mass, momentum, energy and entropy are dis-
cussed, yielding conditions for the Lagrangian perturbations of displacement, stress,
heat flux and temperature. Displacement and stress jump conditions are shown to
coincide with literature results. The mixed Eulerian-Lagrangian description is likely
to be advantageous over its fully Eulerian or Lagrangian counterparts. It yields an
interesting unification between existing formulations for inviscid fluids (Galbrun’s
equation) and solids (updated Lagrangian formulation), together with simpler jump
conditions.
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1 Introduction

Many practical applications involve small wave motion through an interface
between initially moving fluids and/or prestressed solids. The context of this
paper is restricted to impermeable interfaces (immiscible media always in
contact with no void). Examples of fluid-solid interaction problems are nu-
merous: wave propagation inside prestressed flow ducts (aeroengine ducts,
human arteries), fluid-filled pressurized boreholes (acoustic measurements in
geophysics) and immersed prestressed materials (ultrasonic stress characteri-
zation); dynamics and stability of pipes conveying fluid (turbomachinery com-
ponents, heat exchangers, jet pumps, nuclear reactors,...) and fluid-filled cav-
ities (storage tanks, human eyes,...). Some typical solid-solid and fluid-fluid
problems can be encountered in the analysis of wave propagation inside com-
posite materials (for stress measurements) and inside stratified flows under
gravity (ocean). As examples, the reader could refer to [1–8] for papers deal-
ing with some of the above mentioned applications. Another application of
interest could also deal with the sensitivity analysis for the design and control
of coupled fluid-structure systems [9,10].

The motion of particles at the interface between both media in contact can
occur with (resp. without) slip, as it is the case of inviscid (resp. viscous)
fluid-structure interactions for example. In the absence of flow and prestress,
interface conditions are well-established and the kinematic and dynamic jump
conditions respectively correspond to the continuity of the normal components
of the acoustic velocity or displacement (as well as their tangential components
in the no slip case) and of the acoustic stress tensor. However, the derivation
of the appropriate interface conditions is somewhat complicated when an ini-
tial flowing or prestressed state exists. Besides, the possibility of slip further
complicates the derivation of jump conditions because material particles that
are in contact at the interface in the current (Eulerian) configuration are no
longer adjacent in another reference configuration, so that surface elements do
not transform in the same manner on either side of the interface.

As far as the acoustic kinematic jump condition is concerned for an inviscid
flowing fluid, considerable discussion appeared years ago in the literature as to
whether continuity of particle normal displacement or normal velocity is the
appropriate boundary condition. Nayfeh et al. [11] reviewed theoretical, nu-
merical and experimental studies of the subject and concluded that the appro-
priate boundary condition was the continuity of particle normal displacement
instead of the normal velocity. Myers [12] derived a kinematic condition based
on the Eulerian acoustic velocity, valid at any impermeable vibrating surface
that is stationary in its unperturbed configuration. This derivation had been
later simplified by Farassat and Dunn [13]. Poirée [14,15] proposed using the
continuity of normal Lagrangian (particle) displacement but without formal
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general proof. Godin [16,17] finally proved the equivalence between the latter
and Myers condition.

Few papers deal with the dynamic jump condition for a slip interface in the
presence of prestress. Based on the assumption of the continuity of normal
particle displacement, Poirée [14,15] used distribution theory in order to de-
rive a stress jump condition for plane interfaces and Goy [18] later extended
his work to arbitrary non-plane interfaces (without accounting for geometric
compatibility conditions). However, no general validation of their theoretical
results were provided. Godin [16,17] derived some exact linearized boundary
conditions on the interface between two moving inviscid fluids. When studying
incompressible hydroelastic vibrations, Schotté and Ohayon [19] obtained lin-
earized boundary conditions on the interface between a prestressed structure
and an inviscid fluid in the absence of flow. Norris et al. [20] made a thorough
analysis of non-moving fluid/solid composite systems. Under the implicit as-
sumption of homogeneous prestress along the interface, they derived some
stress jump conditions valid for both slip and bonded interfaces. It should
be noticed that most of these studies point out the benefits of an interme-
diate formulation compared to a full Lagrangian or Eulerian approach. This
intermediate formulation consists in writing the equilibium equations with
respect to the unperturbed coordinates corresponding to the prestress state.
This intermediate formulation is often referred to as “updated Lagrangian”
in non-linear mechanics and sometimes “mixed Eulerian-Lagrangian” in flow
acoustics.

The goal of this paper is to investigate and clarify jump conditions that hold
for linear perturbations at any impermeable interfaces (slip or bonded, plane
or not) between fluids and/or structures in the presence of initial flow and pre-
stress. Based on a mixed Eulerian-Lagrangian formulation (recalled in Sec. 2)
together with the concept of generalized functions in distribution theory [21–
23], interface conditions associated with general conservative equations are
derived in Sec. 3. These conditions generalize Poirée’s results [14,15] to non-
plane interfaces. The approach chosen is the same as in Refs. [14,15,18] and
allows an elegant and rather straightforward derivation. In Sec. 4, interface
conditions for perturbations are validated through a comparison with some
exact conditions derived from a linearization of the standard Eulerian jump
conditions. For a straightforward comparison, conditions based on both ap-
proaches are written in terms of a curvilinear coordinate system attached to
the interface. In particular, we prove the sufficiency of normal displacement
continuity across the interface (without requiring its initial stationarity). In
Sec. 5, jump conditions for mass, momentum, energy and entropy are explicitly
given. The kinematic and dynamic jump conditions are discussed and shown
to coincide with standard literature results. Section 6 finally concludes this
paper.
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Fig. 1. Reference (bold line), intermediate (thin), and current (dashed) configura-
tions with their respective coordinates xref , x0(t) and x̃(t), denoting the particle
position. u0 and ũ are respectively the intermediate and current displacements, u
is the displacement perturbation.

2 Mixed Eulerian-Lagrangian description

As shown in Fig. 1, three configurations can be distinguished in the linear
dynamic analysis of continuum media that are not initially at rest: the refer-
ence configuration (corresponding to a state of complete rest, quiescent and
unprestressed), the intermediate configuration (unperturbed, corresponding
to the flowing/prestressed state without small oscillatory perturbations), and
the current (Eulerian) configuration including some small superimposed os-
cillatory perturbations. Physical fields referring to these configurations will
respectively be denoted with a subscript ref , a subscript 0 and a tilde. The
absence of symbol will be left for superimposed oscillatory perturbations. The
material position vector in each configuration will be denoted xref , x0(t) and
x̃(t) – corresponding to the Lagrangian, intermediate and Eulerian coordinates
– and the gradients with respect to them will be denoted by ∇ref , ∇0 and ∇̃.
For simplicity, the same notation will be kept for physical fields written in
terms of any of the above mentioned coordinates (this is source of possible
confusion but the reader can easily discern the coordinates used by context).
Table 1 summarizes the different notations for the three configurations.

For the sake of clarity and self-containedness, this section mainly reviews
the mixed Eulerian-Lagrangian description and the associated governing equi-
librium equations though it has been presented elsewhere - see for instance
Ref. [15]. Section 2.5 outlines how such a description indeed provides an in-
teresting unification between existing solid and fluid formulations.

2.1 Current and intermediate equilibrium states

In fluid and solid continuum mechanics, a vector equilibrium equation de-
scribing the current state (occupying a volume Ṽ ) by means of the current
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Table 1
Notations in the three configurations.

Configurations Position Volume, Density, Displ., velocity,

(state) (coordinates) interface temperature Cauchy stress,...

Reference xref Vref ρref 0, 0

(rest) (Lagrangian) Σref , nref Tref 0, 0, 0, 0

Intermediate x0 V0 ρ0 u0 = x0 − xref , v0

(prestressed) (intermediate) Σ0, n0 T0 σ0, e0, q0, s0

Current x̃ Ṽ ρ̃ ũ = x̃− xref , ṽ

(perturbed) (Eulerian) Σ̃, ñ T̃ σ̃, ẽ, q̃, s̃

(Eulerian) coordinates has the following general Eulerian conservative form:

∂(ρ̃ã)

∂t
+ ∇̃ · (ρ̃ã⊗ ṽ + Ã) = ρ̃α̃ in Ṽ (1)

ρ̃ and ṽ are respectively the density and the velocity vector. ã, α̃ denote
vectors and Ã denotes a second order tensor with appropriate units. A scalar
equilibrium equation has the following general conservative form:

∂(ρ̃b̃)

∂t
+ ∇̃ · (ρ̃b̃ṽ + b̃) = ρ̃β̃ in Ṽ (2)

where b̃, β̃ are scalars and b̃ is a vector.

The balance equations for mass, momentum, energy and entropy are obtained
with the following identifications:

mass: b̃ = 1, b̃ = 0, β̃ = 0

momentum: ã = ṽ, Ã = −σ̃, α̃ = f̃

energy: b̃ = ẽ + 1/2ṽ · ṽ, b̃ = q̃− σ̃ · ṽ, β̃ = f̃ · ṽ + r̃

entropy: b̃ = s̃, b̃ = q̃/T̃ , β̃ = r̃/T̃

(3)

where σ̃, ẽ, q̃, s̃ and T̃ respectively denote the Cauchy stress tensor, the
internal energy per unit mass, the heat flux, the entropy per unit mass and the
temperature. f̃ and r̃ are the external body force and heat source per unit mass.
Replacing tildes with subscripts 0, Eqs. (1)–(3) also hold for the intermediate
configuration state. Note that for irreversible process, the equality in Eq. (2)
written for entropy should be replaced with the inequality ≥ .
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Fig. 2. For the one-dimensional case, plots of intermediate field Ψ0(x) (thin line) and
current field Ψ̃(x) (dashed) at a fixed time. x0 and x̃ are respectively the particle
position in the intermediate and current states, u = x̃− x0 being the (Lagrangian)
perturbation of displacement. Then, ΨE = Ψ̃(x̃)−Ψ0(x̃) and ΨL = Ψ̃(x̃)−Ψ0(x0)
are respectively the graphical representations of the Eulerian and Lagrangian per-
turbations of Ψ̃.

2.2 Definitions

One can choose to write physical fields with respect to the Lagrangian (xref , t),
intermediate (x0(t), t) or Eulerian (x̃(t), t) variables. Denoting u as the particle
small oscillatory displacement, x0 and x̃ are related by (see Fig. 1):

x̃ = x0 + εu (4)

Let Ψ̃(x̃, t) denote any field – scalar, vector or tensor – describing the current
state in terms of Eulerian coordinates. Both the following linear perturbations
can be defined:

εΨE = Ψ̃(x̃, t)−Ψ0(x̃, t) , εΨL = Ψ̃(x̃, t)−Ψ0(x0, t) (5)

Superscripts E and L respectively denote Eulerian and Lagrangian perturba-
tions (one exception being for the displacement perturbation u = uL in order
to avoid cumbersome expressions). Figure 2 exhibits a graphical representation
of both perturbations in the one-dimensional case.

Often implicitly used in fluid acoustics, Eulerian perturbations are clearly
associated with the same geometrical point but not necessarily the same par-
ticle. Lagrangian perturbations, usually used in solid mechanics, are associ-
ated to the same particle but here, the Lagrangian perturbations defined by
Eq. (5) are written with respect to (x0, t) (or equivalently (x̃, t) because of
the assumption of small perturbations between the intermediate and the cur-
rent configurations). This description is thus mixed and may be called mixed
Eulerian-Lagrangian description in contrast with a full Lagrangian descrip-
tion, where Lagrangian perturbations would be written with respect to the
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Lagrangian variables (xref , t).

From Eqs. (4) and (5), the following fundamental relation between Eulerian
and Lagrangian first order perturbations holds:

ΨL = ΨE + (u · ∇0)Ψ0 (6)

which shows that Eulerian and Lagrangian perturbations of Ψ̃ are equivalent
only if Ψ0 remains constant.

2.3 Perturbation rules

As for a full Lagrangian or Eulerian approach, the Lagrangian perturbations
of sum and product with a mixed Eulerian-Lagrangian description are simply
(Ψ̃+Φ̃)L = ΨL+ΦL and (Ψ̃Φ̃)L = Ψ0Φ

L+ΨLΦ0. However, the perturbation of
derivatives is not straightforward (differentiation and perturbation operations
do not commute). To the first order, it can be shown that:

(
∇̃Ψ̃

)L
= ∇0Ψ

L −∇0Ψ0 · ∇0u ,

(
∂Ψ̃

∂t

)L

=
∂ΨL

∂t
−∇0Ψ0 · ∂u

∂t
(7)

One consequence is that (d̃Ψ̃/dt)L = d0Ψ
L/dt, where d̃/dt = ∂/∂t + (ṽ · ∇̃)

and d0/dt = ∂/∂t + (v0 · ∇0) are the material derivatives with respect to the
current and intermediate configurations. In particular, vL = d0u/dt.

2.4 Perturbation of the equilibrium equations

Applying the perturbation rules (7) to the balance equation (2) for mass
({b̃, b̃, β̃} = {1,0, 0}) and taking into account the intermediate equilibrium
state yields: d0(ρ

L/ρ0 +∇0 ·u)/dt = 0. Under the assumption of no wave-flow
synchronism [16,17], integration of this equation gives:

ρL

ρ0

+∇0 · u = 0 in V0 (8)

Perturbation rules are then applied to the general conservative Eqs. (1) and (2).
Thanks to Eq. (8), the intermediate state equilibrium and the identity ∇0 ·
((∇0 ·u)I−∇0u

T ) = 0, it can be shown that the resulting perturbed equations
can be rewritten as the following conservative forms:

∂(ρ0a
L)

∂t
+∇0·

(
ρ0a

L ⊗ v0 + AL + A0 · ((∇0 · u)I−∇0u
T )

)
= ρ0α

L in V0 (9)
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and:

∂(ρ0b
L)

∂t
+∇0 ·

(
ρ0b

Lv0 + bL + b0 · ((∇0 · u)I−∇0u
T )

)
= ρ0β

L in V0 (10)

where I is the second order identity tensor. Though the derivation of conser-
vative Eqs. (9) and (10) is not straightforward from perturbation rules (7), it
should be mentioned that such conservative forms are directly obtained with
a transformation from current to intermediate variables in Refs. [14,15].

For clarity, the balance equations for momentum, energy and entropy are
written with the identifications:

momentum: aL = vL, AL = −σL, αL = fL, A0 = −σ0

energy: bL = eL + v0 · vL, bL = qL − σ0 · vL − σL · v0,

βL = f0 · vL + fL · v0 + rL, b0 = q0 − σ0 · v0

entropy: bL = sL, bL = qL/T0 − q0T
L/T 2

0 ,

βL = rL/T0 − r0T
L/T 2

0 , b0 = q0/T0

(11)

obtained from the Lagrangian perturbation of (3).

2.5 Note upon stress tensors usually defined in solid and fluid mechanics

The Cauchy stress increment σL (Lagrangian perturbation of Cauchy stress, as
defined by Eq. (5)), is barely used in solid mechanics [24–26]. However another
kind of stress increment, denoted σ for simplicity, naturally appears from a
transformation from current to intermediate coordinates: σ = det(X̃0)X̃

−1
0 σ̃X̃−T

0 −
σ0, where X̃0 = ∇0x̃ = I +∇0u (the deformation gradient from the interme-
diate to the current configuration). In non-linear mechanics and acoustoelas-
ticity, σ may be referred to as the updated Kirchhoff stress increment tensor
in the so-called updated Lagrangian formulation – see Bathe [27], Yang and
Kuo [28] or Pao et al. [29] for instance. The updated Lagrangian formulation
and the mixed Eulerian-Lagrangian formulation are obviously equivalent for
small incremental displacements. A formal proof is obtained by linearizing the
previous definition of σ, which yields the following relationship:

σL + σ0 · ((∇0 · u)I−∇0u
T ) = σ +∇0u · σ0 (12)

Using Eq. (12) into Eq. (9) written for momentum (see identification (11))
and simplifying gives the following equation: ρ0d

2
0u/dt2 − ∇0 · (σ + ∇0u ·

σ0) = ρ0f
L, corresponding to the so-called linearized updated Lagrangian

formulation. For a linearly elastic solid, the stress-strain relationship is simply
given by σ = C : ε, where ε = 1/2(∇0u+∇0u

T ) is the linearized incremental
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strain tensor and C is the constitutive tensor. Note that for large prestrains,
this constitutive tensor cannot be approximated as the constitutive tensor
obtained in a total Lagrangian formulation and generally depends upon the
predisplacement field [27–29].

For inviscid fluids, σ̃ = −p̃I and σL = −pLI. pL is barely used in acoustics
also (Eulerian perturbations being usually preferred). Nevertheless, it should
be outlined that the Eulerian-Lagrangian description yields an interesting
equation describing wave propagation in arbitrary inviscid flowing fluids. Ob-
tained using Eqs. (8) and (9) for momentum together with the state equation
pL = c2

0ρ
L (c0 is the intermediate sound celerity), this wave equation is only

written in terms of u and has some interesting properties. It is sometimes
called Galbrun’s equation – for further details, see Refs. [14,15,30–32].

The use of Lagrangian perturbations written in terms of the intermediate
coordinates hence allows a straightforward unification between existing fluid
and solid formulations. Moreover, their interest lies in the fact that Eqs. (8)–
(10) can be interpreted in the sense of distributions, as shown in the next
sections.

3 Interface conditions

3.1 Interface conditions for the current and intermediate equilibrium states

One elegant way to derive jump conditions is to interpret Eqs. (1)–(3) in terms
of distribution theory through the concept of generalized derivatives and to
postulate that these equations hold in the sense of distributions [15,21–23].

Let us denote [·]Σ̃ the jump +(·)−−(·) on the moving interface, denoted Σ̃. This
interface is represented by the implicit equation S̃(x̃, t) = 0. Left subscripts
− and + denote the media considered, respectively defined by S̃ < 0 and
S̃ > 0. The unit normal is denoted ñ(x̃, t) and will be oriented from − medium
to +, so that ñ = ∇̃S̃/|∇̃S̃|. The surface S̃ = 0 is assumed smooth (S̃ is
differentiable).

Details of calculations are given in Appendix A for general conservative equa-
tions. Neglecting any surface phenomenon, the same decomposition as Eqs. (A.2)
and (A.3) without Dirac terms (δÃ = 0 and δb̃ = 0) is applied for all the phys-
ical fields explicitly involved in the conservative Eqs. (1) –(3). For immiscible
media, the following interface conditions are then obtained:

[Ã · ñ]Σ̃ = 0 , [b̃ · ñ]Σ̃ = 0 (13)
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Replacing tildes with subscripts 0, Eqs. (13) also hold for the intermediate
configuration state.

The interface conditions associated with the mass, momentum, energy and
entropy equations are directly obtained from Eqs. (13) with the identifica-
tion (3), yielding:

[ṽ · ñ]Σ̃ = 0, [σ̃ · ñ]Σ̃ = 0, [q̃ · ñ]Σ̃ = (σ̃ · ñ) · [ṽ]Σ̃, [q̃ · ñ/T̃ ]Σ̃ ≥ 0 (14)

Usually obtained from a pillbox analysis, these conditions are well-known in
continuum mechanics (see for instance Refs. [33,34]). This a posteriori proves
the exactness of conditions (14) as well as the validity of Eqs. (1)–(3) in the
sense of distributions. When the interface is bonded ([ṽ]Σ̃ = 0) or involves
an inviscid fluid (σ̃ · ñ = −p̃ñ), the third and fourth conditions simplify into
[q̃ · ñ]Σ̃ = 0 and (q̃ · ñ)[1/T̃ ]Σ̃ ≥ 0.

3.2 Interface conditions for perturbations

Following the same procedure as previously, one postulates that Eqs. (8)–(10)
are valid in the sense of distribution theory. All derivatives are then interpreted
as generalized derivatives. In the intermediate configuration, the interface is
now denoted Σ0 and is represented by the implicit equation S0(x0, t) = 0.
The general results of Appendix A allow a direct derivation of the interface
conditions associated with Eqs. (8)–(10).

First, Eq. (8) can be considered as a scalar conservative equation identified
from Eq. (A.8) with {b,b, ρβ} = {0,u,−ρL/ρ0} (and ∇ = ∇0), so that the
associated jump condition is simply:

[u · n0]Σ0 = 0 (15)

meaning that the normal Lagrangian perturbation of displacement should be
continuous across the interface.

Eq. (9) is a vector conservative equation that can be identified from Eq. (A.1)
with ρ = ρ0, v = v0, a = aL, A = AL + A0 · ((∇0 · u)I−∇0u

T ) and α = αL.
Eq. (10) is a scalar conservative equation identified from Eq. (A.8) in a similar
manner. Because of the spatial derivatives of u, the decomposition of A and
b includes Dirac terms, given by:

δA = {|∇0S0| ((−A0H(−S0) ++ A0H(+S0)) [u · n0]− (A0 · n0)⊗ [u])}Σ0

(16)
together with a similar expression for δb. The first term of the right member
inside parenthesis would be undefined but vanishes thanks to Eq. (15). The
second term is well-defined thanks to the continuity of A0 · n0 (and b0 · n0)
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across the interface. Then, it must be noted that the conditions δA · n0 = 0
and δb · n0 = 0 on Σ0 of Appendix A are ensured thanks to the continuity
condition (15). From Eqs. (A.10), the following interface conditions are finally
obtained:

[
(AL + A0 · ((∇0 · u)I−∇0u

T )) · n0

]
Σ0

− 1

|∇0S0|∇0·{(|∇0S0|(A0·n0)⊗[u⊥])Σ0} = 0

(17)
and:

[
(bL + b0 · ((∇0 · u)I−∇0u

T )) · n0

]
Σ0

− 1

|∇0S0|∇0·{(|∇0S0|(b0·n0)[u⊥])Σ0} = 0

(18)
with u⊥ = u − (u · n0)n0 defining the tangential displacement. Note that
the last terms vanish in the no-slip case. These jump conditions generalize to
curved interfaces the conditions of Poirée [14,15], which were formally derived
for plane interfaces only.

At this stage, it should be emphasized that the exactness of interface con-
ditions (15), (17) and (18) has not yet been rigorously demonstrated. Their
validity will be assessed in Sec. 4.

4 Validation

One must be careful because the procedure of deriving interface conditions
based on generalized function theory does not formally prove that the so-
obtained jump conditions are exact. A typical counter-example may be given
by the Eulerian perturbation of mass conservation:

∂ρE

∂t
+∇0 ·

(
ρEv0 + ρ0v

E
)

= 0 (19)

which is still written under a conservative form through the identification
ρ = ρ0, v = v0, b = ρE/ρ0 and b = ρ0v

E within Eq. (A.8). However, one
can verify that applying into Eq. (19) a decomposition of the form (A.2) for
ρ0, ρE, v0 and vE would give the jump condition [ρ0v

E · n0]Σ0 = 0, which is
obviously incorrect – a detailed study can be found in Poirée [14,35].

As a central result of this paper, this section aims at verifying the validity of
the previously obtained interface conditions for perturbations. A possible way
of proceeding, which we follow, is to compare conditions (15), (17) and (18) to
the ones obtained from an alternative approach based on an exact linearization
of the standard Eulerian jump conditions. In order to ensure a straightforward
comparison, all expressions are written in a curvilinear coordinate system
attached to the interface.

11



Fig. 3. Transformation of material surface elements in the presence of slip. Σ0 and
Σ̃ represent the interface in its intermediate (thin line) and current (dashed) config-
urations. In the no-slip case, +u =− u and the intermediate surface elements would
coincide.

4.1 Alternative derivation (exact linearization)

Jump conditions for perturbations are now derived based on an exact approach
starting from the standard Eulerian conditions (13), rewritten as:

−Ã · ñdΣ̃ = +Ã · ñdΣ̃ , −b̃ · ñdΣ̃ = +b̃ · ñdΣ̃ (20)

The method consists in transforming the above conditions to the intermediate
configuration thanks to the following formula, well-known in continuum me-
chanics and sometimes referred to as Nanson’s formula: ñdΣ̃ = det(X̃0)X̃

−T
0 n0dΣ0

(X̃0 already defined in Sec. 2.5). In order to write conditions at the same ge-
ometrical point in the presence of slip, we must transform surface element on
either side to the same intermediate element, that of medium + for instance.
For clarity, Fig. 3 sketches the transformation of material surface elements in
the presence of slip from the current to the intermediate configurations. The
linearized Nanson’s formula then yields up to the first order:

ñdΣ̃ = n0dΣ0 + ε((∇0 · +u)I− (∇0+u)T ) · n0dΣ0 (21)

where n0dΣ0 should be understood as +n0+dΣ0.

With this transformation, the perturbations of ±Ã denoted ±AP are explicitly
defined by −Ã(x̃) = −A0(+x0)+ ε−AP and +Ã(x̃) = +A0(+x0)+ ε+AP . From
definition (5), it is easy to remark that +AP = +AL and −AP = −AL +
([u] ·∇0)−A0 (with similar relationships for ±bP ). Making use of these results
and of the intermediate state condition (+A0 − −A0) · n0dΣ0 = 0, the exact
linearization of Eqs. (20) gives the following jump conditions for perturbations:

{
[AL] + [A0] · ((∇0 · +u)I− (∇0+u)T )− ([u] · ∇0)−A0

}
·n0 = 0 on Σ0 (22)
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with a similar expression for a scalar condition (just replace A with b).

4.2 Sufficiency of the kinematic condition (15)

The sufficiency of the normal Lagrangian displacement continuity (15) is
now proved. One needs to consider a curvilinear coordinate system, denoted
(ξ1, ξ2, ξ3), such that the interface Σ0 defined by the implicit equation S0(x0(t), t) =
0 is given by ξ3 = f(t) in terms of these new coordinates. The corresponding
covariant basis (g1,g2,g3) is given by gi = ∂x0/∂ξi (i = 1, 2, 3), the covariant
metric tensor is gij = gi ·gj. Then, gα (α = 1, 2) are tangent vectors (assumed
linearly independent) and g3 is a normal vector to the interface. The con-
travariant (g1,g2,g3) basis is defined by gi · gj = δj

i (δj
i being the Kronecker

symbol), gij = gi · gj being its metric tensor. The following notation con-
ventions are used: right subscripts (resp. superscripts) will denote covariant
(resp. contravariant) components, latin (resp. Greek) indices will be used for
3D (resp. surface) components. We will use Einstein summation convention
and commas for partial derivatives with respect to curvilinear coordinates.
The following properties hold: gα3 = gα3 = 0 and n0 = g3/|g3| = g3/|g3|.

The main properties and expressions of operators used in this paper are re-
called in Appendix B. For instance, the reader may refer to [36–38] for an
introduction to the use of general curvilinear coordinate systems.

One starts from Eq. (22) written for the velocity. This yields an exact but
cumbersome kinematic condition. As shown by the following Lemma, it can be
greatly simplified when expressed in the curvilinear coordinate system thanks
to the use of jump compatibility conditions (B.4) and (B.5).

Lemma 4.1 The linearized interface condition associated with the continuity
of normal velocity [ṽ · ñ]Σ̃ = 0 can be expressed in terms of the Lagrangian
perturbation of displacement as:

(
d0·
dt
− n0 · ∇0((v0 · n0)·)

)
([u · n0]Σ0) = 0 (23)

Proof. Recall that vL = d0u/dt, Eqs. (22) written for the velocity (b = v)
yields a kinematic condition written in terms of the displacement only:

{
[d0u/dt] + [v0] · ((∇0 · +u)I− (∇0 +u)T )− ([u] · ∇0) −v0

}
· n0 = 0 on Σ0

(24)
Using Appendix B and the continuity of intermediate normal velocity [v3

0]Σ0 =
0, some developments and simplifications yield the following equality on Σ0:

13



{
[(v0 · ∇0)u] + [v0] · ((∇0 · +u)I− (∇0+u)T )− ([u] · ∇0)−v0

}
· n0

= (−vi
0[u

3
,i]− −v3

0,i[u
i])/|g3| (25)

The first term of the material derivative in Eq. (24) requires some specific
developments for a non-stationary interface Σ0 and is decomposed as follows:

[
∂u

∂t

]
·n0 =

[
∂(u · n0)

∂t
− u · ∂n0

∂t

]
=

[
∂

∂t

(
u3

|g3|

)]
−

[
uigi · ∂

∂t

(
g3

|g3|

)]
on Σ0

(26)
We have n0 · ∂n0/∂t = 0 (from n0 · n0 = 1) and hence g3 · ∂(g3/|g3|)/∂t = 0.
Recall the jump kinematic compatibility condition given by Eq. (B.5), Eq. (26)
now becomes:

[
∂u

∂t

]

Σ0

· n0 =
∂

∂t

(
[u3]Σ0

|g3|

)
− w3

0




(
u3

|g3|

)

,3




Σ0

−
[
uαgα · ∂

∂t

(
g3

|g3|

)]

Σ0

(27)

where w3
0 = wn0|∇0S0| (wn0 being the intermediate surface normal velocity).

From the relation g3 = ∇0S0, we have ∂g3/∂t = −∇0w
3
0 = −w3

0,ig
i. Sum-

ming Eqs. (25) and (27) and using (B.6), the condition (24) might finally be
rewritten as:
(

∂·
∂t

+ −vα
0 (·),α − −v3

0,3 · −Γ3
33w

3
0·

) (
[u3]Σ0

|g3|

)
=

w3
0 − −v3

0

|g3| [u3
,3]Σ0+

(−v3
0 − w3

0),α

|g3| [uα]Σ0

(28)
The right-hand side is zero thanks to the continuity of normal velocity in
the intermediate state (w3

0 = −v3
0) and the geometric compatibility condi-

tion (B.4). The left-hand side can be rewritten in the condensed form given
by Eq. (23). Note that the above equality also holds for +vi

0 instead of −vi
0.

This ends the proof of Lemma 4.1.

Theorem 4.2 Assume an interface across which the normal velocity remains
continuous: [v0 · n0]Σ0 = [ṽ · ñ]Σ̃ = 0. A sufficient condition for small per-
turbations is given by the continuity of the normal Lagrangian perturbation of
displacement: [u · n0]Σ0 = 0.

The proof is straightforward from the exact linearized condition (23) of Lemma 4.1,
which is necessarily satisfied when the continuity [u · n0]Σ0 = 0 is assumed.

Note that the continuity of the normal Lagrangian perturbation of displace-
ment is generally also a necessary condition, except when the left-hand side
differential operator of Eq. (23) vanishes. This situation may occur for special
cases of wave-flow synchronim, as already stated by Godin [16,17] when consid-
ering stationary intermediate interfaces (for a stationary interface, ∂S0/∂t =
w3

0 = v3
0|Σ0 = 0). In this paper, note that no stationarity assumption has been

required for the intermediate interface in the derivation of Eq. (23).
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4.3 Equivalence between interface conditions (17)–(18) and (22)

One first needs to write the exact linearized interface conditions (22) in the
curvilinear coordinate system. The curvilinear expressions are given by the
following Lemma:

Lemma 4.3 Based on the condition [u · n0]Σ0 = 0, the linearized interface
condition obtained from the Eulerian condition [Ã · ñ]Σ̃ = 0 (where Ã is a
second order tensor) can be expressed as:

[
ALi3 − Ai3

0,αuα − Aiα
0 (u3

,α + Γ3
αku

k)− Aj3
0 Γi

jαuα − Ai3
0 Γ3

3αuα
]
Σ0

= 0 (29)

(for i = 1, 2, 3) in a curvilinear coordinate system attached to the interface
Σ0, represented by the implicit equation ξ3 = f(t). Similarly, the linearized
interface condition obtained from [b̃ · ñ]Σ̃ = 0 (b̃ is a vector) is:

[
bL3 − b3

0,αuα − bα
0 (u3

,α + Γ3
αku

k)− b3
0Γ

3
3αuα

]
Σ0

= 0 (30)

Proof. Thanks to Appendix B, the reader can check (details not shown for con-
ciseness) that writing the condition (22) in the curvilinear coordinate system
exactly yields Eqs. (29) and (30) provided that [u3]Σ0 = 0.

Note that such expressions might be particularly suitable for practical appli-
cations involving curved interfaces.

Theorem 4.4 Based on the condition [u · n0]Σ0 = 0, the interface condi-
tions (17) and (18) derived from generalized function theory are equivalent to
the exact linearized conditions (22).

Proof. In the curvilinear coordinate system, conditions (13) in the intermediate
state and the condition (15) are simply given by:

[Ai3
0 ]Σ0 = 0, [b3

0]Σ0 = 0, [u3]Σ0 = 0 (31)

Conditions (17) and (18) require further developments. Using expressions of
Appendix B with n0 = g3/|g3|, we can write after simplifications:

(
AL + A0 · ((∇0 · u)I−∇0u

T )
)
· n0 =

(
ALi3 + Ai3

0 (uα
,α + Γα

αku
k)− Aiα

0 (u3
,α + Γ3

αku
k)

)
gi/|g3| (32)

Thanks to the relation (B.3) and [u3]Σ0 = 0, we have:

(|∇0S0|(A0 · n0)⊗ [u⊥])Σ0 = (Ai3
0 [uα]gi ⊗ gα)Σ0 (33)
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Table 2
Mass, momentum, energy and entropy interface conditions for perturbations.

Mass [u · n0]Σ0 = 0

Momentum
[(

σL + σ0 · ((∇0 · u)I−∇0uT )
) · n0

]
Σ0

− 1
|∇0S0|∇0 · {(|∇0S0|(σ0 · n0)⊗ [u⊥])Σ0} = 0

Energy 1
[(

qL + q0 · ((∇0 · u)I−∇0uT )
) · n0

]
Σ0

− 1
|∇0S0|∇0 · {(|∇0S0|(q0 · n0)[u⊥])Σ0} = 0

Entropy 2 [TL + u⊥ · ∇0T0]Σ0 = 0

and the following expression holds:

∇0 ·{(|∇0S0|(A0·n0)⊗[u⊥])Σ0} =
(
(Ai3

0 [uα]),α + Γi
jαAj3

0 [uα] + Γj
αjA

i3
0 [uα]

)
Σ0

gi

(34)
Then from Eqs. (32) and (34) and thanks to Eqs. (31) as well as the geometric
compatibility condition (B.4) and property (B.6), condition (17) may finally be
rewritten as Eq. (29). Following the same method, the curvilinear expression
for the scalar interface condition (18) is shown to be the same as Eq. (30).
This ends the proof of Theorem 4.4.

5 Discussions

5.1 Application to mass, momentum, energy and entropy equations

Table 2 gives the interface conditions derived in Sec.3.2 for mass (kinematic
condition), momentum (dynamic condition), energy and entropy, yielding equa-
tions for the perturbations of displacement, stress, heat flux and temperature.

The jump condition for stress is obtained by applying the identification (11)
into Eq. (17). As far as energy and entropy are concerned, the expression of
jump conditions are more cumbersome. To the authors’ knowledge, general
expressions of jump conditions for perturbations of heat flux and temperature
have not been proposed in the literature. Some general conditions can be
obtained from the identification (11) into Eq. (18). However for conciseness,
Table 2 only gives simplified expressions of the energy and entropy conditions,
as detailed below.

When the interface is bonded ([v0]Σ0 = [u]Σ0 = [vL]Σ0 = 0) or involves

1 assumption: the interface is bonded or involves an inviscid fluid.
2 assumptions: same as footnote 1 and the temperature remains continuous across
the interface.
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an inviscid fluid (σ0 · n0 = −p0n0, σL · n0 = −pLn0), the energy jump
condition can be simplified through the use of the kinematic and dynamic jump
conditions. It can be checked that one arrives at the energy condition given in
Table 2. Recall that [q0 · n0]Σ0 = 0. Let us further assume an interface across
which the temperature is continuous ([T̃ ]Σ̃ = [T0]Σ0 = 0). Then using the
energy condition, the entropy jump condition degenerates into the expression
given in Table 2.

Note that for a bonded interface, the respective last terms of momentum, en-
ergy and entropy jump conditions vanish. In particular, this yields the continu-
ity of temperature Lagrangian perturbation [TL]Σ0 = 0 ( 6= [TE]Σ0 in general).

5.2 Myers approach for Eulerian perturbations

Let us consider the kinematic continuity condition [u · n0]Σ0 = 0. It involves
the Lagrangian perturbation of the displacement, not suited with the fully
Eulerian approach usually used in fluid acoustics. When no initial flow is
present, this condition is obviously equivalent to [vE · n0]Σ0 = 0. However
this is not the case anymore with a flowing fluid, for which the Eulerian kine-
matic boundary condition was found by Myers [12] under the assumption of a
stationary intermediate interface. Its approach consisted in linearizing the con-
dition [ṽ · ñ]Σ̃ = 0 by means of Eulerian perturbations (instead of Lagrangian
perturbations as done in Sec. 4.1).

For clarity, the kinematic condition of Myers is with our notations:

vE · n0 = ∂ζ/∂t + v0 · ∇0ζ − ζn0 · (n0 · ∇0)v0 on Σ0 (35)

where ζ is defined as the normal displacement of the interface. As mentioned in
the introduction, the equivalence between the normal Lagrangian displacement
continuity and Myers condition has already been proved by Godin [16,17],
who has shown that ζ = u · n0|Σ0 implies Myers condition. In this paper,
Lemma 4.1 and Theorem 4.2 can be viewed as an extension of Godin’s proof
for non-stationary interfaces. What should be remarked is that the normal
Lagrangian displacement indeed naturally appear in Myers condition also (this
condition is thus not fully Eulerian).

In the no-slip case, [ṽ]Σ̃ = 0 and the following continuity conditions obviously
hold: [vL]Σ0 = [u]Σ0 = 0. However, from the relation (6), [vE]Σ0 = −[(u ·
∇0)v0]Σ0 = −u3[vi

0,3]Σ0gi: this jump is generally non-zero. In the case of a
stationary bonded interface, the Myers-type condition would be written as
vE = ∂ζ/∂t − (ζ · n0)(n0 · ∇0)v0 on Σ0 (where ζ = u|Σ0 now corresponds to
the interface displacement vector).
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Table 3
Myers-type interface conditions for Eulerian perturbations (ζ is defined as the in-
terface normal displacement).

Kinematic condition [vE · n0 − v0 · ∇0ζ + ζ(∇0v0 · n0) · n0]Σ0 = 0

Dynamic condition [σE · n0 − σ0 · ∇0ζ + ζ(∇0σ0 · n0) · n0]Σ0 = 0

Table 4
Dynamic interface conditions for perturbations in the literature.

Authors Dynamic jump condition

(interaction type) for perturbations

Norris et al. [20] [P · n0 − (∇0 · u− n0 · (∇0u) · n0) σ0 · n0

(general) −(u⊥ · ∇0)(σ0 · n0)]Σ0
= 0

Schotté and Ohayon [19] +σ = −(−pL + [u] · ∇0−p0)n0

(fluid-structure) 3 −−p0((∇0 · +u)I− (∇0+u)T ) · n0 on Σ0

Godin [17] (fluid-fluid) 3 [pE + (u · n0)n0 · ∇0p0]Σ0 = 0

Following the same linearization method as Myers, a kinematic condition can
be obtained in a jump form for non-stationary intermediate interfaces. This
condition is given in Table 3. This approach could also be used to derive Eule-
rian perturbations of jump conditions for stress, energy and entropy (indeed,
simply obtained by replacing the letter v with fields A or b in the kinematic
condition of Table 3) – as an example, Table 3 gives the dynamic condition.
Following the same procedure as in Sec. 4.2, one can check that ζ = ±u ·n0|Σ0

is a sufficient condition for the linearized kinematic condition of Table 3 to
be satisfied (which is equivalent to Theorem 4.2). Furthermore, provided that
ζ = u ·n0|Σ0 and using the relation σE = σL− (u · ∇0)σ0, one can also check
that writing the dynamic condition of Table 3 in a curvilinear coordinate
system exactly yields the form given by Eq. (29) in Lemma 4.3.

However, conditions obtained with the mixed Eulerian-Lagrangian descrip-
tion remain rather simple (kinematic conditions particularly) while Eulerian
Myers-type conditions, indeed not fully Eulerian, are more difficult to write
and implement in practice. This makes the mixed formulation particularly at-
tractive for interaction problem involving acoustics in the presence of initial
flow and/or prestress. For finite element applications of kinematic conditions
in flow acoustics, see for instance Refs. [32,39–45].

5.3 Literature results for the dynamic condition

Table 4 gives some standard literature results for the dynamic condition.
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Let us consider the dynamic condition in Table 2. From the expressions of
Appendix B and the property (B.6), it can be verified that the following
identity holds:

1

|∇0S0|∇0 · {(|∇0S0|[u⊥])Σ0} = ([uα
,α]+Γβ

βα[uα])Σ0 = [∇0 ·u−n0 · (∇0u) ·n0]Σ0

(36)

This allows us to rewrite the dynamic condition of Table 2 as the jump con-
dition of Norris [20] generalized to non-uniform prestress along the interface,
given in Table 4 with the new stress notation: P = σL+σ0 ·((∇0 ·u)I−∇0u

T ).
Note that this condition remains unchanged in the presence of initial flow.

The stress jump conditions derived in this paper also coincides with the con-
dition obtained by Schotté and Ohayon [19] between an inviscid fluid that is
initially at rest and and an elastic prestressed structure (see Table 4). These
authors indeed used a linearization process similar to Sec. 4.1. Their condition
can be recovered from Eq. (22) (with AL = σL and A0 = σ0) expressed in
terms of the increment +σ as defined by Eq. (12) rather than +σL (− and +
signs denoting the fluid and solid media respectively).

Finally, for an inviscid fluid-fluid problem, we have σ0 = −p0I and σL = −pLI
so that: σij

0 = −p0g
ij and σLij = −pLgij. Replacing this expression into the

curvilinear condition (29) yields:

p0(g
γβΓ3

βα + g33Γγ
3α)[uα]Σ0 = 0, [pL − uαp0,α]Σ0 = p0[u

α]Σ0(g
33
,α + 2g33Γ3

3α)/g33

(37)
The term inside parenthesis of the first equation vanishes thanks to Eq. (B.7)
yielding zero on both sides. The right hand side of the second equation also
vanishes thanks to Eq. (B.6), yielding the simple condition: [pL−uαp0,α]Σ0 = 0
or in condensed form:

[pL − u⊥ · ∇0p0]Σ0 = 0 (38)

From relation (6), the above condition can also be written in terms of the
Eulerian pressure, as the expression proposed by Godin [17] recalled in Table 4.

6 Conclusion

In this paper, the analysis of jump conditions for linear unsteady perturbations
has been conducted at impermeable interfaces (slip or bonded, plane or not)
between fluids and/or structures in the presence of initial flow and prestress.
It has been shown that some general and valid conditions can be naturally

3 assumption: inviscid fluid
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derived from the interpretation as generalized functions of the conservative
equilibrium equations obtained with a mixed Eulerian-Lagrangian description.

The jump conditions for mass, momentum, energy and entropy have been dis-
cussed, yielding conditions for the Lagrangian perturbations of displacement,
stress, heat flux and temperature. The obtained kinematic jump condition is
quite simple and corresponds to the normal Lagrangian displacement conti-
nuity across the interface. The sufficiency of such a condition has been proved
without requiring the assumption of initial stationarity of the interface. It
has also been verified that the proposed stress jump conditions coincides with
literature results.

The mixed Eulerian-Lagrangian description allows an interesting unification
between fluid and solid formulations. For solids, this description yields the lin-
earized updated Lagrangian formulation, well-known in non-linear mechanics,
describing the linear dynamics of prestressed structures. For inviscid fluids,
it gives the so-called Galbrun’s equation, written in terms of the Lagrangian
displacement only, describing sound propagation in arbitrary non-uniform Eu-
lerian flows. For problems involving acoustics, such a formulation may yield
simpler jump conditions than a fully Eulerian description, for which jump
conditions explicitly involve the interface normal displacement.

Acknowledgements

The authors wish to thank Bernard Poirée for stimulating and helpful discus-
sions.

A Derivation of jump conditions from conservative equations

For the sake of generality in this appendix, the notation convention using ref,
0 and tilde is dropped. A vector equilibrium equation has then the following
general conservative form:

∂(ρa)

∂t
+∇ · (ρa⊗ v + A) = ρα (A.1)

where a,α are vectors and A is a second order tensor. One postulates that
Eq. (A.1) is valid in the sense of distributions and interprets all derivatives as
generalized derivatives [22,23]. As stated by Farassat [22], it must be empha-
sized that the conservative form of a balance equation is particularly suitable
with the use of generalized functions (with non-conservative forms, one may
face with ambiguities of multiplication of generalized functions).
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Every physical quantity may be discontinuous at the smooth interface Σ, rep-
resented by the implicit equation S(x, t) = 0, so that we can write the following
decompositions:

{ρ,v, a,α} = {−ρ,− v,− a,− α}H(−S) + {+ρ,+ v,+ a,+ α}H(+S) (A.2)

and:
A = −AH(−S) + +AH(+S) + δAδ(S) (A.3)

with H denoting the Heaviside function and δ the Dirac distribution. The
Dirac term δA inside Eq. (A.3) (only defined on S = 0) might represent
some surface phenomena (for instance, superficial tension effect). Though such
phenomena are neglected in this paper, the presence of this term will be useful
for the derivation of jump conditions for perturbations in Sec. 3.2.

Time and spatial derivatives of H(±S) are given by:

∂

∂t
(H(±S)) = ∓wn|∇S|δ(S) , ∇(H(±S)) = ±n|∇S|δ(S) (A.4)

where wn is the normal velocity of the surface Σ. The time derivative has been
obtained from the kinematic equation ∂S/∂t + ∂y/∂t · ∇S = 0 (y denoting
any point on the surface Σ).

Substituting the expressions (A.2) and (A.3) into (A.1), using equalities (A.4)
as well as the identities H(±S)H(±S) = H(±S) and H(+S)H(−S) = 0, we
finally get the following equation:

−EH(−S) + +EH(+S) + δE|∇S|δ(S) + δ′E|∇S|δ′(S) = 0 (A.5)

with the notations:

±E =
∂(±ρ±a)

∂t
+∇ · (±ρ±a⊗ ±v + ±A)− ±ρ±α (A.6)

and:

δE = [ρa(v · n− wn) + A · n] +
1

|∇S|∇ · δA , δ′E = δA · n (A.7)

The identification of each term in Eqs. (A.5) yields −E = 0 for S < 0 and

+E = 0 for S > 0, corresponding to the equilibrium Eq. (A.1) inside media −
and +, and δE = δ′E = 0 on S = 0, corresponding to the jump conditions at
the interface associated with the conservative Eq. (A.1).

Following exactly the same procedure with a scalar equilibrium equation, writ-
ten under the general conservative form:

∂(ρb)

∂t
+∇ · (ρbv + b) = ρβ (A.8)
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we obtain the following jump conditions: [ρb(v · n− wn) + b · n]+(∇·δb)/|∇S| =
0 and δb · n = 0 on S = 0 (where b, β are scalars and b is a vector).

Mass conservation is obtained with {b,b, β} = {1,0, 0} in Eq. (A.8), which
yields [ρ(v · n − wn)] = 0. This condition means that the mass flux ±ρ(±v ·
n−wn) = 0 is continuous across the interface. This condition holds for shock
waves. However, for an impermeable surface (fundamental assumption of this
paper), the mass flux is zero across the interface so that wn = −v ·n = +v ·n:

[v · n]Σ = 0 (A.9)

and the previous jump conditions become for an impermeable surface:

[A · n] +
1

|∇S|∇ · δA = 0 , [b · n] +
1

|∇S|∇ · δb = 0 on Σ (A.10)

(with δA · n = 0 and δb · n = 0 on Σ).

B Operators in curvilinear coordinates

We drop the notation convention using ref, 0 and tilde for convenience. In a
curvilinear coordinate system, any second order tensor A and vector b can
be written as A = Aijgi ⊗ gj, b = bigi and the following expressions hold for
gradients:

∇A = (Aij
,k +Γi

mkA
mj +Γj

mkA
im)gi⊗gj⊗gk , ∇b = (bi

,j +Γi
jkb

k)gi⊗gj (B.1)

where Γk
ij = gi,j · gj denotes the Christoffel symbol of the second kind, satis-

fying the symmetry property Γk
ij = Γk

ji. The divergence operators are simply
obtained by contracting the last two indices, yielding:

∇ ·A = (Aij
,j + Γi

mjA
mj + Γj

mjA
im)gi , ∇ · b = (bi

,i + Γi
ikb

k) (B.2)

Other useful operators are the transpose gradient of a vector ∇bT = (bj
,i +

Γj
ikb

k)gi⊗gj and the gradient of a scalar ∇f = f,ig
i. The second order identity

tensor may be written as I = δ.j
i gi⊗gj. It should be outlined that the operator

(b ·∇)Ψ, sometimes used in this paper, should be understood as ∇Ψ ·b, where
Ψ denote any scalar, vector or tensor field.

Let us now consider a surface of discontinuity Σ, represented by S(x, t) = 0,
with an attached curvilinear coordinate system defined as in Sec. 4.2. The
surface Σ is written as ξ3 − f(t) = 0 in this new system, hence:

∇S = ∇ξ3 = ξ3
,ig

i = g3 , ∂S/∂t = −f ′(t) (B.3)
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so that f ′(t) = wn|∇S| = w3 (where wn is the surface normal velocity). For
any variable Ψ, the following geometric compatibility condition holds for the
jump on Σ:

([Ψ]ξ3=f(t)),α = [Ψ,α]ξ3=f(t) (B.4)

as well as the kinematic compatibility condition on Σ:

∂/∂t([Ψ]ξ3=f(t)) = [∂Ψ/∂t]ξ3=f(t) + w3[Ψ,3]ξ3=f(t) (B.5)

However, note that ([Ψ]ξ3=f(t)),3 = 0 6= [Ψ,3]ξ3=f(t) in general.

The Christoffel symbol of the second kind can be calculated from the metric
tensors thanks to the general formula: Γk

ij = gkl(gjl,i + gil,j − gij,l)/2 (with
no summation over indices). Because we have gα3 = gα3 = 0 and g33 =
1/g33 for the coordinate system attached to the interface, the following useful
relationships hold:

Γ3
3i = g33,i/2g33 = −g33

,i /2g33 (B.6)

and:
g33Γγ

3α + gγβΓ3
βα = 0 (B.7)
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[44] F. Treyssède, M. B. Tahar, Validation of a finite element method for sound
propagation and vibro-acoustic problems with swirling flows, Acta Acustica
United with Acustica 90 (2004) 731–745.
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