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Abstract

This paper aims at proposing an analytical model for the vibration analysis of horizontal beams that are self-weighted
and thermally stressed. Geometrical non-linearities are taken into account on the basis of large displacement and small
rotation. Natural frequencies are obtained from a linearisation of equilibrium equations. Thermal force and thermal
bending moment are both included in the analysis. Torsionaland axial springs are considered at beam ends, allowing
various boundary conditions. A dimensionless analysis is performed leading to only four parameters, respectively
related to the self-weight, thermal force, thermal bendingmoment and torsional spring stiffness. It is shown that the
proposed model can be efficiently used for cable problems with small sag-to-span ratios (typically less than 1/8, as in
Irvine’s theory). For beam problems, the model is validatedthanks to finite element solutions and a parametric study
is conducted in order to highlight the combined effects of thermal loads and self-weight on natural frequencies. For
cable problems, solutions are first compared with existing results in the literature obtained without thermal effects or
bending stiffness. Good agreement is found. A parametric study combiningthe effects of sag-extensibility, thermal
change and bending stiffness is finally given.
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1. Introduction

Beams and cables are widely used in civil structures. Such structures are subjected to various external forces.
Among them, self-weight and environmental thermal loads are inevitable. These quasi-static loads yield initial stress
(prestress) and initial displacement (predisplacement) affecting the dynamical behaviour of structures. For thin struc-
tures such as beams, the effect of prestress is enhanced by the slenderness ratio, so that even low prestressed states far
from the buckling stage may have a significant impact on dynamics.

Modal vibration analyses of beams subjected to purely axialprestress have received much attention in the literature
– see Refs. [1, 2] for instance. It is well-known that the natural frequencies of flexural vibration increase (resp.
decrease) when the axial load is tensile (resp. compressive) and that this effect is stronger for lower eigenfrequencies.
The effect of axial thermal stress on modal parameters has naturally been included, particularly recently with the
emergence of composite or functionally graded beams [3, 4, 5, 6]. For self-weighted vertical beams, the load is also
purely axial, though non-constant, and some linear analyses can be found in Refs. [7, 8, 9, 10].

However, geometrical non-linearities are often neglectedin prestressed modal analyses. From the point of view
of small superimposed vibrations, geometrical non-linearities are regarded as predisplacements, generally relatedto
prebending. In practice, bending naturally occurs for large self-weighted beams, thermally prestressed inhomogeneous
structures (thickness varying, composite, functionally graded,...), beams subjected to temperature gradients along
their thickness, non-straight beams,... In static buckling analyses, the non-negligible effect of initial displacement is
rather well-known. It is yet barely considered in modal vibration analyses, although early works have analytically
and experimentally demonstrated the potential effect of initial bending upon vibrations [11, 12, 13, 14, 15]. More
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recent studies can be found in Refs. [16, 17, 18, 19] for instance, and the reader can refer to Refs. [20, 21, 22, 23]
for extensions to thermoelasticity. Small vibrations of self-weighted vertical beams around post-buckled states have
recently been analysed in Ref. [24]. To the author’s knowledge, the vibration analysis of horizontal beams that are
naturally prebended under self-weight has not been explicitly investigated in the literature – if one excepts cables.

The mechanics of cables can be considered as a particular case of beams. As a first approximation, a cable can
be viewed as a geometrically non-linear beam having no bending stiffness, subjected to self-weight and an externally
applied force. The literature on cable dynamics is large (a review is beyond the scope of this paper), Irvine’s work [25]
being one of the most important contributions. Irvine showed that only one dimensionless parameter is needed to
determine natural frequencies of cables. Recent studies have aimed at taking into account bending stiffness [26,
27, 28], which can be significant for the prediction of higherorder modes or large diameter cables. However, the
investigation of thermal effects on cable dynamics has surprisingly not received a greatattention in the literature.
Only recently, Treyssede [29] extended Irvine’s model to thermoelasticity.

The goal of this paper is to investigate the effects of temperature on the modal behaviour of horizontal beams tak-
ing into account self-weight, as well as cables taking into account bending stiffness. It is focused on moderate loads
yielding prebuckled configurations (though the approach remains valid for post-buckled cases). Only small vibrations
are considered, which is a necessary assumption for performing a modal analysis in the classical sense (non-linear vi-
brations are beyond the scope of this paper). In Sec. 2, an analytic and dimensionless solution is derived for the statics
and dynamics of an initially horizontal beam subjected to self-weight, thermal force and thermal bending moment.
Torsional and axial springs are considered at beam ends, which allows various boundary conditions. Dimensionless
parameters are highlighted. The solution is valid both for negative and positive thermal changes (tensile and compres-
sive loads). It also shown that the proposed model also applies for cables thanks to the calculation of an equivalent
thermal parameter for the cable tension. In Sec. 3, results obtained for beam and cable problems are presented and
considered independently for clarity. For beam problems, the model is validated thanks to finite element (FE) solu-
tions and a parametric study is conducted in order to highlight the combined effects of thermal loads and self-weight
on natural frequencies. For cable problems, solutions are first compared with existing results in the literature obtained
without thermal effects or bending stiffness. A parametric study combining the effects of sag-extensibility, thermal
change and bending stiffness is finally given.

One of the motivations of this study is the potential need of adequate models for vibration based methods in
structural health monitoring (SHM). These methods are potentially attractive for damage detection in civil struc-
tures [30, 31, 32, 33, 34, 35] or tension estimation [36, 37, 38]. However, they are likely to suffer a lack of robustness
because of environmental temperature change (affecting the prestress state and in turn its modal parameters). It is
well-known that differentiating changes due to the environment from changes dueto damage is still a challenging
task [39, 40, 41]. Typical applications in civil engineering are bridges and buildings subjected to climatic thermal
variations: for such structures, the daily variation of natural frequency may reach several percent [42, 43]. In ad-
dition to SHM, one could also note that temperature changes may also affect the robustness of vibration control
strategies [44, 45, 46].

2. Model

2.1. Assumptions and notations

Here are the beam assumptions adopted throughout the paper:

• the beam is initially perfectly straight (no imperfection)and has a horizontal neutral axis, denotedx;

• the strain-displacement relationship is based on the Von Karman approximation (non-linear terms involving
the axial displacement are neglected), which is generally valid for small strains, large displacements, small
rotations;

• the shear strain is neglected (Euler-Bernoulli kinematics);

• the material is linearly elastic;

• the axial and rotary inertia are neglected;
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Figure 1: Beam boundary conditions, loads and profiles for the reference state (thick line), the prestressed state (thin
line) and the dynamic state (dashed line). The prestressed state is under the action of self-weight and thermal loads.
The dynamic profile here corresponds to a second symmetric in-plane mode. Inset: cable boundary conditions (a
tensile horizontal forceH is applied at the end of the spring instead of a zero axial displacement).

• all beam characteristics are uniform alongx (material properties, temperature, ...).

The only type of non-linearity is hence geometrical. In prestressed dynamics, three states must be distinguished: the
reference state (unprestressed), the intermediate state (prestressed), and the current state (perturbed by superimposed
dynamics). Figure 1 depicts the beam profile for its three equilibrium configurations. Equilibrium equations of
this paper are based on a total Lagrangian approach, which means thatx represents the position of a material point
in its reference configuration. The present study is restricted to static prestressed states and small linear dynamic
perturbations.

Quantities referring to the intermediate and current states will respectively be denoted with a subscript 0 and a
tilde. The absence of symbol will be left for dynamic perturbations. For clarity,w0 andN0 will denote the beam
transverse predisplacement (vertical) and the axial pretension, whilew̃ and Ñ will be the total displacement and
tension.w = w̃− w0 andN = Ñ − N0 will be the corresponding vibrating perturbations.

Note that the Von Karman hypothesis restricts the proposed model to prestressed states for which the static pre-
deflectionw0 and pretensionN0 are not too large. As discussed in Sec. 3.1.2, the validity ofthe dimensionless results
presented in this paper indeed depends on the value of the slenderness ratio of the considered structure.

Variables are made dimensionless, with the following choice:

w̃ = w̃∗/r, Ñ = Ñ∗L2/EI, x = x∗/L, t = t∗/tc (1)

The asterix is used to designate dimensional variables.L is the length of the beam.r is the radius of gyration, defined
by r2 = I/A. The characteristic timetc will be chosen ast2c = ρAL4/EI. E, ρ, α, A, I andg respectively denote
the Young’s modulus, material density, thermal expansion coefficient, cross-section area, second moment of inertia
and constant of gravity.k1 andk2 will denote the stiffness of translational axial springs (in N.m−1) andC will be the
stiffness of torsional springs (in N.m), located at beams endsx∗ = ±L/2. NT andMT denote the thermal force and
thermal bending moment, defined as:

(NT ,MT) =
∫

A
Eαθ(1, z∗)dA (2)

whereθ = T − Tre f is the temperature change,Tre f being the reference temperature (beam at complete rest).z∗ is the
dimensional transverse direction of the beam. For clarity,Appendix A gives a brief note on heat transfer and related
assumptions that may or may not be applied for the analysis ofcivil structures.

2.2. Equilibrium equations

For conciseness, no detail is given on the derivation of beamthermoelastic equilibrium equations, which can be
found elsewhere in the literature – see [47, 22, 48] for instance. Based on the previously mentioned assumptions and
dimensionless variables given by Eqs. (1), it can be shown that the equations governing the equilibrium of current
state are:

d4w̃
dx4
− Ñ

d2w̃
dx2
+ ¨̃w = −γ (3)
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with the axial tension given by:

Ñ =
1

1+ f
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and the boundary conditions, chosen as follows:

w̃|±1/2 = 0,
d2w̃
dx2
± κdw̃

dx

∣

∣

∣

∣

∣

∣±1/2

= −µ1 (5)

The dimensionless parameters, appearing in Eqs. (3)–(5), are:

γ =
ρgL
E
σ3, µ0 =

NT

EA
σ2, µ1 =

MT

EAr
σ2, f =

EA
L

(

1
k1
+

1
k2

)

, κ =
C

EAr
σ (6)

whereσ = L/r is the slenderness ratio.γ, µ0 andµ1 are load parameters respectively related to the self-weight,
thermal force and thermal bending moment. As can be noticed,their effects are all enhanced by the slenderness ratio
(thinner beams will hence be quite sensitive to a prestressed state).f represents a dimensionless equivalent flexibility
due to the presence of translational axial springs.f = 0 whenk1 andk2 tends to infinity (zero axial displacement at
ends).κ is a parameter quantifying the effect of torsional springs. Perfectly hinged and clamped boundary conditions
can be obtained by settingκ = 0 andκ→ ∞ respectively.

The fact that the tensioñN remains axially constant (positive when tensile, negativewhen compressive), as shown
by Eq. (4), is due to the assumption of neglecting axial inertia. As a side remark, it could be checked that parameters
quantifying the effects of axial and rotary inertia are given by 1/σ and 1/σ2 respectively. Then, it is worthy to note
that neglecting their effects as done in this paper is only possible for high enough slenderness ratio.

From Eqs. (3)–(6), it can be deduced that:

• at equal slenderness ratio, the effect ofγ increases for longer structures (the dynamics of large civil structures
is thus more likely to be affected by self-weight);

• when f ≫ 1 (k1, k2 → 0), Ñ tends to zero (the effect of thermal force becomes negligible for axially free
beams);

• for κ ≫ µ1, the effect ofµ1 becomes negligible (clamped beams are not affected by thermal bending).

2.3. Static prestressed state

For static prestressed states, the equilibrium equations become:











































d4w0

dx4 − N0
d2w0

dx2 = −γ
N0 =

1
1+ f

{

1
2

∫ +1/2

−1/2

(

dw0
dx

)2
dx− µ0

}

w0|±1/2 = 0
d2w0

dx2 ± κ dw0

dx

∣

∣

∣

∣±1/2
= −µ1

(7)

Taking into account thatN0 is a constant (to be determined) and the symmetry of the problem (dw0/dx= d3w0/dx3 = 0
at x = 0), it can be shown that a general solution of the differential equation of system (7) can be given by:

w0(x) = A0 + B0 cosh
√

N0x+
γ

N0

(

x2

2
− 1

8

)

(8)

whereA0 andB0 are constants. Applying boundary conditions atx = 1/2 yields:

B0 = −
γ

N0
(1+ κ2) + µ1

N0 cosh
√

N0

2 + κ
√

N0 sinh
√

N0

2

(9)
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andA0 = −B0 cosh
√

N0

2 .
Then, substituting Eq. (8) into the expression forN0 in system (7) gives:

N0 +
µ0

1+ f
+

B2
0N0

4(1+ f )

(

1−
sinh
√

N0√
N0

)

−
γB0

(1+ f )N0

















cosh

√
N0

2
− 2

sinh
√

N0

2√
N0

















−
γ2

24(1+ f )N2
0

= 0 (10)

Provided thatB0 is written in terms ofN0, as given by Eq. (9), the solution of the above equation allows to determine
the axial tensionN0. This equation must be numerically solved (a Newton-Raphson algorithm is used in this paper).
It is emphasized that the solution given by Eqs. (8)–(10) remains valid forN0 < 0 also, thanks to the formula:√

y = i
√−y for y 6 0, coshiy = cosy and sinhiy = i siny. Note that the last term in Eq. (8) corresponds to the

standard cable solution (parabolic profile) [25], which is recovered whenN0 is high enough.
A fundamental result is obtained from a further inspection of Eq. (10), which shows thatN0 can indeed be deter-

mined from the following four dimensionless parameters (instead of five):

γ2

1+ f
,
µ0

1+ f
,

µ1
√

1+ f
, κ (11)

2.4. Prestressed dynamics

The equations governing the equilibrium of superimposed dynamics are obtained from a direct linearisation of
Eqs. (3)–(5), which yields the following eigenproblem:







































d4w
dx4 − N0

d2w
dx2 −Ω2w = N d2w0

dx2

N = 1
1+ f

∫ +1/2

−1/2
dw0
dx

dw
dxdx

w|±1/2 = 0
d2w
dx2 ± κ dw

dx

∣

∣

∣

∣±1/2
= 0

(12)

where ane−iΩt time harmonic dependence has been assumed,Ω = ωtc being the dimensionless angular frequency.
From a vibrational point of view, the prestressed state actsupon dynamics through the couple (N0,w0) (axial

pretension, transverse predisplacement). Note thatf ≫ 1 yieldsN,N0 → 0, which means that the dynamics of an
axially free beam is not sensitive to the prestressed state.

2.4.1. Antisymmetric modes
Antisymmetric modes verify the conditionsw = d2w/dx2 = 0 at x = 0. Becausedw0/dx is antisymmetric, such

modes have a zero dynamic tensionN = 0. Then, the general solution of the differential equation in system (12) is
simply:

wa(x) = Asinλ−x+ Bsinhλ+x (13)

with the notation:

λ± =

√

√ √

N2
0 + 4Ω2 ± N0

2
(14)

The superscripta (resp. s) will be used for denoting antisymmetric (resp. symmetric)modes. Applying boundary
conditions atx = 1/2 to Eq. (13) gives a two-by-two system forA andB, whose zero determinant is:

sin
λ−

2
sinh
λ+

2
(λ2
− + λ

2
+) + κ

(

λ+ sin
λ−

2
cosh

λ+

2
− λ− cos

λ−

2
sinh
λ+

2

)

= 0 (15)

This transcendental equation can be numerically solved andadmits an infinity of eigenfrequenciesΩa
n (n = 1, ...,∞).

The only influence of the prestressed state on antisymmetricmodes is the axial pretensionN0. N0 andκ are hence the
only independent parameters for determining antisymmetric eigenmodes.
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2.4.2. Symmetric modes
The boundary conditions for symmetric modes aredw/dx = d3w/dx3 = 0 at x = 0. Their axial dynamic ten-

sion N is non-zero. In the differential equation of system (12), both terms inN0 andw0 are non-zero. Adding the
homogeneous solution to a particular one, it can be checked that a general symmetric solution is:

ws(x) = Acosλ−x+ Bcoshλ+x− N
Ω2

(

γ

N0
+ B0N0 cosh

√

N0x

)

(16)

One must now determineN with respect toA andB. This can be done from the expression ofN in system (12)
and using Eqs. (8) and (16). After tedious calculations, onegets the linear relationship:

N = α−Ω
2A+ α+Ω

2B (17)

where the expressions ofα− andα+ are given in Appendix B. Then, applying the boundary conditions atx = 1/2 to
the expression (16) yields the following homogeneous system for A andB:

[

a11 a12

a21 a22

] {

A
B

}

=

{

0
0

}

(18)

whose coefficients are:

a11 = cosλ−2 − α−
(

γ

N0
+ B0N0 cosh

√
N0

2

)

a12 = coshλ+2 − α+
(

γ

N0
+ B0N0 cosh

√
N0

2

)

a21 = −λ2
− cosλ−2 − κλ− sin λ−2 − α−B0N2

0

(

cosh
√

N0

2 + κ
sinh

√
N0
2√

N0

)

a22 = λ
2
+ coshλ+2 + κλ+ sinh λ+2 − α+B0N2

0

(

cosh
√

N0

2 + κ
sinh

√
N0
2√

N0

)

(19)

The transcendental equation forΩ is given by a zero determinant:a11a22− a12a21 = 0. Its numerical solutions are the
symmetric eigenfrequenciesΩs

n (n = 1, ...,∞). As for Sec. 2.3, all expressions remain valid forN0 < 0. The inspection
of Eqs. (19) shows that the independent parameters for the determination of theΩs

n are the same as the ones given by
Eq. (11).

2.5. Cable-like problems

The solution can be readily modified in order to treat cable-like problems, for which an initial positive horizontal
forceH (in Newton) is prescribed at one end of the beam (see inset of Fig. 1). The dimensionless parameter associated
to the applied force is denotedξ2 and given by:

ξ2 = HL2/EI (20)

ξ2 is indeed equal to a dimensionless forceN0 corresponding to a prestressed state with no thermal load but self-
weight. ReplacingN0 with ξ2 into the solutions derived in Secs. 2.3 and 2.4 yields valid cable solutions with no
thermal effect but bending stiffness, as checked in Sec. 3.2.1.

From Eq. (10), the equivalent thermal force parameter to theapplied force, denotedµ0eq, is given by:

µ0eq = −(1+ f )ξ2 −
B2

0eq
ξ2

4

(

1−
sinhξ
ξ

)

+
γB0eq

ξ2















cosh
ξ

2
− 2

sinh ξ2
ξ















+
γ2

24ξ4
(21)

where:

B0eq = −
γ

ξ2
(1+ κ2)

ξ2 coshξ2 + κξ sinh ξ2
(22)

The modified axial force caused by thermal change is then given by the solutionN0 of Eq. (10) obtained by replacing
µ0 with µ0eq + µ0.
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Without bending stiffness, the standard cable parameters are the Irvine sag-extensibility parameterλ2 and the ther-
mal parameterθ, whose expressions can be found in Refs. [25, 29]. When the bending stiffness is taken into account,
a third dimensionless parameterξ is also considered.ξ is often referred to as the bending stiffness parameter [25, 27],
measuring the relative importance of cable and beam action (whenξ is small, beam action predominates, while cable
action is predominant whenξ is large).

Noticing thatρAgL/H = γ/σξ2, λ2 andθ can be expressed in terms of dimensionless parameters foundin this

paper, namelyγ
2

1+ f , µ0

1+ f andξ, as follows:

λ2 =
γ2

ξ6(1+ f )

(

1+
γ2

8σ2ξ4(1+ f )

)−1

, θ =
µ0

ξ2(1+ f )

(

1+
γ2

12σ2ξ4

) (

1+
γ2

8σ2ξ4(1+ f )

)−1

(23)

A new parameterγ/σξ2 appears in the above expressions. This parameter is relatedto the sag-to-span ratio (in Irvine’s
model, the sag-to-span ratio isρAgL/8H = γ/8σξ2). What must be understood is that the sag-to-span ratio is also
needed, in addition to the usual parameters (λ2, θ, ξ), for a precise characterization of cables with bending stiffness
(as considered in this paper). This conclusion coincides with the parametric study of Ni et al. [27], who considered
different cable sets having the same range ofλ2 andξ, but different range of sag-to-span ratio.

Note that Irvine’s model is only valid for small sag-to-spanratio, typically less than 1/8, which implies that
γ/σξ2 6 1 (the model proposed in this paper is also valid for small-sag-span ratio because of the assumption of small
rotation). The influence ofγ/σξ2 onλ2 andθ is hence limited. In this paper, the following modified cableparameters
are proposed instead:

λ′2 =
γ2

ξ6(1+ f )
, θ′ =

µ0

ξ2(1+ f )
(24)

so that the number of dimensionless parameters governing the problem, now given by (λ′2, θ′, ξ), is truly reduced to
three. Also, the dimensionless frequencyΩ′ = Ω/ξ will be used, as chosen in Irvine’s theory.

3. Results

Provided that one is interested in relatively low temperature change due to climatic variations, the influence of
temperature on material properties is neglected in the following results (without loss of generality).

3.1. Beams

In this subsection, beam ends are held fixed with no applied force, so that the axial tensionN0 only results from the
action of self-weight. Solutions are obtained from a Newton-Raphson algorithm. At fixedγ, µ0 is gradually increased
and a linear extrapolation is used for the initial guess of the next solution.N0 then gradually decreases: if the buckling
temperature is reached, several solutions may exist forN0 (post-buckling regimes) and the lowest|N0| is automatically
selected.

3.1.1. FE validation
Figure 2 exhibits the evolution of the first dimensionless frequencyΩ for γ = 15 and a temperature changeµ0

varying from -20 to+20 (f = κ = µ1 = 0). This first test case corresponds to a simply supported beam having the fol-
lowing dimensional characteristics:L=1m, r=0.0029m,E=2.0e+11Pa,ρ=7800kg.m−3, α=1.2e-5K−1, g=9.81m.s−2,
andθ varying from -14.4K to+14.4K. If the self-weight is neglected (γ=0), the beam remains straight (no prebending)
and the following analytical solution can be obtained for the nth natural frequency:

Ωn = nπ
√

n2π2 − µ0 (25)

This solution is also plotted in Fig. 2 for the first frequency, which clearly shows that forµ0 > π2 (π2 being the
critical thermal force), the beam buckles and the 1st mode vanishes. However if the self-weight is taken into account
(γ = 15), the frequency then increases. This is due to the fact that the beam is prebent under the action of self-weight,
which causes an increase of curvature and plays the same roleas initial imperfections [14] or thermal moments [20].
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Figure 2: Dimensionless 1st frequency vs. temperature change for γ = 15 (f = κ = µ1 = 0). Continuous line:
proposed model, dotted line: analytical solution forγ = 0, x-mark: FE solution.

These results are in good agreement with FE solutions obtained from an Euler-Bernoulli planar beam model, already
presented in Ref. [22] (this FE model is thermoelastic and takes into account geometrical non-linearities).

Figure 3 exhibits the evolution of the first dimensionless frequencyΩ for γ = 300 and a temperature change
µ0 varying from -12 to+12 (f = κ = 0). This second test case corresponds to a large simply supported beam
having the same characteristics as before, except thatL=200m,r=1.2684m, andθ varies from -40K to+40K. The
cross-section is a 3x12m rectangular box of 0.3m thickness.A linear temperature distribution is assumed across
the depth of the cross-section, yielding a thermal bending moment. Three values ofµ1 are considered: -2.5, 0,
+2.5, respectively corresponding to a temperature difference between the top and the bottom of -19.8K, 0K and
+19.8K. (such temperature gradients may exist in bridge decks [49, 50, 51]). As observed, the frequency changes non-
linearly and non-monotically withµ0. The presence of a thermal gradient on the cross-section yields non-negligible
differences. A positive gradient (temperature higher on the top) yields a positive deflection that compensates the self-
weight deflection, explaining a decrease of frequency. Inversely, a negative gradient tends to enhance the deflection,
and hence increases the frequency. Also shown in Fig. 3 are FEresults obtained with the code developed in Ref. [22].
Good agreement is found, which validates the proposed analytical model for beams.

3.1.2. Parametric study
Let us consider the caseκ = µ1 = 0 (simple supports, no thermal bending moment). From Eq. (11), the only

independent parameters of the problem areγ2/(1 + f ) andµ0/(1+ f ), so that quite general results can be obtained
through two-dimensional contour plots. A parametric studyis briefly reported. Due to large range of variations and
for a better clarity of figures, the axes of contour plots are chosen as (γ2/(1+ f ))1/4 and|µ0/(1+ f )|1/2sgnµ0.

Figure 4 exhibits the axial forceN0 and the predisplacement at centerw0(0). One focuses on prebuckling regimes
and results are not shown forN0 6 −π2 (note that the predisplacementw0(0) remains negative). As expected,N0 and
|w0(0)| increase as the self-weight parameter increases,N0 andw0(0) decrease as the thermal force parameter increases
(heating). Due to the assumption of small rotation and smallstrain, it should be noted that the validity of the proposed
model is limited to small values ofw∗0(0)/L = w0(0)/σ andN∗0/EA= N0/σ

2 (the validity of solutions hence depends
onσ).

As far as contour plots are concerned in this subsection, thevariation range ofγ andµ0 has been chosen in order
to treat a wider range of problems, from strings to beams including cables. The beam-like zone is concentrated on the
lower part near the origin, whereN0 is rather low (which means that the bending stiffness cannot be neglected). The
cable-like zone roughly corresponds to the right upper partof plots, whereN0 is high enough for neglecting bending
stiffness effects but wherew0(0)/σ (sag-to-span ratio) becomes non-negligible. Natural frequencies of strings, which
are given byΩn = nπ

√
N0, can be recovered for sufficiently highN0 (negligible bending stiffness) and small|w0/σ|
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Figure 3: Dimensionless 1st frequency vs. temperature change forγ = 300 (f = κ = 0). Black line:µ1 = 0, dashed:
µ1 = +2.5, dashed dotted:µ1 = −2.5, x-mark: FE solution.

(negligible sag): this zone typically corresponds to the left-hand part of contour plots, where contours becomes vertical
lines.

Figure 5 gives the dimensionless frequency of the first symmetric mode. Whenγ = µ0 = 0, this frequency is equal
to π2. It greatly increases with self-weight. At fixedγ, it is observed that the frequency, which usually decays when
heating, can indeed increase. This is due to the fact although N0 continuously decays, the predeflection|w0| grows
when heating and has a counteracting effect that tends to increase frequencies of symmetric modes.

Figure 6 shows the frequency contour plots for the second symmetric and first antisymmetric modes. When
γ = µ0 = 0, these frequencies are respectively equal to 9π2 and 4π2. For the self-weight parameter range used, the
frequency of the 2nd symmetric mode never increases with temperature, which shows that the effect ofw0 on higher
modes is far less pronounced than for the first one. As expected no frequency increase occurs for the antisymmetric
mode either (antisymmetric modes being independent on|w0|, as mentioned in Sec. 2.4.1). Note that givenN0,
antisymmetric frequencies can be analytically determinedfrom Eq. (15) whenκ = 0, and are given by:

Ωa
n = 2nπ

√

4n2π2 + N0 (26)

The sensitivity of frequencies to boundary conditions is briefly studied by considering the extreme case of clamped
ends (κ ≫ 1). The plots forN0 and w0(0) are not shown for conciseness. Figure 7 gives contour plots for the
relative change compared to frequencies obtained with simple supports (κ = 0). Boundary condition effects turn to
be significant for lower values ofγ andµ0 (in the beam-like zone). The clamping effect tends to become greater for
higher modes: the first antisymmetric mode, usually corresponding to the second natural frequency, is more sensitive
than the first symmetric one. As a side remark concerning the 1st symmetric mode, one can note that there exists a
zone where the frequency can become lower than with simple supports.

The effect of thermal bending moment on the 1st symmetric frequencyis given by Fig. 8 forκ = µ0 = 0). This
value ofκ maximizes the effect ofµ1 (clamped beams are not affected byµ1, as stated in Sec. 2.2). As explained in
Sec. 3.1.1, positive values ofµ1 tend to decrease frequencies and inversely. It can be noted that the effect of thermal
bending moment becomes negligible as the self-weight parameter increases (contour lines becomes horizontal). Also,
its effect decreases and becomes negligible for higher modes (results not shown for conciseness).

By consideringµ0eq + µ0 instead ofµ0 in contour plots, Figs. 4–7 could also be used to obtain cablefrequencies.
However, the dimensionless parametersγ2/(1+ f ) andµ0/(1+ f ) are far less convenient than Irvine parameters for
the parametric study of cables, as done in the next subsection.
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Figure 4: Contour plots ofN0 (a)-(b) andw0(0) (c) for f = κ = µ1 = 0.
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Figure 5: Contour plot of the dimensionless frequency of the1st symmetric mode (a) and its zoom (b) forκ = µ1 = 0.
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Figure 6: Dimensionless frequency of the 2nd symmetric mode(a) and 1st antisymmetric mode (b) forκ = µ1 = 0.
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Figure 7: Relative change of frequencies (in percent) betweenκ = 1e3 andκ = 0 for the first symmetric mode (a) and
for the 1st antisymmetric mode (b) (µ1 = 0).
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Table 1: Mechanical and geometric parameters of cables.
Cable λ2 ξ ρA (kg/m) g (N/kg) L (m) H (106 N) E (Pa) A (m2) I (m4)

1 0.79 605.5 400.0 9.8 100.0 2.90360 1.5988e+10 7.8507e-3 4.9535e-6
2 50.70 302.7 400.0 9.8 100.0 0.72590 1.7186e+10 7.6110e-3 4.6097e-6
3 1.41 50.5 400.0 9.8 100.0 26.13254 2.0826e+13 7.8633e-3 4.9204e-6
4 50.70 50.5 400.0 9.8 100.0 0.72590 4.7834e+08 2.7345e-1 5.9506e-3

3.2. Cables

In this subsection, the proposed beam model is used for the study of cables, taking into account bending stiffness
and temperature change. An external forceH is hence initially prescribed at the end of the self-weighted beam.
Thermal bending moments are neglected.

3.2.1. Validation
A first test concerns the effects of bending stiffness on cable frequencies without thermal loads. The proposed

analytical solutions are compared to existing numerical results presented in Refs. [26, 27] for four cables, having
different values of sag and bending stiffness. Analytical frequencies found in Ref. [28] are also given. The cable
characteristics are recalled in Table 1. Clamped supports are used. Table 2 shows the first two natural frequencies.
Values obtained with the present theory agree with the results of literature. Only a slight discrepancy occurs for
the 2nd frequency of Cable 2. In the present paper, it is emphasized that the prestressed state is calculated taking
into account both bending stiffness and clamped conditions, as opposed to Refs. [26, 27, 28]where such effects are
included for the dynamics only, which might explain small deviations.

For further insights, Table 2 also shows the results obtained from Irvine’s theory as well as the proposed model
with κ = 0 (simple supports). It can be concluded that Irvine’s theory is not applicable for Cables 3 and 4, their
bending stiffness being not negligible (ξ = 50.5). Also, bending stiffness mainly acts when boundary conditions are
clamped.

A second test aims at evaluating the limitation of the model due to the assumption of small rotation, compared
to Irvine’s model for various sag-to-span ratio (without thermal load). One considers a high prescribed tension,
ξ = 100, in order to reduce the bending stiffness effects. The boundary conditions are simple supports (κ = 0) with
no flexibility ( f = 0). A constant safety factorH/EA=1e-3 is used. The slenderness ratio is then necessarily constant:
σ = ξ/

√
H/EA ≃ 3162. The other cable characteristics are:E=2.0e+11Pa,ρ=7800kg.m−3, g=9.81m.s−2. Table 3

compares the sag-to-span and the frequency of the 1st symmetric mode obtained with the present model and with
12



Table 2: Comparison of frequencies with literature (∆T = 0K).
Cable 1 Cable 2 Cable 3 Cable 4

Mode 1st 2nd 1st 2nd 1st 2nd 1st 2nd

Finite difference [26] 0.440 0.853 0.428 0.464 1.399 2.679 0.447 0.464
Finite element [27] 0.441 0.854 0.421 0.460 1.400 2.682 0.438 0.461
Ricciardi [28] 0.441 0.855 0.429 0.463 1.400 2.682 0.447 0.465
Proposed model (κ = 1e3) 0.441 0.855 0.429 0.468 1.393 2.682 0.447 0.460
Irvine [25] 0.440 0.852 0.426 0.463 1.350 2.556 0.426 0.463
Proposed model (κ = 0) 0.440 0.852 0.426 0.468 1.352 2.576 0.429 0.470

Table 3: Comparison of results between the present theory and Irvine’s model obtained for various sag-to-span ratios
(∆T = 0K).

L (m) 20.91 209.1 418.2 627.3 1045 1673 2612

λ2 0.064 6.40 25.52 57.19 156.9 389.6 887.6
Irvine [25] sag-to-span 0.001 0.01 0.02 0.03 0.05 0.08 0.125

f s
1 (Hz) 3.839 0.472 0.332 0.288 0.210 0.135 0.087

Proposed model sag-to-span 0.001 0.010 0.020 0.030 0.050 0.080 0.125
f s
1 (Hz) 3.841 0.472 0.332 0.289 0.211 0.136 0.088

Irvine’s theory. The lengthL is varying so that the sag-to-span ratiow0(0)/σ sweeps the range [0.001; 0.125] (0.125
is the limit of applicability of Irvine’s solutions).λ2 then varies from 0.064 to 887.6. Quite good agreement is found
between both solutions, even for the highest sag-to-span ratio, which shows the validity of the proposed model for the
study of cables.

Table 4 gives results when a temperature change∆T=+40K is applied (α=1.2e-5K−1). One can note that the
effect of temperature on frequencies diminishes as the sag-to-span increases. The proposed model is compared to the
solution presented by the author in Ref. [29] (extension of Irvine’s model to thermoelasticity). Both solutions are in
good agreement, which ends the validation of the model for cables.

3.2.2. Parametric study
The combined effects of thermal loads and bending stiffness on cables are investigated for the following ranges

of variation: λ′2 ∈ [1; 200], θ′ ∈ [−1;+1], ξ ∈ [25; 300]. One considers clamped supports (κ=1e3, f=0), which
maximizes the effects of bending stiffness.

In order to highlight bending stiffness effects without thermal stress, Fig. 9 first exhibits two-dimensional contour
plots ofΩ′/π = f (λ′2, ξ) for the first antisymmetric mode and the first three symmetric modes. Frequencies tend

Table 4: Comparison of results between the present theory and Irvine’s model obtained for various sag-to-span ratios
(∆T = +40K).

L (m) 20.91 209.1 418.2 627.3 1045 1673 2612

λ2 0.064 6.40 25.52 57.19 156.9 389.6 887.6
θ 0.480 0.480 0.479 0.479 0.477 0.472 0.462

Treyssede [29] sag-to-span 0.002 0.014 0.023 0.032 0.052 0.081 0.126
f s
1 (Hz) 2.829 0.496 0.355 0.297 0.207 0.134 0.087

Proposed model sag-to-span 0.002 0.014 0.023 0.032 0.052 0.081 0.126
f s
1 (Hz) 2.831 0.496 0.356 0.298 0.209 0.135 0.088
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Figure 9: Natural frequencies as a function ofξ andλ′2 for the first antisymmetric (a), first symmetric (b), second
symmetric (c) and third symmetric modes (d) (θ′=0).

towards asymptotic limits as the bending stiffness parameter increases, corresponding to Irvine’s solutions. As op-
posed to antisymmetric modes, the influence ofξ on symmetric modes is strongly dependent onλ′2. Generally, this
influence tends to grow for higher values ofλ′2 and for higher modes. The same conclusions were already found in
Refs. [27, 28] and show the importance of taking into accountbending stiffness in cable dynamics.

The effects of temperature can be quantified from two-dimensional contour plots of∆Ω/Ω = f (λ′2, θ′), where
∆Ω/Ω = Ω(λ′2, θ′)/Ω(λ′2, 0)−1 is the relative change in natural frequency under the influence of temperature. Fig. 10
plots the relative change of the 1st antisymmetric frequency for ξ =300 and 50. For both values ofξ, the frequency
sensitivity is slightly higher when cooling. For fixed values of θ′, this sensitivity gradually becomes lower for cables
having largerλ′2. Note that comparing temperature sensitivity for different values ofλ′2 at fixedθ′ implies that the ratio
between the working stressH/A and Young’s modulusE should remain almost constant. For a given cable material,
comparisons for fixedθ′ are hence indeed made for an almost constant safety factor, which is meaningful [29].

Concerning bending stiffness effects, the comparison of results in Fig. 10 betweenξ=50 and 300 shows that the
difference of thermal relative change remains less than 1% betweenξ=50 and 300: bending stiffness does not have a
significant effect on the thermal behaviour of this frequency.

Fig. 11 plots the change of the 1st symmetric frequency forξ =300 and 50. Let us first consider the caseξ = 300.
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Figure 10: Relative change in natural frequency (x100) of the 1st antisymmetric mode forξ = 300 (a) andξ = 50 (b).

The thermal behaviour of this mode is strongly dependent onλ′2 and quite different from Fig. 10. Roughly, the
frequency relative change is rather small above logλ′2=4.5 (λ′2 ≃ 90). Between 2.5 and 4.5 (λ′2 between 12 and 90),
it is more pronounced and the frequency is increasing with temperature. Below logλ′2=2.5 (λ′2 ≃ 12), the behaviour
changes again. Forθ′ < 0 (cooling), the first frequency is increasing as the temperature is decreasing. However for
θ′ > 0 (heating), the modal behaviour is more complex: the frequency might increase or decrease depending on the
value ofλ′2 as well as ofθ′. The frequency might be not monotically varying with respect to temperature change, as it
is the case for logλ′2=2 (λ′2 ≃ 7) for instance (the frequency tends to increase for any negative or positive temperature
change). As already explained for beam-like problems, the fact that the frequency can increase with temperature is
due to the modification of sag (curvature increase, which counteracts the decrease of tension).

Unlike the first antisymmetric mode, the thermal relative change ofΩs
1 is strongly affected atξ = 50. For instance

at logλ′2=4.5 (λ′2 ≃ 90) andθ′ = +1, the relative change due to temperature is 0% forξ = 300 and 5% forξ = 50.
The action of bending stiffness combined with thermal change is hence clearly non-negligible.

Fig. 12 plots the change of the 2nd symmetric frequency forξ =300 and 50. The effect of bending stiffness upon
this mode is also significant (differences of several percents exist between bothξ). However, the thermal behaviour
of the 3rd symmetric mode is quite less affected atξ = 50 (Fig. 13), which tends to show that the bending stiffness
influence on thermal relative change of frequencies decays for higher modes. It can also be noticed that as the mode
order increases, the thermal behaviour becomes identical to that of antisymmetric modes (compare Fig. 10 with 13),
due to the fact that higher modes are less sensitive to predisplacement (as already noticed for beams).

As a final remark, results obtained in Figs. 10–13 forξ = 300 coincide with the ones found in Ref. [29] with
neglected bending stiffness.

4. Conclusion

A unified analytical model has been proposed to investigate the effects of temperature on the modal behaviour of
horizontal beams taking into account self-weight, and cables taking into account bending stiffness. Various bound-
ary conditions can be considered thanks to the introductionof axial and torsional springs. Solutions are valid for
small rotations. For cables, the sag-to-span ratio must remain small (typically less than 1/8 as in Irvine’s theory).
Dimensionless parameters governing equilibrium equations have been highlighted. For beams, it has been shown
that the number of independent parameters is reduced to four. These parameters are respectively associated with the
self-weight, thermal force, thermal bending moment and torsional spring. A fifth parameter related to the prescribed
force is introduced for cable-like problems, corresponding to the so-called bending stiffness parameterξ. Some mod-
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Figure 11: Relative change in natural frequency (x100) of the 1st symmetric mode forξ = 300 (a) andξ = 50 (b).
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Figure 12: Relative change in natural frequency (x100) of the 2nd symmetric mode forξ = 300 (a) andξ = 50 (b).

16



−1
5

−15
−

10

−1
0

−10

−
9

−9

−9

−
8

−8

−8

−
7

−7

−7

−
6

−6

−6

−
5

−5

−5

−
4

−4

−4

−
3

−3

−3

−
2

−2

−2

−2

−
1

−
1

−1

−1

0
0

0

1

1
1

2

2

2
23

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

9

9

9

10

10

10

15

15

θ’

lo
gλ

’2

∆Ω/Ω*100

−1 −0.5 0 0.5 1
0

1

2

3

4

5

(a)

−1
5

−15

−
10

−1
0

−
9

−9

−9

−
8

−8

−8

−
7

−7

−7

−
6

−6

−6

−
5

−5

−5

−4

−4

−4

−3

−3

−3

−
2

−2

−2

−
1

−
1

−1

0
0

0

1

1
1

2

2
2

3

3

3
4

4

4

5
5

5

6
6

6

7

7

7

8

8

8

9

9

9

10

10

10

15

15

θ’

lo
gλ

’2

∆Ω/Ω*100

−1 −0.5 0 0.5 1
0

1

2

3

4

5

(b)

Figure 13: Relative change in natural frequency (x100) of the 3rd symmetric mode forξ = 300 (a) andξ = 50 (b).

ified Irvine parameters have been proposed in this paper, allowing a precise characterization of cables with bending
stiffness.

For beam problems, the model has been validated thanks to FE solutions and a parametric study has been briefly
conducted in order to highlight the combined effects of thermal loads and self-weight on natural frequencies. For
cable problems, solutions have been compared with existingresults in the literature obtained without thermal effects
or bending stiffness. A parametric study combining the effects of sag-extensibility, thermal change and bending
stiffness has been briefly performed. It has been found that the effect of bending stiffness on the thermal relative
change of frequencies can be important.

Results show that the thermal loads due to climatic variations can have a significant effect on the natural frequen-
cies of slender beams and cables. Under self-weight, frequencies have a complex thermal behaviour, which may be
non-linearly and non-monotically varying with respect to temperature. The thermoelastic behaviour of civil structures
is hence likely to affect the robustness of vibration based methods in SHM.

A. Note on heat transfer

As assumed through the whole paper, the temperature does notvary alongx. For simplicity, let us also assume
that it also remains constant alongy. The problem is reduced on the transverse directionz of the beam. The physics
of heat transfer being different from that of beam mechanics,z∗ andt∗ are made dimensionless with some different
characteristic length and time, denotedeandt′c. e is typically chosen as half the thickness andt′c must be representative
of the heat process (roughly, one day for climatic variations).

k, C andh will respectively denote the thermal conductivity, specific heat capacity and convection heat transfer
coefficient. qv andqs will be the time of rate of heat generated per unit volume (forinstance, due to the hydration
reaction of cement for concrete structures) and time rate ofheat transfer per unit area on the boundary (due to solar
radiation for instance).

Heat transfers in beams are governed by the differential equation [48]:

Ṫ − Fo
d2T
dz2
= φ − βTre f ǫ̇ (27)

and its associated boundary condition:

±dT
dz
+ Bi(T − T∞)

∣

∣

∣

∣

∣±1/2
= ϕ (28)
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whereT∞ is the air temperature andǫ is the axial strain of the beam. Dimensionless parameters are defined as:
Fo = kt′c/ρCe2 (Fourier number), Bi= he/k (Biot number),β = Eα/ρC (thermomechanical coupling parameter),
φ = qvt′c/ρC andϕ = qse/k.

For standard civil materials (concrete, steel),β ∼ 1 so that the last term of Eq. (27) can be neglected thanks to
the assumption of small strain. Thisa priori justify the usual assumption that heat transfer equilibrium equations are
not coupled to mechanics (throughout this paper, the temperature is considered as known). When Fo≫ 1, the heat
process can be considered as stationary. When Bi is small enough, the temperature can be considered as constant on
the cross-section.

Let us consider a civil structure made of standard concrete and subjected to climatic thermal changes:E=30Gpa,
α=1e-5K−1, ρ=2400kg.m−3, C=850J.kg−1.K−1, k=2W.m−1.K−1, h=20W.m−2.K−1, t′c=43200s (12 hours). This yields
Fo=0.042/e2 and Bi=10e. For large civil structures such as bridge decks,e is greater than 1m so that, generally:

• the evolution of temperature cannot be considered as stationary;

• the temperature does not remain spatially constant on the beam cross-section (thermal bending moment cannot
bea priori neglected);

• the mechanical evolution of a thermally prestressed state is quasi-static, provided that for climatic change, the
heat characteristic timet′c is far greater than the mechanical characteristic timetc.

For cables made of steel, one has:E=200GPa,α=1.2e-5K−1, ρ=7800kg.m−3, C=500J.kg−1.K−1, k=20W.m−1.K−1, so
that Fo=0.22/e2 and Bi=e. e is generally small enough for the temperature to be considered as almost uniform on the
cable cross-section (but the heat process cannot be considered as stationary).

These remarks justify assumptions used in this paper. Examples of heat transfer analyses and thermomechanical
effects applied to civil structures can be found in Refs. [49, 50, 51] for instance.

B. Expressions of α
−

and α+

The expressions ofα− andα+ are respectively given as:

α− =

γ

N0

(

cosλ−2 −
2 sin λ−2
λ−

)

+
2B0λ−N0

N0+λ
2
−

(

λ− cosλ−2
sinh

√
N0
2√

N0
− sin λ−2 cosh

√
N0

2

)

(1+ f )Ω2 + B0γ

(

cosh
√

N0

2 − 2
sinh

√
N0
2√

N0

)

− B2
0N2

0
2

(

1− sinh
√

N0√
N0

)

(29)

and:

α+ =

γ

N0

(

coshλ+2 − 2
sinh λ+2
λ+

)

− 2B0λ+N0

N0−λ2
+

(

λ+ coshλ+2
sinh

√
N0
2√

N0
− sinh λ+2 cosh

√
N0

2

)

(1+ f )Ω2 + B0γ

(

cosh
√

N0

2 − 2
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√
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2√
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0
2

(

1− sinh
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)

(30)
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