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aLaboratoire Central des Ponts et Chaussées, BP 4129, 4B8ditjuenais, France

Abstract

This paper aims at proposing an analytical model for theatibn analysis of horizontal beams that are self-weighted
and thermally stressed. Geometrical non-linearitiesadert into account on the basis of large displacement and smal
rotation. Natural frequencies are obtained from a linadins of equilibrium equations. Thermal force and thermal
bending moment are both included in the analysis. Torsiandlaxial springs are considered at beam ends, allowing
various boundary conditions. A dimensionless analysieigogpmed leading to only four parameters, respectively
related to the self-weight, thermal force, thermal bendimament and torsional spring Stiess. It is shown that the
proposed model can béfieiently used for cable problems with small sag-to-spamsafiypically less than/8, as in
Irvine’s theory). For beam problems, the model is validdtehks to finite element solutions and a parametric study
is conducted in order to highlight the combinefteets of thermal loads and self-weight on natural frequendier
cable problems, solutions are first compared with existasylits in the literature obtained without thermfieets or
bending stifness. Good agreement is found. A parametric study combthimgfects of sag-extensibility, thermal
change and bending Stiess is finally given.

Key words: vibration, prestress, self-weight, temperature, beatvligeca

1. Introduction

Beams and cables are widely used in civil structures. Sudictstes are subjected to various external forces.
Among them, self-weight and environmental thermal loa@smevitable. These quasi-static loads yield initial stres
(prestress) and initial displacement (predisplaceméfayting the dynamical behaviour of structures. For thincstru
tures such as beams, thiéeet of prestress is enhanced by the slenderness ratio,tsevtralow prestressed states far
from the buckling stage may have a significant impact on dyosam

Modal vibration analyses of beams subjected to purely gxedtress have received much attention in the literature
— see Refs. [1, 2] for instance. It is well-known that the naltdrequencies of flexural vibration increase (resp.
decrease) when the axial load is tensile (resp. compressigethat this ffect is stronger for lower eigenfrequencies.
The dfect of axial thermal stress on modal parameters has natur@éin included, particularly recently with the
emergence of composite or functionally graded beams [3, @]. 3-or self-weighted vertical beams, the load is also
purely axial, though non-constant, and some linear anglgae be found in Refs. [7, 8, 9, 10].

However, geometrical non-linearities are often negleatgurestressed modal analyses. From the point of view
of small superimposed vibrations, geometrical non-liftiegrare regarded as predisplacements, generally refiated
prebending. In practice, bending naturally occurs fordaglf-weighted beams, thermally prestressed inhomogesneo
structures (thickness varying, composite, functionaligdgd,...), beams subjected to temperature gradientg alon
their thickness, non-straight beams,... In static bugkéinalyses, the non-negligibl&ect of initial displacement is
rather well-known. It is yet barely considered in modal wifiwn analyses, although early works have analytically
and experimentally demonstrated the potentfiéat of initial bending upon vibrations [11, 12, 13, 14, 15].0id
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recent studies can be found in Refs. [16, 17, 18, 19] for m#aand the reader can refer to Refs. [20, 21, 22, 23]
for extensions to thermoelasticity. Small vibrations df-geeighted vertical beams around post-buckled stateg hav
recently been analysed in Ref. [24]. To the author’s knogdedhe vibration analysis of horizontal beams that are
naturally prebended under self-weight has not been eXpliovestigated in the literature — if one excepts cables.

The mechanics of cables can be considered as a particumotagams. As a first approximation, a cable can
be viewed as a geometrically non-linear beam having no bgretitness, subjected to self-weight and an externally
applied force. The literature on cable dynamics is largey&w is beyond the scope of this paper), Irvine’s work [25]
being one of the most important contributions. Irvine show®at only one dimensionless parameter is needed to
determine natural frequencies of cables. Recent studies &ianed at taking into account bendingfstéss [26,

27, 28], which can be significant for the prediction of higlbeder modes or large diameter cables. However, the
investigation of thermalféects on cable dynamics has surprisingly not received a gitésaition in the literature.
Only recently, Treyssede [29] extended Irvine’s model &roelasticity.

The goal of this paper is to investigate thEeets of temperature on the modal behaviour of horizontatisgak-
ing into account self-weight, as well as cables taking irdooaint bending dfiness. It is focused on moderate loads
yielding prebuckled configurations (though the approaataias valid for post-buckled cases). Only small vibrations
are considered, which is a necessary assumption for perfgermodal analysis in the classical sense (non-linear vi-
brations are beyond the scope of this paper). In Sec. 2, dytiarend dimensionless solution is derived for the statics
and dynamics of an initially horizontal beam subjected ibweight, thermal force and thermal bending moment.
Torsional and axial springs are considered at beam endshvalibws various boundary conditions. Dimensionless
parameters are highlighted. The solution is valid both fyative and positive thermal changes (tensile and compres-
sive loads). It also shown that the proposed model also epfilr cables thanks to the calculation of an equivalent
thermal parameter for the cable tension. In Sec. 3, reshttsreed for beam and cable problems are presented and
considered independently for clarity. For beam probleims,mhodel is validated thanks to finite element (FE) solu-
tions and a parametric study is conducted in order to hightige combinedféects of thermal loads and self-weight
on natural frequencies. For cable problems, solutions tecimpared with existing results in the literature obgdin
without thermal éects or bending dtiness. A parametric study combining thieets of sag-extensibility, thermal
change and bending ftiess is finally given.

One of the motivations of this study is the potential need ddcuate models for vibration based methods in
structural health monitoring (SHM). These methods are ni@ly attractive for damage detection in civil struc-
tures [30, 31, 32, 33, 34, 35] or tension estimation [36, B[, Bowever, they are likely to ster a lack of robustness
because of environmental temperature chanffedng the prestress state and in turn its modal parametiris)
well-known that diferentiating changes due to the environment from changesoddamage is still a challenging
task [39, 40, 41]. Typical applications in civil engineggiare bridges and buildings subjected to climatic thermal
variations: for such structures, the daily variation ofunat frequency may reach several percent [42, 43]. In ad-
dition to SHM, one could also note that temperature changmg atso #ect the robustness of vibration control
strategies [44, 45, 46].

2. Moddl

2.1. Assumptions and notations
Here are the beam assumptions adopted throughout the paper:

¢ the beam is initially perfectly straight (no imperfectiand has a horizontal neutral axis, denated

¢ the strain-displacement relationship is based on the Vamiéa approximation (non-linear terms involving
the axial displacement are neglected), which is generall vior small strains, large displacements, small
rotations;

e the shear strain is neglected (Euler-Bernoulli kinemgtics
e the material is linearly elastic;

¢ the axial and rotary inertia are neglected;



Figure 1: Beam boundary conditions, loads and profiles ferdfierence state (thick line), the prestressed state (thin
line) and the dynamic state (dashed line). The prestresatslis under the action of self-weight and thermal loads.
The dynamic profile here corresponds to a second symmetptaite mode. Inset: cable boundary conditions (a
tensile horizontal forcél is applied at the end of the spring instead of a zero axialakigment).

¢ all beam characteristics are uniform alan{material properties, temperature, ...).

The only type of non-linearity is hence geometrical. In messed dynamics, three states must be distinguished: the
reference state (unprestressed), the intermediate ptatstressed), and the current state (perturbed by supesedp
dynamics). Figure 1 depicts the beam profile for its threeilibgwm configurations. Equilibrium equations of
this paper are based on a total Lagrangian approach, whiensihaix represents the position of a material point
in its reference configuration. The present study is rdsttito static prestressed states and small linear dynamic
perturbations.

Quantities referring to the intermediate and current statill respectively be denoted with a subscript 0 and a
tilde. The absence of symbol will be left for dynamic peratibns. For claritywp and Ny will denote the beam
transverse predisplacement (vertical) and the axial pséia, whilew and N will be the total displacement and
tension.w = W — wp andN = N — N will be the corresponding vibrating perturbations.

Note that the Von Karman hypothesis restricts the proposediito prestressed states for which the static pre-
deflectionwp and pretensioily are not too large. As discussed in Sec. 3.1.2, the validith@timensionless results
presented in this paper indeed depends on the value of thgesleess ratio of the considered structure.

Variables are made dimensionless, with the following caoic

Ww=w/r, N=NL%EI, x=x/L t=t"/t (1)

The asterix is used to designate dimensional variahlésthe length of the beann.is the radius of gyration, defined
by r2 = I/A. The characteristic timg will be chosen a$? = pAL*/El. E, p, a, A, | andg respectively denote
the Young’s modulus, material density, thermal expansmefficient, cross-section area, second moment of inertia
and constant of gravityk; andk, will denote the stiness of translational axial springs (in N-fnandC will be the
stiffthess of torsional springs (in N.m), located at beams etids +L/2. Ny and My denote the thermal force and
thermal bending moment, defined as:

(Nr, M7) = fA Eab(1, Z')dA )

wheref = T — Te¢ is the temperature chandge; being the reference temperature (beam at complete ress)the
dimensional transverse direction of the beam. For clafippendix A gives a brief note on heat transfer and related
assumptions that may or may not be applied for the analysizvibstructures.

2.2. Equilibrium equations

For conciseness, no detail is given on the derivation of béemmoelastic equilibrium equations, which can be
found elsewhere in the literature — see [47, 22, 48] for imsta Based on the previously mentioned assumptions and
dimensionless variables given by Egs. (1), it can be showanttie equations governing the equilibrium of current
state are: i i

W~ dW
— - N— +W=- 3
ax g Y ®3)



with the axial tension given by:

2

1 (1 Y2 aw)?
S 1+ {E fl/Z (&) dX—,uo} @

and the boundary conditions, chosen as follows:

W dW
Mo1p=0 —— tk—| =- 5
Wi.1/2 e £ ¥dx ", M1 (5)
The dimensionless parameters, appearing in Egs. (3)+€5), a
_pgl 3 Nt My, _EA(1 1 _C
Y=E O b= ga TR T T T T EAC ©)

whereo = L/r is the slenderness ratioy, up andu; are load parameters respectively related to the self-weigh
thermal force and thermal bending moment. As can be nottbed,dfects are all enhanced by the slenderness ratio
(thinner beams will hence be quite sensitive to a prestdesisge).f represents a dimensionless equivalent flexibility
due to the presence of translational axial springs: 0 whenk; andk, tends to infinity (zero axial displacement at
ends).« is a parameter quantifying théfect of torsional springs. Perfectly hinged and clamped bamconditions
can be obtained by setting= 0 andk — oo respectively.

The fact that the tensioN remains axially constant (positive when tensile, negatiren compressive), as shown
by Eq. (4), is due to the assumption of neglecting axial ineAs a side remark, it could be checked that parameters
quantifying the &ects of axial and rotary inertia are given bypland 1o respectively. Then, it is worthy to note
that neglecting theirféects as done in this paper is only possible for high enougtusimess ratio.

From Egs. (3)—(6), it can be deduced that:

e at equal slenderness ratio, théeet ofy increases for longer structures (the dynamics of largé stisictures
is thus more likely to beféected by self-weight);

e whenf > 1 (k. ko — 0), N tends to zero (theftect of thermal force becomes negligible for axially free
beams);

o for k > uy, the dfect ofu; becomes negligible (clamped beams are fiwcded by thermal bending).

2.3. Static prestressed state
For static prestressed states, the equilibrium equatiecsrbe:

d4W0 _ NO d2W0 _

e ” ,
= 1 )1 (e (dw _

No = m{i (o () dx #0} @)

Wol.1/2 =0

d?wy dwg _

@ ERG |, T TH

Taking into account thatly is a constant (to be determined) and the symmetry of the @nofilwg/dx = d3wp/dx = 0
atx = 0), it can be shown that a general solution of thiedlential equation of system (7) can be given by:

y (¥ 1
Wo(X) = Ag + Bo cosh/Nox + N (? _ §) @®

whereAq andBgp are constants. Applying boundary conditiongat 1/2 yields:
Nlo(l +35)+m
No coshMe 4+ « /N sinh ¥
4

By = 9)



andAg = —By cosh@.
Then, substituting Eq. (8) into the expressionfprin system (7) gives:

B2N, inh VN B N sinh 2
T+7 2@+ 1) N ) L+ DN > No | 24(1+ HNZ

Provided thaBy is written in terms oy, as given by Eqg. (9), the solution of the above equation altamdetermine
the axial tensioNp. This equation must be numerically solved (a Newton-Raplasgorithm is used in this paper).
It is emphasized that the solution given by Eqgs. (8)—(10)aiesvalid forNy < 0 also, thanks to the formula:
VY = iy=yfory < 0, coshy = cosy and sinhy = isiny. Note that the last term in Eq. (8) corresponds to the
standard cable solution (parabolic profile) [25], whicheésavered wheilN is high enough.

A fundamental result is obtained from a further inspectibkE@. (10), which shows thally can indeed be deter-
mined from the following four dimensionless parameterstéad of five):

2
Y Ho M1 < (11)

1+f 1+ f° \/ﬁ

2.4. Prestressed dynamics

The equations governing the equilibrium of superimposetadyics are obtained from a direct linearisation of
Egs. (3)—(5), which yields the following eigenproblem:
(Zi%}/ _ N0d2W — Q2w = Nd2W0

a2 dx2

_ 1 (tY2dwd
N = 1 f—l/Z Wd_v)\(ldx (12)

W12 =0
dw | dw -
dx2 — " dx +1/2 -

where are”®! time harmonic dependence has been assufdedwt. being the dimensionless angular frequency.

From a vibrational point of view, the prestressed state aptsn dynamics through the coupldy(wo) (axial
pretension, transverse predisplacement). Note that 1 yieldsN, Ny — 0, which means that the dynamics of an
axially free beam is not sensitive to the prestressed state.

2.4.1. Antisymmetric modes

Antisymmetric modes verify the conditions= d’w/dx* = 0 atx = 0. Becauselw/dx is antisymmetric, such
modes have a zero dynamic tensidn= 0. Then, the general solution of thefférential equation in system (12) is
simply:

WA(X) = AsinA_x+ Bsinha, x (13)
with the notation:
NG + 492 + No
L=\ (14)

The superscripa (resp. s) will be used for denoting antisymmetric (resp. symmetn@)des. Applying boundary
conditions atx = 1/2 to Eqg. (13) gives a two-by-two system fArandB, whose zero determinant is:

I Y MR (_/l_ A /1__4+)_
sin 5 sinh 5 (22 + A%) + k[ A+ Sin 5 cosh 5 A_cos 5 sinh > )= 0 (15)
This transcendental equation can be numerically solvedadndts an infinity of eigenfrequenci€s (n = 1, ..., o).
The only influence of the prestressed state on antisymnmatrdes is the axial pretensidfy. No andx are hence the
only independent parameters for determining antisymmetgenmodes.



2.4.2. Symmetric modes

The boundary conditions for symmetric modes dvg¢dx = d®w/dx® = 0 atx = 0. Their axial dynamic ten-
sion N is non-zero. In the dierential equation of system (12), both termdNjpandwp are non-zero. Adding the
homogeneous solution to a particular one, it can be chetlddtgeneral symmetric solution is:

N
wS(x) = Acosid_x + Bcoshi, x — oz Nl + BoNp cosh+/Nox (16)
0

One must now determind with respect toA andB. This can be done from the expressiombin system (12)
and using Egs. (8) and (16). After tedious calculations,gete the linear relationship:

N = a_Q?A+a,Q°B (17)

where the expressions af anda, are given in Appendix B. Then, applying the boundary coondgiatx = 1/2 to
the expression (16) yields the following homogeneous sy$te A andB:

-

a1 = COS% — a_ (Nlo + BoNp cosh@)

aip = cosh% — o, (Nlo + BoNo cosh@)

aii a2
az a2

whose coficients are:

i inh V00 19
a1 = —12 cos%s — kA_sin% — a_BoN2 (cosh@ + S ) (19)

VNo

inh YN0
_ 2 Ay H A, 2 VNo sinh—%—=
ag2 = A5 cosh + kA, sinh% — a, BoNg (coshTO + k= )
The transcendental equation faiis given by a zero determinargjiaz, — ai2az; = 0. Its numerical solutions are the
symmetric eigenfrequenci€s (n = 1, ..., ). As for Sec. 2.3, all expressions remain validigr< 0. The inspection
of Egs. (19) shows that the independent parameters for teendimation of theQ)> are the same as the ones given by
Eq. (11).

2.5. Cable-like problems

The solution can be readily modified in order to treat calide{problems, for which an initial positive horizontal
forceH (in Newton) is prescribed at one end of the beam (see insaégjol}: The dimensionless parameter associated
to the applied force is denoted and given by:

&2 = HL?/EI (20)

£2 is indeed equal to a dimensionless foldg corresponding to a prestressed state with no thermal loadetis
weight. Replacing\p with &2 into the solutions derived in Secs. 2.3 and 2.4 yields vadidl€ solutions with no
thermal éfect but bending sfiness, as checked in Sec. 3.2.1.

From Eq. (10), the equivalent thermal force parameter t@afipdied force, denoteg,, is given by:
Bo.E” (., sinhg\ ¥Bo ¢ _sinh§) 2
S U VL | coshs — 20—2 |+ - 21
poa = 0 = (1 ) T (COSZ £ ) o .
where: Y14 )
=2(1+5
0 = — (22)

iz cosh + késinhj
The modified axial force caused by thermal change is themdiyehe solutiorN of Eq. (10) obtained by replacing

o With uo,, + wo.
6



Without bending sftness, the standard cable parameters are the Irvine saugiaiiey parameten? and the ther-
mal paramete, whose expressions can be found in Refs. [25, 29]. When thdihg stithess is taken into account,
a third dimensionless parameteis also considered: is often referred to as the bendingBtess parameter [25, 27],
measuring the relative importance of cable and beam aactiber{¢ is small, beam action predominates, while cable
action is predominant wheis large).

Noticing thatpAgL/H = y/c¢?, 4% andé can be expressed in terms of dimensionless parameters fouhig

2
paper, namely’—, £& andé, as follows:

2 7P ¥? ! o y? ¥? !
Y= Ean (“80254(1+f)) ’ 0_62(1+f)(1+12026“)(1+802§4(1+f)) @3)

A new parametey/o¢? appears in the above expressions. This parameter is rétetteglsag-to-span ratio (in Irvine’s
model, the sag-to-span ratiog#\gL/8H = y/80¢?). What must be understood is that the sag-to-span ratisds al
needed, in addition to the usual parametarsd, £), for a precise characterization of cables with bendingjretss
(as considered in this paper). This conclusion coincidéis thie parametric study of Ni et al. [27], who considered
different cable sets having the same rangé&andé, but different range of sag-to-span ratio.

Note that Irvine’s model is only valid for small sag-to-spatio, typically less than/8, which implies that
y/oé? < 1 (the model proposed in this paper is also valid for smajksaan ratio because of the assumption of small
rotation). The influence of/o¢? on A% andé is hence limited. In this paper, the following modified capégameters

are proposed instead:
2

Y Ho
V2= —F — 0= 24
&1+ 1) 1+ 1) (24)
so that the number of dimensionless parameters governingrtbblem, now given byA(?, ¢, &), is truly reduced to
three. Also, the dimensionless frequeiizy= Q/¢ will be used, as chosen in Irvine’s theory.

3. Results

Provided that one is interested in relatively low temperatthange due to climatic variations, the influence of
temperature on material properties is neglected in thevafig results (without loss of generality).

3.1. Beams

In this subsection, beam ends are held fixed with no applie@fso that the axial tensiddy only results from the
action of self-weight. Solutions are obtained from a NewlRaphson algorithm. At fixed, uo is gradually increased
and a linear extrapolation is used for the initial guess efrtext solutionNp then gradually decreases: if the buckling
temperature is reached, several solutions may exidiFgpost-buckling regimes) and the lowdsp| is automatically
selected.

3.1.1. FE validation

Figure 2 exhibits the evolution of the first dimensionleggjfrencyQ for y = 15 and a temperature changg
varying from -20 to+20 (f = x = ug = 0). This first test case corresponds to a simply supporteah ireaing the fol-
lowing dimensional characteristick=1m, r=0.0029m E=2.0e+11Pa,0=7800kg.m?, a=1.2e-5K!, g=9.81m.s?,
andg varying from -14.4K to+14.4K. If the self-weight is neglecteg-£0), the beam remains straight (no prebending)
and the following analytical solution can be obtained fa th natural frequency:

Qn = N/ — pg (25)

This solution is also plotted in Fig. 2 for the first frequenashich clearly shows that faug > 7 (72 being the
critical thermal force), the beam buckles and the 1st modéstias. However if the self-weight is taken into account
(y = 15), the frequency then increases. This is due to the fattithdeam is prebent under the action of self-weight,
which causes an increase of curvature and plays the samasroigial imperfections [14] or thermal moments [20].

7



Figure 2: Dimensionless 1st frequency vs. temperaturegshéory = 15 (f = « = w3 = 0). Continuous line:
proposed model, dotted line: analytical solutionfot 0, x-mark: FE solution.

These results are in good agreement with FE solutions adatdiom an Euler-Bernoulli planar beam model, already
presented in Ref. [22] (this FE model is thermoelastic akdganto account geometrical non-linearities).

Figure 3 exhibits the evolution of the first dimensionlesgfrencyQ for y = 300 and a temperature change
o varying from -12 to+12 (f = « = 0). This second test case corresponds to a large simply gepploeam
having the same characteristics as before, except tha®0m,r=1.2684m, and varies from -40K to+40K. The
cross-section is a 3x12m rectangular box of 0.3m thicknésdéinear temperature distribution is assumed across
the depth of the cross-section, yielding a thermal bendiognent. Three values qf; are considered: -2.5, 0,
+2.5, respectively corresponding to a temperatufiedince between the top and the bottom of -19.8K, 0K and
+19.8K. (such temperature gradients may exist in bridgesiptk 50, 51]). As observed, the frequency changes non-
linearly and non-monotically witlyg. The presence of a thermal gradient on the cross-sectitasyi®@n-negligible
differences. A positive gradient (temperature higher on theyiiefrs a positive deflection that compensates the self-
weight deflection, explaining a decrease of frequency.rbelg, a negative gradient tends to enhance the deflection,
and hence increases the frequency. Also shown in Fig. 3 aredthis obtained with the code developed in Ref. [22].
Good agreement is found, which validates the proposed érellynodel for beams.

3.1.2. Parametric study

Let us consider the case= u1 = 0 (simple supports, no thermal bending moment). From Eg), the only
independent parameters of the problem@g&1 + f) anduo/(1 + f), so that quite general results can be obtained
through two-dimensional contour plots. A parametric stigdgriefly reported. Due to large range of variations and
for a better clarity of figures, the axes of contour plots dresen asy?/(1 + f))Y* and|uo/(1 + f)¥2sgnue.

Figure 4 exhibits the axial forddp and the predisplacement at centg(0). One focuses on prebuckling regimes
and results are not shown fbly < —7 (note that the predisplacemem(0) remains negative). As expectéd, and
|wo(0)| increase as the self-weight parameter increa$gandwy(0) decrease as the thermal force parameter increases
(heating). Due to the assumption of small rotation and satiin, it should be noted that the validity of the proposed
model is limited to small values af;(0)/L = wo(0)/o- andN;/EA = No/c? (the validity of solutions hence depends
ono).

As far as contour plots are concerned in this subsectiorydhiation range oy andug has been chosen in order
to treat a wider range of problems, from strings to beamsiding cables. The beam-like zone is concentrated on the
lower part near the origin, wheidy is rather low (which means that the bendindgfetiss cannot be neglected). The
cable-like zone roughly corresponds to the right upper glaptots, wherd\y is high enough for neglecting bending
stiffthess &ects but wheravy(0)/o (sag-to-span ratio) becomes non-negligible. Naturalfesgies of strings, which
are given byQ, = nr /Ny, can be recovered for ficiently highNy (negligible bending sfiness) and smalo/o|

8
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Figure 3: Dimensionless 1st frequency vs. temperaturegehfory = 300 (f = « = 0). Black line:u; = 0, dashed:
u1 = +2.5, dashed dotted:; = —2.5, x-mark: FE solution.

(negligible sag): this zone typically corresponds to ttieh@nd part of contour plots, where contours becomesoadrti
lines.

Figure 5 gives the dimensionless frequency of the first syimoamode. Whery = ug = 0, this frequency is equal
to 72, It greatly increases with self-weight. At fixed it is observed that the frequency, which usually decayswhe
heating, can indeed increase. This is due to the fact althdlggontinuously decays, the predeflectiag| grows
when heating and has a counteractiffig& that tends to increase frequencies of symmetric modes.

Figure 6 shows the frequency contour plots for the secondvmtnic and first antisymmetric modes. When
v = uo = 0, these frequencies are respectively equalfoshd 4. For the self-weight parameter range used, the
frequency of the 2nd symmetric mode never increases witpéeature, which shows that th&ect ofwp on higher
modes is far less pronounced than for the first one. As exgpexdrequency increase occurs for the antisymmetric
mode either (antisymmetric modes being independeningl) as mentioned in Sec. 2.4.1). Note that givés
antisymmetric frequencies can be analytically determfneth Eqg. (15) when = 0, and are given by:

Q2 = 2nm /4n2n2 + N (26)

The sensitivity of frequencies to boundary conditions iefty studied by considering the extreme case of clamped
ends ¢ > 1). The plots forNy andwp(0) are not shown for conciseness. Figure 7 gives contous (i the
relative change compared to frequencies obtained withlsisypports£ = 0). Boundary condition féects turn to
be significant for lower values aof andyg (in the beam-like zone). The clampin§ect tends to become greater for
higher modes: the first antisymmetric mode, usually cooedmg to the second natural frequency, is more sensitive
than the first symmetric one. As a side remark concerning $heyimmetric mode, one can note that there exists a
zone where the frequency can become lower than with simplpcsts.

The dfect of thermal bending moment on the 1st symmetric frequéngiven by Fig. 8 fox = yo = 0). This
value ofk maximizes the £ect ofu; (clamped beams are naoffected byu,, as stated in Sec. 2.2). As explained in
Sec. 3.1.1, positive values pf tend to decrease frequencies and inversely. It can be noaethie &ect of thermal
bending moment becomes negligible as the self-weight petenrincreases (contour lines becomes horizontal). Also,
its effect decreases and becomes negligible for higher modedt¢rastishown for conciseness).

By consideringu,, + uo instead ofup in contour plots, Figs. 4-7 could also be used to obtain clabtpiencies.
However, the dimensionless parametgtq1 + f) anduo/(1 + f) are far less convenient than Irvine parameters for
the parametric study of cables, as done in the next subgsectio
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Table 1: Mechanical and geometric parameters of cables.

Cable 22 & pA(kg/m) g(Nkg) L(m) H(1°N) E (Pa) A (m?) I (m%)
1 0.79 605.5 400.0 9.8 100.0 2.90360 1.598B8 7.8507e-3 4.9535e-6
2 50.70 302.7 400.0 9.8 100.0 0.72590 1.718B& 7.6110e-3 4.6097e-6
3 1.41 50.5 400.0 9.8 100.0 26.13254 2.082B& 7.8633e-3 4.9204e-6
4 50.70 50.5 400.0 9.8 100.0 0.72590 4.7833% 2.7345e-1 5.9506e-3
3.2. Cables

In this subsection, the proposed beam model is used for g sif cables, taking into account bendingtsiess
and temperature change. An external foktés hence initially prescribed at the end of the self-weighteam.
Thermal bending moments are neglected.

3.2.1. Validation

A first test concerns thefects of bending dfiness on cable frequencies without thermal loads. The peabos
analytical solutions are compared to existing numericslilte presented in Refs. [26, 27] for four cables, having
different values of sag and bendingfstéss. Analytical frequencies found in Ref. [28] are alsaegivThe cable
characteristics are recalled in Table 1. Clamped suppoetssed. Table 2 shows the first two natural frequencies.
Values obtained with the present theory agree with the tegilliterature. Only a slight discrepancy occurs for
the 2nd frequency of Cable 2. In the present paper, it is esipbd that the prestressed state is calculated taking
into account both bending fitiess and clamped conditions, as opposed to Refs. [26, 2WH8E such fects are
included for the dynamics only, which might explain smaNig¢ions.

For further insights, Table 2 also shows the results obthfr@m Irvine’s theory as well as the proposed model
with x = 0 (simple supports). It can be concluded that Irvine's tiigemot applicable for Cables 3 and 4, their
bending stifness being not negligiblé (= 50.5). Also, bending sffness mainly acts when boundary conditions are
clamped.

A second test aims at evaluating the limitation of the moded th the assumption of small rotation, compared
to Irvine’s model for various sag-to-span ratio (withouértmal load). One considers a high prescribed tension,
& = 100, in order to reduce the bendingistess &ects. The boundary conditions are simple supparts Q) with
no flexibility (f = 0). A constant safety factdt/EA=1e-3 is used. The slenderness ratio is then necessariljarins
o = &£/ VHJEA ~ 3162. The other cable characteristics afe:2.0e+11Pa,p=7800kg.n3, g=9.81m.s?. Table 3
compares the sag-to-span and the frequency of the 1st syimmmetde obtained with the present model and with

12



Table 2: Comparison of frequencies with literatutd (= OK).

Cable 1 Cable 2 Cable 3 Cable 4
Mode 1st 2nd 1st 2nd 1st 2nd 1st 2nd
Finite difference [26] 0.440 0.853 0.428 0.464 1.399 2.679 0.447 0.464
Finite element [27] 0.441 0.854 0.421 0.460 1.400 2.682 &.48.461
Ricciardi [28] 0.441 0.855 0.429 0.463 1.400 2.682 0.447 6B.4
Proposed modek(= 1e3) 0.441 0.855 0.429 0.468 1.393 2.682 0.447 0.460
Irvine [25] 0.440 0.852 0.426 0.463 1.350 2556 0.426 0.463

Proposed modek(= 0) 0.440 0.852 0.426 0.468 1.352 2576 0.429 0.470

Table 3: Comparison of results between the present thearjraime’s model obtained for various sag-to-span ratios
(AT = OK).

L (m) 2091 200.1 418.2 627.3 1045 1673 2612
2 0.064 640 2552 57.19 1569 389.6 887.6
Irvine [25] sag-to-span  0.001 001 0.02 0.03 0.05 0.08 0.125

7 (Hz) 3.839 0.472 0.332 0.288 0.210 0.135 0.087
Proposed model sag-to-span 0.001 0.010 0.020 0.030 0.05mB00.0.125
7 (Hz) 3.841 0472 0.332 0.289 0.211 0.136 0.088

Irvine’s theory. The lengthh is varying so that the sag-to-span ratig(0)/o- sweeps the range [@01; 0125] (0.125

is the limit of applicability of Irvine’s solutions)a? then varies from 0.064 to 887.6. Quite good agreement isdfoun
between both solutions, even for the highest sag-to-syian wehich shows the validity of the proposed model for the
study of cables.

Table 4 gives results when a temperature chakifje+40K is applied ¢=1.2e-5K%). One can note that the
effect of temperature on frequencies diminishes as the sapan-increases. The proposed model is compared to the
solution presented by the author in Ref. [29] (extensiomahk’s model to thermoelasticity). Both solutions are in
good agreement, which ends the validation of the model folesa

3.2.2. Parametric study

The combined #ects of thermal loads and bendingistess on cables are investigated for the following ranges
of variation: 1’2 € [1;200], ¢ € [-1;+1], £ € [25;300]. One considers clamped suppoksie3, f=0), which
maximizes the #ects of bending dfiness.

In order to highlight bending sfness &ects without thermal stress, Fig. 9 first exhibits two-disienal contour
plots of Q' /n = f(2’2,¢) for the first antisymmetric mode and the first three symroetrodes. Frequencies tend

Table 4: Comparison of results between the present thearjraime’s model obtained for various sag-to-span ratios
(AT = +40K).

L (m) 2091 209.1 4182 627.3 1045 1673 2612
A2 0.064 6.40 2552 57.19 1569 389.6 887.6
0 0.480 0.480 0.479 0479 0.477 0472 0.462

Treyssede [29] sag-to-span 0.002 0.014 0.023 0.032 0.05@810.0.126
7 (Hz) 2.829 0.496 0.355 0.297 0.207 0.134 0.087

Proposed model sag-to-span 0.002 0.014 0.023 0.032 0.09210.0.126
7 (Hz) 2.831 0.496 0.356 0.298 0.209 0.135 0.088
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Figure 9: Natural frequencies as a functionsadind 1’2 for the first antisymmetric (a), first symmetric (b), second
symmetric (c) and third symmetric modes (6)0).

towards asymptotic limits as the bendingtstess parameter increases, corresponding to Irvine'sieotut As op-
posed to antisymmetric modes, the influencé oh symmetric modes is strongly dependentitn Generally, this
influence tends to grow for higher values 8t and for higher modes. The same conclusions were alreadylfioun
Refs. [27, 28] and show the importance of taking into accbeniding stiftness in cable dynamics.

The dfects of temperature can be quantified from two-dimensionalaur plots ofAQ/Q = (1’2, ¢’), where
AQ/Q = Q(12,0)/Q(A?,0)- 1 is the relative change in natural frequency under the infla@f temperature. Fig. 10
plots the relative change of the 1st antisymmetric frequdéoicé =300 and 50. For both values éf the frequency
sensitivity is slightly higher when cooling. For fixed vatuef ¢, this sensitivity gradually becomes lower for cables
having largen’?. Note that comparing temperature sensitivity fafetient values oi’? at fixedd’ implies that the ratio
between the working stre$$/A and Young’s modulu& should remain almost constant. For a given cable material,
comparisons for fixed are hence indeed made for an almost constant safety fadtmhwe meaningful [29].

Concerning bending sthess fects, the comparison of results in Fig. 10 betwé&eB0 and 300 shows that the
difference of thermal relative change remains less than 1% bet#®0 and 300: bending $iiness does not have a
significant éfect on the thermal behaviour of this frequency.

Fig. 11 plots the change of the 1st symmetric frequency 6800 and 50. Let us first consider the c&se 300.
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The thermal behaviour of this mode is strongly dependent’drand quite diferent from Fig. 10. Roughly, the
frequency relative change is rather small abovellég4.5 (1’2 ~ 90). Between 2.5 and 4.3’ between 12 and 90),

it is more pronounced and the frequency is increasing witiptrature. Below log’?=2.5 (1’ ~ 12), the behaviour
changes again. F@¥ < 0 (cooling), the first frequency is increasing as the tempeeds decreasing. However for

@ > 0 (heating), the modal behaviour is more complex: the fraquenight increase or decrease depending on the
value of 1’2 as well as o#’. The frequency might be not monotically varying with resgie¢cemperature change, as it

is the case for log’?=2 (1’? ~ 7) for instance (the frequency tends to increase for anytivegar positive temperature
change). As already explained for beam-like problems, dleethat the frequency can increase with temperature is
due to the modification of sag (curvature increase, whicmtaracts the decrease of tension).

Unlike the first antisymmetric mode, the thermal relativarge of27 is strongly dfected a¢ = 50. For instance
at log1?>=4.5 (1’2 ~ 90) and®’ = +1, the relative change due to temperature is 0% fer300 and 5% fog = 50.

The action of bending sthess combined with thermal change is hence clearly norigilgigl.

Fig. 12 plots the change of the 2nd symmetric frequency feB00 and 50. Theféect of bending sffness upon
this mode is also significant (@iérences of several percents exist between Bptidowever, the thermal behaviour
of the 3rd symmetric mode is quite lesexted att = 50 (Fig. 13), which tends to show that the bendinfrstiss
influence on thermal relative change of frequencies deaaysijher modes. It can also be noticed that as the mode
order increases, the thermal behaviour becomes identi¢hht of antisymmetric modes (compare Fig. 10 with 13),
due to the fact that higher modes are less sensitive to pladement (as already noticed for beams).

As a final remark, results obtained in Figs. 10-134o¢ 300 coincide with the ones found in Ref. [29] with
neglected bending #fness.

4. Conclusion

A unified analytical model has been proposed to investideteffects of temperature on the modal behaviour of
horizontal beams taking into account self-weight, and esbdking into account bending fitiess. Various bound-
ary conditions can be considered thanks to the introdudfaaxial and torsional springs. Solutions are valid for
small rotations. For cables, the sag-to-span ratio musairesmall (typically less than/& as in Irvine’s theory).
Dimensionless parameters governing equilibrium equatltave been highlighted. For beams, it has been shown
that the number of independent parameters is reduced toThase parameters are respectively associated with the
self-weight, thermal force, thermal bending moment ansdidoral spring. A fifth parameter related to the prescribed
force is introduced for cable-like problems, correspogdmthe so-called bending fitiess parametér Some mod-
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ified Irvine parameters have been proposed in this papewyiall) a precise characterization of cables with bending
stiffness.

For beam problems, the model has been validated thanks tol&oss and a parametric study has been briefly
conducted in order to highlight the combinedieets of thermal loads and self-weight on natural frequencieor
cable problems, solutions have been compared with existisigjts in the literature obtained without thermfikets
or bending stthess. A parametric study combining thifeets of sag-extensibility, thermal change and bending
stiffthess has been briefly performed. It has been found thatffeet ®f bending sfiness on the thermal relative
change of frequencies can be important.

Results show that the thermal loads due to climatic vanatzan have a significanffect on the natural frequen-
cies of slender beams and cables. Under self-weight, freziege have a complex thermal behaviour, which may be
non-linearly and non-monotically varying with respecteémiperature. The thermoelastic behaviour of civil struesur
is hence likely to &ect the robustness of vibration based methods in SHM.

A. Noteon heat transfer

As assumed through the whole paper, the temperature doesnyatlongx. For simplicity, let us also assume
that it also remains constant alopgThe problem is reduced on the transverse directiohthe beam. The physics
of heat transfer being fierent from that of beam mechanies,andt* are made dimensionless with somé&etient
characteristic length and time, denotahdt;. eis typically chosen as half the thickness afhust be representative
of the heat process (roughly, one day for climatic variag)on

k, C andh will respectively denote the thermal conductivity, specifeat capacity and convection heat transfer
codficient. g, andqgs will be the time of rate of heat generated per unit volume ffistance, due to the hydration
reaction of cement for concrete structures) and time rateeaf transfer per unit area on the boundary (due to solar
radiation for instance).

Heat transfers in beams are governed by tlfiedintial equation [48]:

. d’T .
T — Fod_22 = ¢ —ﬂTrefG (27)
and its associated boundary condition:
dT .
+ o PBIT-To) =0 (28)

+1/2
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whereT,, is the air temperature andis the axial strain of the beam. Dimensionless parametersiefined as:
Fo = kt./pC¢& (Fourier number), Bi= he/k (Biot number),8 = Ea/pC (thermomechanical coupling parameter),
¢ = aute/pC andy = gse/k.

For standard civil materials (concrete, stegl) 1 so that the last term of Eq. (27) can be neglected thanks to
the assumption of small strain. Thaspriori justify the usual assumption that heat transfer equiliorequations are
not coupled to mechanics (throughout this paper, the teatyner is considered as known). When £o1, the heat
process can be considered as stationary. When Bi is smalbénthe temperature can be considered as constant on
the cross-section.

Let us consider a civil structure made of standard concredesabjected to climatic thermal chang&s:30Gpa,
a=1e-5K1, p=2400kg.m?, C=850J.kg*.K™1, k=2W.m1.K~1, h=20W.nT2.K1, t/=43200s (12 hours). This yields
Fo=0.042¢ and Bi=10e. For large civil structures such as bridge deekis, greater than 1m so that, generally:

¢ the evolution of temperature cannot be considered as séatip

e the temperature does not remain spatially constant on @ loeoss-section (thermal bending moment cannot
bea priori neglected);

e the mechanical evolution of a thermally prestressed staq@asi-static, provided that for climatic change, the
heat characteristic timi is far greater than the mechanical characteristic time

For cables made of steel, one h&s:200GPag=1.2e-5K?, p=7800kg.m?, C=500J.kg*.K1, k=20W.nT1.K1, so
that Fe=0.22€? and Bi=e. eis generally small enough for the temperature to be consitias almost uniform on the
cable cross-section (but the heat process cannot be coegige stationary).

These remarks justify assumptions used in this paper. Ebesnop heat transfer analyses and thermomechanical
effects applied to civil structures can be found in Refs. [49,58(] for instance.

B. Expressionsof a@_ and @

The expressions ef_ anda, are respectively given as:

L -~ \Ng
y A 2sind 2Bo1_Ng A sinh Y2 . VNG
No (COS? - T) + = (/l_ COS? —Sin > COShT

No-+A2 VNo 29
a_ =
1 \/N—O 2N|2 .
VNo sinh—5= BSN sinh vNg
1+ )2+ Boy(coshT0 -2 ‘/N_OZ )— oo (1— WO)
and: -
A, sinh4: 2By, N, 1 sinh Yo L G
N (COSh? - sz) ~ N (/l+ coshy —rZ - sinh3 coshTO) -
ay =
H \/N—O 2N|2 .
VNo sinh—%—= BEN, sinh vNo
1+ )2+ Boy(coshT" -2 \/N_OZ )— o0 (1— WO)
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