

Tocilizumab: is there life beyond anti-TNF blockade?

Jose Delgado Alves, António Marinho, Maria José Serra

▶ To cite this version:

Jose Delgado Alves, António Marinho, Maria José Serra. Tocilizuma
b: is there life beyond anti-TNF blockade?. International Journal of Clinical Practice, 2011, 65 (4), pp.508. 10.1111/j.1742-1241.2010.02612.x . hal-00612024

HAL Id: hal-00612024 https://hal.science/hal-00612024

Submitted on 28 Jul 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Tocilizumab: is there life beyond anti-TNF blockade?

Journal:	International Journal of Clinical Practice			
Manuscript ID:	IJCP-09-10-0464.R3			
Wiley - Manuscript type:	Non-Systematic Review			
Date Submitted by the Author:	30-Nov-2010			
Complete List of Authors:	Delgado Alves, Jose; Faculdade de Ciencias Medicas, Departamento Farmacologia; Fernando Fonseca Hospital, Medicine IV - Autoimmune Diseases Unit Marinho, António; Hospital Sto António, Medicina Serra, Maria José; Hospital CUF Descobertas, Medicina			
Specialty area:				

International Journal of Clinical Practice

Tocilizumab: is there life beyond anti-TNF blockade?

José Delgado Alves¹, António Marinho², Maria José Serra³.

¹ Department of Medicine IV, Fernando da Fonseca Hospital, Lisbon, Portugal; Department of Pharmacology, Facuty of Medical Sciences, Lisbon, Portugal.

² Santo António Hospital, Oporto, Portugal.

³ Central Lisbon Hospital Centre, Lisbon, Portugal

Corresponding Author: José Delgado Alves, MD, PhD Pharmacology Department Faculty of Medical Sciences New University of Lisbon Campo Mártires da Pátria, 130 1169-056 Lisboa Portugal Tel. (+) 351 21 880 3035 Fax. (+) 351 21 880 3083 jose.alves@fcm.unl.pt

Abstract

Anti-TNF- α therapy has become the most effective biologic treatment for rheumatoid arthritis. Despite having changed the prognosis of the disease, establishing new targets for treatment strategy, there are several aspects that still remain unmatched.

About 30% of the patients with rheumatoid arthritis have a less than satisfactory response to anti-TNF therapy, which has led the way for the pursuit of new targets and approaches to treatment. IL-6 is one of these alternative targets and data from the more recent clinical trials involving tocilizumab (an anti-IL-6 soluble receptor antibody) suggest advantages in relation to some clinical aspects which are not addressed by anti-TNF- α treatment.

Review criteria: how did you gather, select and analyze the information you considered in your review?

- All the controlled trials with Tocilizumab in Rheumatoid arthritis reported in Medline since 2007 were considered for this review.

- Data regarding the main issues considered for this review was identified and then summarised according to the different subheadings of the manuscript.

- The main / most cited controlled trials using the three most currently used anti-TNF drugs were referred as comparison.

Message for the clinic: what is the 'take-home' message for the clinician?

- Anti-TNF therapy has raised the standards of treatment for Rheumatoid Arthritis

- Several aspects are still not fully achieved in the control of the disease such as induction of remission, intolerance to methotrexate, non-responders and safety regarding tuberculosis and other infections.

- Tocilizumab may be a relevant alternative for anti-TNF treatment in patients following any of the previous groups

Introduction

The last 20 years have shown a remarkable change in overall perspectives on rheumatoid arthritis, from the point of view of both patients and doctors. In the 1990s, methotrexate (MTX) was shown to be the most effective therapy of all the disease modifying drugs (DMARD) (1). By the end of the last decade of the twentieth century, anti- tumor necrosis factor alfa (anti-TNF- α) therapy raised the standards by achieving impressive results regarding symptom relief, improvement in quality of life and labour hours (2,3) and by preventing the progression of joint destruction (4,5). The power of these new drugs associated with a relatively low incidence of major adverse effects granted them a level of efficacy that allowed, for the first time in this disease, radiographic and clinical long term remission to be considered as a therapeutic target (6). However, after the initial enthusiasm, long term data showed that much had still to be done in order to claim victory over rheumatoid arthritis. Monotherapy with anti-TNF- α is not significantly superior to Methotrexate alone and an association is still needed for optimal results (7). Furthermore, even with combination therapy, a significant proportion of patients still do not achieve satisfactory results (8), and despite some reassuring data put forward by national registries, infections and cancer are still major causes for concern (9,10,11).

Regardless of the undisputed importance of TNF- α as a pro-inflammatory cytokine, directly responsible for joint destruction and the perpetuation of inflammation in rheumatoid arthritis (12), the existence of a significant group of patients who did not respond to anti-TNF- α treatment, led to the search for other potential targets, both molecular and cellular (13,14,15).

More than a decade after the generalization of anti-TNF- α therapy, (and despite the newcomers in this therapeutic group - e.g. golimumab and certolizumab), new challenges have been defined whilst a significant set of problems have still to be overcome.

Common questions on a daily practical basis include: management of patients who do not tolerate methotrexate or with disease refractory to anti-TNF- α treatment, management of extra-articular manifestations, treatment of patients who have a high risk of infection, or with previous or ongoing malignancies, and finally whether remission can indeed be achieved in a greater number of patients. B-cell depletion (16) and blockage of CTLA4-associated lymphocyte co-stimulation (17) have taken the lead with promising or even good results regarding some of the above items, but much is still unknown.

Interleukin – 6 (IL-6), a pivotal cytokine in the inflammatory response has become the most recent target to be "scrutinised" in clinical trials, through the inhibition of its soluble receptor by the monoclonal antibody tocilizumab (TCZ) (18). What news came from the first major clinical trials using this new drug? Should we expect more in comparison with what might be already consider as classic biologic therapy (i.e. anti-TNF- α)? Have the old problems been solved or at least are we getting better results? Is there life beyond anti-TNF- α blockade?

Managing patients without methotrexate

 Anti-TNF- α treatment has still to show a clear detachment of its efficacy from the association with MTX. In fact, the clinical trials regarding the comparison of any of the anti-TNF- α drugs on monotherapy with MTX has failed to show an outstanding difference as far as clinical response is concerned, and in randomized controlled trials (RCTs) none has actually presented any benefit before the first 6 months. Nevertheless this data should be read very carefully, because in real life registers, with a large number of patients ineligible for RCTs, anti-TNF- α monotherapy showed a clear benefit over MTX (7,19,20). Initial studies with infliximab showed an increase of 38-46% of responders (21) and some studies suggest that the use of this monoclonal in monotherapy is associated with a relevant increase in acquired resistance to the drug due to the production of neutralising antibodies (22). Only 46% of patients achieved an ACR 20 on standard-dose monotherapy with adalimumab during its major phase III trials (23) and etanercept reached a significant difference only after one 1 year of treatment (24).

This has justified a strong recommendation in most countries for these drugs not to be used in monotherapy, unless a clear intolerance or contra-indication to the use of methotrexate is present.

Tocilizumab has been tested in monotherapy in a major clinical trial: the AMBITION study where treatment with tocilizumab 8mg/kg every 4 weeks was compare with MTX (up to 20mg weekly). (25)

In the AMBITION study, patients naïve to MTX or anti-TNF agents, who were treated with tocilizumab for 24 weeks, showed a significant improvement in clinical parameters (ACR20, 50 and 70 and DAS28) at week 24 and a reduction to the normal range of

Page 5 of 17

 hsCRP at week 12 and these were statistically different from the placebo group (25). A clear statistical difference between anti-TNF- α monotherapy and MTX had never been shown before for a period of time as early as 6 months.

Additional Therapy for DMARDs – resistant patients

In the large pivotal trials in Tocilizumab's recent history, three randomized controlled trials have made in MTX and non-biological DMARDs inadequate responders: the OPTION, TOWARD and LITHE studies. In the OPTION study, an expected result of a significant improvement of the clinical and biologic response at 24 weeks was found, in patients treated with TCZ + MTX (8 mg/kg) when compared with MTX alone. In this setting 27% of the patients achieved DAS remission and 79% good to moderate DAS responses (26).

More recently, a structural joint damage study (LITHE) showed remission at 52 weeks in 47% of patients on TCZ 8mg/kg plus MTX, compared to 8% in a MTX monotherapy group. This is particularly impressive when one considers the fact that the mean disease duration in this cohort was 9 years (27). Most of the previous studies looking at remission with anti-TNF- α treatment used study populations with a much shorter disease duration, which is known to be associated with a higher possibility of remission.

Refractoriness to anti-TNF treatment

Multiple studies have addressed the issue of non-responders (or poor-responders) to anti-TNF- α therapy. Overall, most studies show a benefit of some magnitude when a different anti-TNF- α is introduced after failure of a first one, regardless of which as been administered in the first treatment course, specially if there was a loss of efficacy rather than a primary absence of response (28). The lack of a clear advantage of any of the anti-TNF- α agents when used as a second course of treatment for non-responders, with special emphasis for primary non-responders (29), has been somewhat confirmed by the different national registries, which leads to the general impression that there is no advantage in switching anti-TNFs in this context.

The RADIATE study is a controlled study to compare efficacy of tocilizumab vs. placebo on a MTX background in patients with rheumatoid arthritis refractory to at least one anti-TNF- α biologic at 24 weeks. A total of 50%, 28.8% and 12.4% of the patients on TCZ (8mg/kg) achieved ACR20, 50 and 70 responses respectively compared to 10.1%, 3.8% and 1.3% of the placebo group (30). There were no differences regarding

the type or the number of anti-TNF- α drugs previously used. These data are not dramatically different from other studies on anti-TNF- α drugs, but allows another option to be considered in non-responders.

Extra-articular manifestations

 Despite being a systemic disease, the predominance of the articular involvement in rheumatoid arthritis has determined that the assessment of treatment response should take into account the changes (either clinical or radiologic) recorded in the joints. Quality of life and overall patient satisfaction has only been considered as a main therapeutic target more recently. Anti-TNF- α treatment has provided a relevant improvement in both those variables. However, other aspects, such as fatigue or other organ involvement has very rarely been considered. IL-6, being one of the most important inflammatory cytokines, is directly associated with the systemic features of the disease. There are no data addressing the response to different treatments regarding rheumatoid nodules or interstitial lung disease, and, until now, even anaemia was not thoroughly considered in these patients. Fatigue and inflammatory-disease-related anaemia are important aspects of the overall burden of rheumatoid arthritis which are now being addressed by anti-IL6 treatment. In fact, improvement of red blood cell count in these patients has been consistently shown by TCZ in both the pivotal and follow-up studies (31). In instance the higher mortality rate among rheumatoid arthritis (RA) patients in comparison with the general population is largely attributable to cardiovascular (CV) disease, particularly coronary atherosclerosis, but also non-fatal myocardial infarction and heart failure. Biological agents such as anti-TNF- α agents delay and even reverse the progression of endothelial dysfunction and atherosclerosis. Tocilizumab leads to changes in lipid profiles without increasing adverse vascular events, however is the dramatic effect on inflammation is long-term potential benefit on CV disease control (32).

Remission is the new target

Remission is now being presented as an important endpoint in clinical trials for rheumatoid arthritis. However, only one study has presented it as a primary endpoint: COMET. In this study, two groups of approximately 270 patients each were randomised for a 2 year treatment course with etanercept and MTX vs. MTX alone. All the patients had been diagnosed with rheumatoid arthritis less than 2 years before. After the first

International Journal of Clinical Practice

year, remission (as measured by DAS28 after one year) was achieved in 50% of the patients treated with etanercept and MTX vs. 28% in the MTX alone arm. Radiographic remission (defined by a non-progression in the Total Sharp Score) was achieved by 79.7% of the patients in the etanercept arm, compared with 58.7% of the MTX group (33).

The BEST program, involving patients treated with infliximab, was a treatment strategy whereby patients were treated in 4 different groups: sequential monotherapy, step-up combination therapy, initial combination with prednisone and initial combination with infliximab. Again the target population was patients with disease duration of less than 2 years. After 5 years, 58% of the group treated with infliximab were off anti-TNF- α treatment and, of those, 19% were off any treatment (34).

The PREMIER study comparing adalimumab plus MTX against MTX alone showed a total of 43 and 49% of patients achieving DAS28 remission at weeks 52 and 104, respectively. The MTX arm reached 21 and 25%. In this study disease duration could not be longer than 3 years. Interestingly the remission rate for the patients treated with adalimumab alone was very similar to the MTX group: 23 and 25% at 52 and 104 weeks (35).

Regarding IL-6 receptor blockade, the TOWARD study, involving 1220 patients already on DMARD treatment for RA, compared a group treated with tocilizumab 8mg/kg in association with any DMARD with a group treated with DMARD only. At 6 months, 30.2% of the patients in the tocilizumab group achieved clinical remission as assessed by DAS28<2.6, a strong result when compared to 3.4% of the placebo group. The ACR70 response was 21% for the TCZ group vs. 3% for the placebo group) (36).

In the AMBITION trial, patients treated with tocilizumab on monotherapy were five time more likely to reach remission (DAS28 < 2.6) than patients on MTX at week 24. (33.6% vs. 12.1%) (25).

Interestingly, a similar result of 30.1% of remissions at 6 months was found when TCZ was used in patients who did not respond to previous treatments with anti-TNF- α (30), confirming a remarkable consistency in the induction of remission regardless of the context or background of where this drug is being used. One could remark that IL-6 blockage dramatically normalizes C-Reactive Protein (CRP) , overestimating the outstanding DAS remissions achieved by tocilizumab, however acute phase reactants have little contribution on composite indexes used in clinical practice. In manner of fact CRP contributes only 5% in DAS28 –CRP score (37).

Safety

Major safety concerns in the "biologic era" include overall infections and particularly serious infections, tuberculosis and malignancy. International registries have been monitoring these issues and it is now evident that there is an acceptable risk of infections when anti-TNF- α treatment is used, with the exception of a small number of patients who were subjected to high-dose anti-TNF- α therapy (38). Data are not so clear as far as malignancies are concerned, but a large study of the first 6 years after the start of anti-TNF- α therapy in routine care showed no overall elevation of cancer risk and no increase with time of follow up, (with an advantage for the use of etanercept over the monoclonal antibodies for a smaller risk of lymphoma) (39). With regards to high risk cancer patients (patients with personal or strong family history of cancer), there is still no clear data available, and therefore a definitive limitation for the use of these drugs in patients with previous malignancies is the current standard of care (40).

Regarding TCZ the first major set of data from the patients exposed to IL-6 receptor blockade, includes 4700 patients treated for almost 8000 patient-years (41).

Both in the five pivotal studies and in the two long-term follow-up studies, the incidence of serious adverse events (SAE) was low (less than 16 SAE/100pts-yrs) and it did not increase with increasing duration of TCZ exposure (42).

The rate of serious infections in RA patients treated with Tocilizumab inhibitors is 6 events/100 pts-yrs (43). (In patients treated only with DMARDS, it is 2-3 events/100 pts-yrs (44)). Major infections included pneumonia and cellulitis (<1.4% and <0.8% of all the patients exposed in both the pivotal and follow-up studies). For most of the studies, patients were not requested to have a tuberculosis screening test or prophylaxis, in accordance with the relatively low relevance of IL6 in granuloma production. In all of the studies that comprise the TCZ program, only 9 cases of TB were identified, the majority of which presented more than 18 months after the start of the treatment, suggesting a *de novo* infection, rather than the reactivation of a latent one (45).

There was no difference between the expected incidence of malignancies (including non-melanoma skin cancers) and the frequency observed in RA patients, suggesting that TCZ does not appear to implicate an additional risk, as observed in populations with high risk of digestive malignancies (46).

Liver abnormalities are common, particularly in patients treated with the association TCZ + MTX. 5 to 8% of the patients in the pivotal and long-term studies had elevation

 of AST levels, and 15 to 20% had elevation of ALT levels. These elevated levels responded to reduction and/or interruption of TCZ treatment and there were no cases of hepatic insufficiency or liver failure reported (46).

Other major concerns during treatment with TCZ seem to be the reduction of neutrophils and the increase in cholesterol lipids, particularly LDL-cholesterol.

A reduction in the neutrophil count seems to be associated with a response to treatment. It is not a real fall in the number of circulating neutrophils but a marginalisation of those cells in the blood vessel. In fact, there is no relationship between infections and the neutrophil count, and furthermore, the white cell response to an infection seen in these patients seems to be similar to the normal population.

A significant proportion of patients on TCZ show an increase in total cholesterol as well as in plasma LDL and HDL. Approximately 7% (in the long-term studies) required statin treatment and showed an appropriate response. There was no increase in cardiovascular adverse events in patients treated with TCZ, when compared to control treatments. Finally rare cases of gastrointestinal perforation have been described, and some of them were fatal, the relative risk is still not well characterized, but caution should be used in patients with previous diverticulitis or peptic ulcer disease (47). Overall, the safety profile of this drug seems to be similar (although with a slightly different adverse event profile) to the other biologic treatments already in use, however some of the concerning safety problems have to be confirmed in long term studies, particularly hepatic toxicity and cardiovascular risk (48) (25).

Final comments

Anti-TNF- α biologic treatment has started a new era in the management of rheumatoid arthritis. A remarkable improvement in the outcome of these patients regarding symptom control and quality of life, alongside the almost complete arrest of joint destruction, has raised the standards for treating this condition to a different level. However, some remaining problems have yet to be solved, opening a window of opportunity for new targets and different drugs. IL-6 blockade is one of the most recent alternatives. It has shown promising results in the main clinical trials which were confirmed in long-term follow-up studies and provided new opportunities for solving some of the issues that were not being particularly well addressed by Anti-TNF- α therapy. Naturally, the lack of head-to-head studies and the inexistence of registry-based data for this new drug make it difficult to fully endorse all the aspects that individual trials with tocilizumab have been showing. However there is sufficient evidence to consider anti-IL6 receptor blockade as a valid therapy for the treatment of rheumatoid arthritis. Tocilizumab might have a promising significant advantage over anti-TNF- α treatment, particularly in the management of patients who are non-tolerant or in whom the use of methotrexate is contraindicated and in patients with significant extra-articular manifestations. Regarding the treat to target goals, tocilizumab is probably the biological who achieves the largest number of patients with sustained remission and low DAS scores, assuming the data of all extended reports of pivotal trials. Nevertheless its efficacy and security should also be proved in registries, as so far as been done with anti-TNF- α therapies.

Disclosures, funding and acknowledgements

There are no disclosures or funding to be reported by any of the authors.

References

1 – Kay J, Westhovens R. Methotrexate: the gold standard without standardisation. Ann Rheum Dis. 2009 Jul; 68 (7): 1081-2.

2 –Hyrich KL, Deighton C, Watson KD; BSRBR Control Centre Consortium, Symmons DP, Lunt M; British Society for Rheumatology Biologics Register. Benefit of anti-TNF therapy in rheumatoid arthritis patients with moderate disease activity. Rheumatology (Oxford). 2009 Oct; 48(10):1323-7.

3 –Augustsson J, Neovius M, Cullinane-Carli C, Eksborg S, van Vollenhoven RF. Patients with rheumatoid arthritis treated with tumour necrosis factor antagonists increase their participation in the workforce: potential for significant long-term indirect cost gains (data from a population-based registry). Ann Rheum Dis. 2010; 69(1):126-31. 4 – van der Heijde D, Klareskog L, Landewé R, Bruyn GA, Cantagrel A, Durez P, Herrero-Beaumont G, Molad Y, Codreanu C, Valentini G, Zahora R, Pedersen R, MacPeek D, Wajdula J, Fatenejad S. Disease remission and sustained halting of radiographic progression with combination etanercept and methotrexate in patients with rheumatoid arthritis. Arthritis Rheum. 2007 Dec; 56(12): 3928-39.

5 – Jamal S, Patra K, Keystone EC. Adalimumab response in patients with early versus established rheumatoid arthritis: DE019 randomized controlled trial subanalysis. Clin Rheumatol. 2009 Apr;28(4):413-9.

6 – van der Kooij SM, Goekoop-Ruiterman YP, de Vries-Bouwstra JK, Güler-Yüksel M, Zwinderman AH, Kerstens PJ, van der Lubbe PA, de Beus WM, Grillet BA, Ronday HK, Huizinga TW, Breedveld FC, Dijkmans BA, Allaart CF. Drug-free remission, functioning and radiographic damage after 4 years of response-driven treatment in patients with recent-onset rheumatoid arthritis. Ann Rheum Dis. 2009 Jun;68(6):914-21. 7 – Hochberg MC, Tracy JK, Hawkins-Holt M, Flores RH. Comparison of the efficacy of the tumour necrosis factor alpha blocking agents adalimumab, etanercept, and infliximab when added to methotrexate in patients with active rheumatoid arthritis. Ann Rheum Dis. 2003 Nov;62 Suppl 2:ii13-6.

8 – Silman AJ. Available therapeutic options following failure of a first anti-TNF agent.Nat Clin Pract Rheumatol. 2009 Mar; 5(3):115.

9 – Dixon WG, Hyrich KL, Watson KD, Lunt M, Galloway J, Ustianowski A, Symmons DP. Drug-specific risk of tuberculosis in patients with rheumatoid arthritis treated with anti-TNF therapy: Results from the British Society for Rheumatology Biologics Register (BSRBR). Ann Rheum Dis. 2010 Mar; 69(3): 522-528.

 10 – Peña-Sagredo JL, Hernández MV, Fernandez-Llanio N, Giménez-Ubeda E, Muñoz-Fernandez S, Ortiz A, Gonzalez-Gay MA, Fariñas MC; Biobadaser group. Listeria monocytogenes infection in patients with rheumatic diseases on TNF-alpha antagonist therapy: the Spanish Study Group experience. Clin Exp Rheumatol. 2008 Sep-Oct;26(5):854-9.

11 – Mariette X, Tubach F, Bagheri H, Bardet M, Berthelot JM, Gaudin P, Heresbach D, Martin A, Schaeverbeke T, Salmon D, Lemann M, Hermine O, Raphael M, Ravaud P. Lymphoma in patients treated with anti-TNF: results of the 3-year prospective French RATIO registry. Ann Rheum Dis. 2010 Feb;69(2):400-8.

12 – Moran EM, Mullan R, McCormick J, Connolly M, Sullivan O, Fitzgerald O, Bresnihan B, Veale DJ, Fearon U. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-alpha, Oncostatin M and response to biologic therapies. Arthritis Res Ther. 2009;11(4):R113.

13 – Okamoto H, Hoshi D, Kiire A, Yamanaka H, Kamatani N. Molecular targets of rheumatoid arthritis. Inflamm Allergy Drug Targets. 2008 Mar;7(1):53-66.

14 – Kukar M, Petryna O, Efthimiou P. Biological targets in the treatment of rheumatoid arthritis: a comprehensive review of current and in-development biological disease modifying anti-rheumatic drugs. Biologics. 2009;3:443-57.

15 – Tansey MG, Szymkowski DE. The TNF superfamily in 2009: new pathways, new indications, and new drugs. Drug Discov Today. 2009 Dec;14(23-24):1082-8.

16 – Quartuccio L, Lombardi S, Fabris M, Masolini P, Saracco M, Pellerito R, De Vita S. Long-term effects of rituximab in rheumatoid arthritis: clinical, biologic, and pharmacogenetic aspects. Ann N Y Acad Sci. 2009; Sep;1173:692-700.

17 – Maxwell L, Singh JA. Abatacept for rheumatoid arthritis. Cochrane Database Syst Rev. 2009 Oct 7;(4):CD007277.

18 – Rose-John S, Waetzig GH, Scheller J, Grötzinger J, Seegert D. The IL-6/sIL-6R complex as a novel target for therapeutic approaches. Expert Opin Ther Targets. 2007 May;11(5): 613-24.

19 – Kievit W, Fransen J, Oerlemans AJ, Kuper HH, van der Laar MA, de Rooij DJ, De Gendt CM, Ronday KH, Jansen TL, van Oijen PC, Brus HL, Adang EM, van Riel PL. The efficacy of anti-TNF in rheumatoid arthritis, a comparison between randomised controlled trials and clinical practice. Ann Rheum Dis. 2007 Nov; 66(11): 1473-8.

20 – Zink A, Strangfeld A, Schneider M, Herzer P, Hierse F, Stoyanova-Scholz M, Wassenberg S, Kapelle A, Listing J. Effectiveness of tumor necrosis factor inhibitors in

International Journal of Clinical Practice

rheumatoid arthritis in an observational cohort study: comparison of patients according to their eligibility for major randomized clinical trials. Arthritis Rheum. 2006 Nov; 54(11): 3399-407.

21 – St Clair EW, van der Heijde DM, Smolen JS, Maini RN, Bathon JM, Emery P, Keystone E, Schiff M, Kalden JR, Wang B, Dewoody K, Weiss R, Baker D. Active-Controlled Study of Patients Receiving Infliximab for the Treatment of Rheumatoid Arthritis of Early Onset Study Group. Combination of infliximab and methotrexate therapy for early rheumatoid arthritis: a randomized, controlled trial. Arthritis Rheum. 2004 Nov; 50(11): 3432-43.

22 – Ebert EC, Das KM, Mehta V, Rezac C. Non-response to infliximab may be due to innate neutralizing anti-tumour necrosis factor-alpha antibodies. Clin Exp Immunol. 2008 Dec; 154(3): 325-31.

23 – Van de Putte LB, Atkins C, Malaise M, Sany J, Russell AS, van Riel PL, Settas L, Bijlsma JW, Todesco S, Dougados M, Nash P, Emery P, Walter N, Kaul M, Fischkoff S, Kupper H. Efficacy and safety of adalimumab as monotherapy in patients with rheumatoid arthritis for whom previous disease modifying antirheumatic drug treatment has failed. Ann Rheum Dis. 2004 May;63(5):508-16.

24 – Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomised controlled trial. Lancet. 2004 Feb 28; 363(9410): 675-81.

25 – Jones G, Sebba A, Gu J et al. Comparison of tocilizumab monotherapy versus methotrexate monotherapy in patients with moderate to severe rheumatoid arthritis: the AMBITION study. Ann Rheum Dis 2010 Jan; 69(1): 88-96.

26 - Smolen JS, Beaulieu A, Rubbert-Roth A et al. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet 2008; 371: 987-97.

27 – Roy Fleischmann, R. Burgos-Vargas, P. Ambs, E. Alecock, J. Kremer. LITHE: Tocilizumab Inhibits Radiographic Progression and Improves Physical Function in Rheumatoid Arthritis (RA) Patients (Pts) at 2 Yrs with Increasing Clinical Efficacy Over Time. Arthritis Rheum, 2009; 60 (10), (suppl): S238

28 – Scrivo R, Conti F, Spinelli FR, Truglia S, Magrini L, Di Franco M, Ceccarelli F, Valesini G. Switching between TNF alpha antagonists in rheumatoid arthritis: personal experience and review of the literature. Reumatismo. 2009 Apr-Jun;61(2): 107-17.

 29 – Finckh A, Ciurea A, Brulhart L, Möller B, Walker UA, Courvoisier D, Kyburz D, Dudler J, Gabay C; Arthritis. Which subgroup of patients with rheumatoid arthritis benefits from switching to rituximab versus alternative anti-tumour necrosis factor (TNF) agents after previous failure of an anti-TNF agent? Ann Rheum Dis. 2010 Feb;69(2):387-93.

30 – Emery P, Keystone E, Toy HP et al. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-TNF biologics: results from a 24-week multicentre randomised placebo controlled trial. Ann Rheum Dis 2008 Nov;67(11):1516-23.

31 – Dayer JM, Choy E. Therapeutic targets in rheumatoid arthritis: the interleukin-6 receptor. Rheumatology (Oxford). 2010 Jan; 49(1): 15-24.

32 - Atzeni F, Turiel M, Caporali R, Cavagna L, Tomasoni L, Sitia S, Sarzi-Puttini P. The effect of pharmacological therapy on the cardiovascular system of patients with systemic rheumatic diseases. Autoimmun Rev. 2010 Oct; 9 (12): 835-9.

33 – Emery P, Breedveld FC, Hall S, Durez P, Chang DJ, Robertson D, Singh A, Pedersen RD, Koenig AS, Freundlich B. Comparison of methotrexate monotherapy with a combination of methotrexate and etanercept in active, early, moderate to severe rheumatoid arthritis (COMET): a randomised, double-blind, parallel treatment trial. Lancet 2008; 327: 375-82

34 – Goekoop-Ruiterman YPM, de Vries-Bouwstra JK, Allart CF, et al. Clinical and radiographic outcomes of four different treatment strategies in patients with early rheumatoid arthritis (the BeSt study): A randomized, controlled trial. Arthritis Rheum 2005; 52:3381-3390.

35 - Breedveld FC, Weisman MH, Kavanaugh AF, Cohen SB, Pavelka K, van Vollenhoven R, Sharp J, Perez JL, Spencer-Green GT. The PREMIER study: A multicenter, randomized, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis Rheum. 2006; 54(1): 26-37.

36 – Genovese MC, McKay JD, Nasonov EL et al. Interleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs. Arthritis & Rheumatism 2008; 58 (10): 2968-2980.

International Journal of Clinical Practice

37 - Aletaha D, Nell VP, Stamm T, Uffmann M, Pflugbeil S, Machold K, Smolen JS. Acute phase reactants add little to composite disease activity indices for rheumatoid arthritis: validation of a clinical activity score. Arthritis Res Ther. 2005; 7 (4): R796-806.

38 – Leombruno JP, Einarson TR, Keystone EC. The safety of anti-tumour necrosis factor treatments in rheumatoid arthritis: meta and exposure-adjusted pooled analyses of serious adverse events. Ann Rheum Dis. 2009 Jul; 68(7): 1136-45.

39 – Askling J, van Vollenhoven RF, Granath F, Raaschou P, Fored CM, Baecklund E, Dackhammar C, Feltelius N, Cöster L, Geborek P, Jacobsson LT, Lindblad S, Rantapää-Dahlqvist S, Saxne T, Klareskog L. Cancer risk in patients with rheumatoid arthritis treated with anti-tumor necrosis factor alpha therapies: does the risk change with the time since start of treatment? Arthritis Rheum. 2009 Nov; 60(11): 3180-9.

40 – Chapman P, Cranmer L, Dixon WG, Hyrich KL, Patterson JR, Symmons DP, Toporcer M, Mastrangelo MJ. The role of anti-tumor necrosis factor receptor agents in cancer survivors: does the risk justify the benefit? Semin Oncol. 2010 Feb; 37(1): 11-9.

41 – Sarah Okada, M.D. Actemra (tocilizumab) for Rheumatoid Arthritis FDA Perspective . Arthritis Advisory Committee July 29, 2008 .

42 – Dixon WG, Symmons DP, Lunt M et al. Serious infections following anti-tumor necrosis factor alpha therapy in patients with rheumatoid arthritis : lessons from interpreting data from observational studies. Arthritis Rheum 2007; 56: 2896-2904.

43 – Listing J, Strangfeld A, Kary S et al. Infections in patients with rheumatoid arthritis treated with biologic agents. Arthritis Rheum 2005; 52: 3403-3412.

44 – Salliot C, van der Heijde D. Long-term safety of methotrexate monotherapy in patients with rheumatoid arthritis: a systematic literature research. Ann Rheum Dis. 2009 Jul; 68(7): 1100-4.

45 – van Vollenhoven Ronald F, Siri D, Furie R, Krasnow J, Alecock E, Alten R. Long-Term Safety and Tolerability of Tocilizumab Treatment in Patients with Rheumatoid Arthritis and a Mean Treatment Duration of 2.4 Years. Arthritis Rheum, 2009; 60 (10), (suppl): \$1955.

46 – N Nishimoto, N Miyasaka, K Yamamoto, S Kawai, T Takeuchi, and J Azuma N Long-term safety and efficacy of tocilizumab, an anti-IL-6 receptor monoclonal antibody, in monotherapy, in patients with rheumatoid arthritis (the STREAM study): evidence of safety and efficacy in a 5-year extension study. Ann Rheum Dis. 2009 October; 68(10): 1580–1584.

47 - Van Vollenhoven RF, Keystone E, Furie R, et al. Gastrointestinal safety in patients with rheumatoid arthritis (RA) treated with tocilizumab in the Roche clinical trials database. Presented at the 73rd Annual Scientific Meeting of American College of Rheumatology (ACR), October 16-21, 2009, Philadelphia, Pennsylvania.

48 - Nishimoto N, Ito K, Takagi N. Safety and efficacy profiles of tocilizumab monotherapy in Japanese patients with rheumatoid arthritis: meta-analysis of six initial trials and five long-term extensions. Mod Rheumatol. 2010 Jun; 20(3): 222-32.

An A. Takagi N. S. Se patients with thea. term extensions. Mod Rheu

Biologic agent	Target/Affinity	Immune actions	Half-life	Administration
Etanercept	TNF-α,	Decreases	4 days	Subcutaneous
(humanized	lymphotoxin-α	circulating TNF-		injection of
fusion protein)	$(TNF-\beta).$	α ; partial		50mg once a
	Soluble TNF-α	blockade; no		week
		lysis of TNF-		
		expressing cells		
Infliximab	TNF-α.	Monocyte and	9 days	Infusion of 3-
(chimeric	Soluble and	T-cell apoptosis;		5mg/Kg at 0, 2,
mAb ^g)	membrane TNF-α	lysis of TNF-		6 weeks and then
		expressing cells		every 6-8 weeks
Adalimumab	TNF-α.	lLysis of TNF-	14 days	Subcutaneous
(humanized	Soluble and	expressing cells;		injection of
mAb)	membrane TNF-α	possible effects		40mg every 2
		on apoptosis,		week
		monocytes and		
		natural killer		
		cells		
Tocilizumab	IL-6 receptor	Competitive	5-10 days	Infusion of 8
(humanized		blocking of IL-6		mg/Kg every 4
mAb)		receptor		weeks

Table 1. Comparison between tocilizumab and the most used anti-TNF agents in the context of autoimmune rheumatic diseases.