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Abstract

In Extreme Value statistics we often encounter testing procedures for assessing the presence of the

Gumbel domain, attached to the simple null hypothesis of shape parameter γ = 0, thus praising the

selection of extreme domains of attraction. However, the problem of assessing for light tailed distributions

with finite or infinite right endpoint is seldom referred. The latter is an impending problem of practical

importance, particularly at the enrollment of subsequent estimation of extremal features such as small

exceedance probabilities. In this paper, we present two test statistics whose asymptotic behavior, albeit

under some restrictive yet reasonable conditions, enables to distinguish light tailed distribution functions

with finite right endpoint from those with infinite endpoint lying in the Gumbel domain. An illustrative

example is provided via application to significant wave height data recorded at Figueira da Foz, Portugal,

from 1958 until 2001.

KEY WORDS AND PHRASES: Extreme Value Theory, right endpoint, test of hypothesis

1 Introduction

In statistical analysis of rare events, the Generalized Extreme Value distribution stems from the fundamen-

tal Fisher and Tippett theorem (Fisher and Tippett, 1928) as a unified version of the only three possible

limits for the distribution of the maximum from a random sample with parent distribution function F ,

provided suitable normalization in scale and location, for a large enough sample size n. That is, assume

there exist normalizing constants an > 0 and bn ∈ R such that

lim
n→∞

P
{
a−1

n

(
max(X1, . . . , Xn) − bn

)
≤ x

}
= lim

n→∞
Fn(anx + bn) = G(x), (1)
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for all x, with some non-degenerate distribution function G. Then, G must be one of only three possible

extreme value distributions - Fréchet, Gumbel or Weibull - while these, in turn, can be nested as a one

parameter family of distributions (von Mises (1936)): the Generalized Extreme Value distribution,

Gγ(x) :=





exp(−(1 + γx)−1/γ) , 1 + γx > 0 if γ 6= 0

exp(− exp(−x)) , x ∈ R if γ = 0.
(2)

We say that the distribution function F of the independent random variables X1, X2, . . . , Xn, . . . is in

the domain of attraction of Gγ if (1) holds with G = Gγ (notation: F ∈ D(Gγ)). The extreme value

index γ ∈ R (featuring in (2)) is often regarded as a gauge of tail heaviness of the underlying distri-

bution function F . For positive γ, the power-law behavior in the tail of F has important implications

since it may suggest, for instance, the presence of infinite moments. The Fréchet domain of attraction

D(Gγ)γ>0 encloses heavy-tailed distribution functions with polynomially decaying tails such as Pareto,

Cauchy, Student’s-t and the Fréchet distribution itself. All distribution functions in the Weibull domain

of attraction are light-tailed with finite right endpoint. Beta distributions and, in particular, the Uniform

distribution belong to the Weibull domain D(Gγ)γ<0. The intermediate case of the Gumbel domain D(G0)

is of particular interest in many applied sciences where extremes come into play, not only because of the

simplicity of inference pertaining to γ = 0, but also for the great variety of distributions possessing an

exponential tail, ranging from light-tailed distributions whether having finite or infinite right endpoint

like the Normal and Gamma distributions, to moderately heavy tails such as the Lognormal distribu-

tion. In the context of extreme value analysis, where we wish to extrapolate beyond the sampled data,

a screening process for the most likely underlying tail type may thus be considered an utter advantage.

Statistical procedures on the selection of extreme domains are extensively used in order to have a grasp

of the degree of tail heaviness. For instance, Neves and Fraga Alves (2007) and Hüsler and Peng (2008)

offer a catalog of numerous procedures for assessing extreme value conditions, the first focusing different

approaches within the univariate case and the second going through univariate and multivariate settings.

Less attention has yet been paid to the problem of assessing the presence of a distribution function F with

finite endpoint. Nevertheless, this is a striking problem of practical importance, for instance, when we

wish to perform transformations to the sample observations that might hinder tail heaviness.

In this paper we confine our attention to the Weibull and Gumbel domains, that is, we are addressing

distribution functions in D(Gγ)γ≤0. Our proposal is to devise statistical tools, at the hypothesis testing

level, with the ultimate aim of distinguishing between light-tailed distributions with infinite and finite

right endpoint. The latter not only embraces the problem of statistical choice between Weibull and log-

Normal distributions as recently treated by Kim and Yum (2008) although under a simulation perspective,

but also accounts for ramifications on the possibility of applying data transforms, particularly in the case

of an underlying distribution F with infinite right endpoint xF . A noteworthy example corresponds to
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changing data from the normal parent through an exponential function, which translates as a leap from

an underlying light-tailed (normal) distribution to the moderately heavy lognormal parent.

Under a semi-parametric approach, we are only interested in the shape of the underlying distribution

at high quantiles, meaning that the extreme value index γ is the only parameter to keep under scrutiny.

The following extended regular variation property (de Haan (1984)) is a well known necessary and suffi-

cient condition for F to belong to an extreme domain of attraction, i.e., F ∈ D(Gγ) if and only if

lim
t→∞

U(tx) − U(t)
a(t)

=





xγ −1
γ , γ 6= 0

log x, γ = 0,
(3)

for every x > 0 and some positive measurable function a, with U standing for a quantile type function

pertaining to F defined by the generalized inverse

U(t) :=
( 1

1 − F

)←
(t) = inf

{
x : F (x) ≥ 1 − 1

t

}
.

Observe that the limit function (xγ −1)/γ is the tail quantile function of the Generalized Pareto distribution

(GPd),

Fγ(x) := 1 + log Gγ(x) = 1 − (1 + γx)− 1
γ for





x ≥ 0 if γ ≥ 0

0 ≤ x ≤ − 1
γ if γ < 0.

(4)

This fact reflects its exceptional role in extreme value theory: while restricting attention to a top portion of

the original sample, the GPd stems from the seminal works of Balkema and de Haan (1974) and Pickands

(1975) as the limiting distribution for the excesses Wi = Xi − u|Xi > u, i = 1, . . . , ku over a sufficiently

high threshold u. The GPd will be taken into account in Section 3 for the performance evaluation, via

simulation, of the new test statistics proposed in Section 2, whereas the exponential distribution function

Fγ=0 will be taken as a prototype of the subclass comprising light-tailed distributions with infinite right

endpoint. The remainder of the paper regards an example of application in Section 4.

2 Two tests

Let X1, X2, . . . , Xn be independent random variables with the same distribution function F and let X1,n ≤
X2,n ≤ . . . ≤ Xn,n denote their ascending order statistics. On account of simplicity, we assume throughout

that the right endpoint xF := U(∞) = limt→∞ U(t) is in (0, ∞]. In order to deal with the problem of

casting out distributions with finite right endpoint lying in the Gumbel domain and therefore attached

with γ = 0, we shall take k upper order statistics in a way that these might present a satisfactory picture

of the tail of 1 − F . Hence, let k = k(n) be an intermediate sequence such that k → ∞ and k/n → 0 as

n → ∞ while Xn−k,n thus refers to the k-th intermediate level which constitutes the designated eventually

3
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high (random) threshold (see text below the GPd function (4)).

In this context, the main concern goes to casting out the presence of light-tailed distributions with

infinite right endpoint xF := U(∞), in the sense that we are particularly interested in testing the null

hypothesis H0 :
(
F ∈ D(G0) and xF = ∞

)
against the alternative H1 :

(
F ∈ D(Gγ)γ≤ 0 and xF < ∞

)
. To

tackle this testing problem, we introduce two test statistics:

T
(1)
k,n :=

1
k

k∑

i=1

Xn−i,n − Xn−k,n − â(n/k)
Xn,n − Xn−k,n

(5)

T
(2)
k,n :=

1
k

k−1∑

i=1

i
Xn−i+1,n − Xn−i,n

Xn−k,n
, (6)

where â is a suitable estimator for the scale function a introduced in (3). These two tests are bound to

be used as complement of each other under the general guidelines provided in Section 3 regarding finite

samples. Convenient normalized versions of T
(1)
k,n and T

(2)
k,n are provided in the main Theorem below which

expounds the asymptotic normality of the referred test statistics under suitable yet reasonable conditions

involving the following second order behavior of U .

Apart from the first order condition (3), we shall need a second order condition, specifying the inherent

rate of convergence. Hence, we shall assume the existence of a function A, not changing in sign and

tending to zero as t → ∞ such that

lim
t→∞

U(tx)−U(t)
a(t) − xγ −1

γ

A(t)
= Hγ,ρ(x) :=

1
ρ

(xγ+ρ − 1
γ + ρ

− xγ − 1
γ

)
, (7)

for all x > 0, where ρ ≤ 0 is the second order parameter governing the speed of convergence in (3). We

then say that the function U is of second order extended regular variation (notation: U ∈ 2ERV (γ, ρ)). In

case ρ = 0 and/or γ + ρ = 0, note that the function (xa − 1)/a defined for all x > 0, a ∈ R reads as log x

for a = 0. We also remark that lim
t→∞

A(tx)/A(t) = xρ, for every x > 0, i.e., |A| is of regular variation at

infinity with index ρ (cf. de Haan and Stadtmüller (1996)), hence the notation |A| ∈ RVρ.

Theorem 1 Let X1, X2, . . . be i.i.d. random variables with the same distribution function F . Let xF = ∞
and F ∈ D(G0).

1. Furthermore, assume the second order condition (7) holds. If k = k(n) is an intermediate sequence, i.e.,

k → ∞ and k = o(n), as n → ∞, such that
√

kA(n/k) → 0, as n → ∞, and

√
k

(1
k

k∑

i=1

Xn−i,n − Xn−k,n

a(n/k)
− 1,

â(n/k)
a(n/k)

− 1
)

d−→ (B1, B2), (8)
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with (B1, B2) bivariate normal with zero mean vector and covariance matrix not depending on ρ, then

√
k log k T

(1)
k,n

d−→ B1 + B2. (9)

2. For any intermediate sequence k = k(n),

√
k log(n/k) T

(2)
k,n −

√
k

d−→ N(0, 1), (10)

Before proceeding with the proof we call on Lemma 2 below.

Lemma 2 (Theorem B.2.2 and Corollary B.2.13 of de Haan and Ferreira (2006))

Suppose the function U is such that (3) holds with some γ ≤ 0. Then, the auxiliary function a is in RVγ and

(i) if γ = 0 and U(∞) = ∞, then U is of slow variation in the sense that U ∈ RV0, i.e., lim
t→∞

U(tx)/U(t) =

1, for every x > 0, and a(t) = o
(
U(t)

)
, as t → ∞.

(ii) If γ = 0 and U(∞) < ∞, then lim
t→∞

a(t)/
(
U(∞) − U(t)

)
= 0 and U(∞) − U(t) ∈ RV0.

(iii) If γ < 0, then U(∞) < ∞, lim
t→∞

a(t)/
(
U(∞) − U(t)

)
= −γ and U(∞) − U(t) ∈ RVγ .

Proof of Theorem 1:

We start by noting that given a random variable X with distribution function F and pertaining tail quantile

function U , we have the equality in distribution X
d= U(Y ) with Y a standard Pareto random variable

with distribution function 1 − (y ∨ 1)−1. Naturally, if we consider a sample {Xi}n
i=1 of independent and

identically distributed random variables from the same parent F and let X1,n ≤ X2,n ≤ . . . ≤ Xn,n be

their ascending order statistics, we get the equality in distribution

{
Xn−i,n

}n−1

i=0

d=
{
U(Yn−i,n)

}n−1

i=0
. (11)

In order to properly apply (7) and subsequent uniform inequalities in the sense of Drees (1998) (see

Theorem 2.3.6 of de Haan and Ferreira, 2006), we shall bear in mind that if k = kn is an intermediate

sequence of positive integers, i.e., k → ∞ and k/n → 0 as n → ∞, then (k/n)Yn−k,n
P−→ 1 which entails

in turn that Yn−k,n
P−→ ∞ (cf. Corollary 2.2.2 of de Haan and Ferreira, 2006). Hence, using (11), we have

a(n/k)
Xn,n − Xn−k,n

d=
a(Yn−k,n)

U(Yn,n) − U(Yn−k,n)
a(n/k)

a(Yn−k,n)
. (12)

Since for γ = 0 condition (3) rephrases as

a(t)
U(tx) − U(t)

=
1

log x
− 1

log2 x

(U(tx) − U(t)
a(t)

− log x
)(

1 + o(1)
)
, (t → ∞)

5
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all x > 0, eq. (12) leads to

a(n/k)
Xn,n − Xn−k,n

d=
a(Yn−k,n)

U
( Yn,n

Yn−k,n
Yn−k,n

)
− U(Yn−k,n)

a(n/k)
a(Yn−k,n)

=
{ 1

log Yn,n − log Yn−k,n
− A(Yn−k,n)

H0,ρ

( Yn,n

Yn−k,n

)

(log Yn,n − log Yn−k,n)2
(
1 + op(1)

)} a(n/k)
a(Yn−k,n)

, (13)

as n → ∞. Define Qk = (log Yk,k − log k)/ log k. Owing to Rényi’s representation (cf. Lemma 3.2.3 from

de Haan and Ferreira, 2006), we see that with any measurable measurable function g,

{
g
(Yn−i+1,n

Yn−k,n

)}k

i=1

d=
{

g(Y ?
k−i+1,k)

}k

i=1
, (14)

where Y ?
1 , Y ?

2 , . . . , Y ?
n are independent standard Pareto random variables with distribution function 1 −

(y ∨ 1)−1. Furthermore, limk→∞ Qk = 0 a.s. (see page 194 of de Haan and Ferreira, 2006) and this takes

care of the first term in the normalized version of T
(1)
k,n written as follows:

√
k log k T

(1)
k,n = log k

â(n/k)
Xn,n − Xn−k,n

∫ 1

0

√
k
(Xn−[ks],n − Xn−k,n

â(n/k)
− log s

)
ds

= log k
a(n/k)

Xn,n − Xn−k,n

a0(n/k)
a(n/k)

{∫ 1

0

√
k
(Xn−[ks],n − Xn−k,n

a0(n/k)
− log s

)
ds

−
√

k
( â(n/k)

a0(n/k)
− 1

) ∫ 1

0

log s ds
}

=: I × (II − III).

Here [ks] denotes the highest integer not greater than ks. The new auxiliary function a0 is such that

a0(t) ∼ a(t), as t → ∞, and a0(t)/a(t) − 1 = o
(
A(t)

)
. It now intervenes because we wish to apply

Corollary 2.4.6 of de Haan and Ferreira (2006) regarding the empirical tail quantile process. From (13)

and (14) we have seen so far that

I
d= log k

a(Yn−k,n)
U(Yn,n) − U(Yn−k,n)

a0(n/k)
a(Yn−k,n)

=
{

1
Qk + 1

− A(n/k)
log k

H0,ρ(Yk,k)
Q2

k + 2Qk + log k

}
a0(n/k)
a(n/k)

(
1 + op(1)

)
. (15)

Hence I
P−→ 1, as n → ∞. Note that A(t) tends to zero as t goes to infinity even if ρ = 0. In (15) the

random quantities a(Yn−k,n) and A(Yn−k,n) were replaced by their deterministic counterparts, sequences

a(n/k) and A(n/k) respectively. This is sustained by the fact that both a and |A| are of regular variation

leading thereby to a(Yn−k,n)/a(n/k) P−→ 1 and A(Yn−k,n)/A(n/k) P−→ 1 as n → ∞. Finally we have from

6
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Corollary 2.4.6 of de Haan and Ferreira (2006) that

II − III =
∫ 1

0

(Wn(s)
s

− Wn(1)
)

ds − α(Wn)
∫ 1

0

log s ds

+
√

kA
(n

k

) ∫ 1

0

ρ
(
H0,ρ

(1
s

)
− H0,ρ(1)

)
ds + op(1)

∫ 1

0

s−1/2−ε ds,

where {Wn(s)}s>0 is a sequence of standard Brownian motions and α denotes a measurable functional

(not depending on s) of this same sequence. Hence result in (9).

The second part of the Theorem is supported on the extended regular variation of U for γ = 0 encap-

sulated in (3). Define Ã(t) := a(t)/U(t). Using similar arguments as in the proof of 1., by virtue of the

uniform inequalities in the sense of Drees (1998) (see also Proposition B.1.10 in de Haan and Ferreira,

2006) together with (i) of Lemma 2, we get

T
(2)
k,n

d=
1
k

k−1∑

i=1

i

((U(Yn−i+1,n)
U(Yn−k,n)

− 1
)

−
( U(Yn−i,n)

U(Yn−k,n)
− 1

))

= Ã
(k

n

) 1
k

k−1∑

i=1

i
(
log Y ?

k−i+1,k − log Y ?
k−i,k

)
+ op

(
Ã

(k

n

))
. (16)

Now, Theorem B.3.6 of de Haan and Ferreira (2006) ensures Ã(t) ∼ (log t)−1, as t → ∞, since the

(slow) regular variation of second order we get for γ ≤ 0 amounts to the extended regular variation

statement in (3) (cf. Theorem 1 in Neves, 2009). Moreover, Rényi’s representation theorem entails that

k log(Y ?
1,k) d= log(Y ?

1 ), independent of i
(
log(Y ?

i+1,k) − log(Y ?
i,k)

) d= log(Y ?
k−i+1), i ≤ k − 1 (see e.g. Shorack

and Wellner, 1986, p.336). Hence,

√
k log(n/k) T

(2)
k,n =

(√
k
(1

k

k∑

i=1

log Y ?
i − 1

)
−

√
k

(1
k

log Y ?
1 − 1

))(
1 + op(1)

)
.

The result thus follows from the Central Limit theorem. o

Remark 3 Condition (8) holds for suitable estimators of a(n/k). We shall use the estimator â(n/k) related

with the Moment estimator for the extreme value index γ. In this respect we refer to Dekkers et al. (1989)

and Section 2.1 of de Haan and Ferreira (2006). We define

â
(n

k

)
:= Xn−k,n

M
(1)
k,n

2

(
1 −

(
M

(1)
k,n

)2

M
(2)
k,n

)−1

, (17)

pertaining to the moment statistics

M
(j)
k,n :=

1
k

k∑

i=1

(
log Xn−i+1,n − log Xn−k,n

)j

, j = 1, 2. (18)

7
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Under the conditions in Theorem 1, it is not difficult to see that with â(n/k) defined above we have

T ∗
1 :=

√
k log k T

(1)
k,n

d−→ N(0, 1).

Consistency of the tests is ensured by similar arguments to the ones in the proof of Theorem 1 coupled

with Lemma 2. In particular, if xF < ∞ and under the conditions of Theorem 1, T
(1)
k,n

P−→ ∞ if γ = 0, and

T
(1)
k,n

P−→ − ∞ if γ < 0. With respect to T
(2)
k,n, we obtain the following representation, valid for γ ≤ 0, ρ < 0

and xF = U(∞) < ∞, and akin to (16):

T
(2)
k,n = Ã

(n

k

)(1
k

k∑

i=1

(Y ?
i )γ − 1

γ
− eγ log(Y ?

1 )/k − 1
γ

)(
1 + op(1)

)
= Ã

(n

k

)(
I − II

)(
1 + op(1)

)
. (19)

The Central Limit theorem ascertains
√

k
(
I − 1/(1 − γ)

)
= Op(1). By straightforward calculations we can

see that II = op(1/
√

k). Hence, we only have to take into account that | log t Ã(t)| ∈ RVγ , meaning that

it converges to zero as long as γ < 0, while for γ = 0 and xF = U(∞) ∈ (0, ∞) we have from Theorem

B.3.6 of de Haan and Ferreira (2006) that Ã(t)/
(
c/U(∞)

)
→ 1, c > 0. Altogether, we can ascertain that

√
k log(n/k)T

(2)
k,n shifts towards left for light-tailed distributions associated with negative γ and towards

right for distributions in the Gumbel domain but with finite endpoint.

3 Simulation Results

According to Theorem 1 and subsequent Remark 3, the testing procedures that statistics T
(j)
k,n, j = 1, 2,

yield unfold as follows. With view towards testing the hypothesis

H0 : F ∈ D(G0) and xF = ∞ versus H1 : F ∈ D(Gγ)γ≤ 0 and xF < ∞,

take the normalized versions

T ∗
1 =

√
k log k T

(1)
k,n and T ∗

2 =
√

k
(
log

(n

k

)
T

(2)
k,n − 1

)
.

For the estimation of the scale required in T ∗
1 we settle with the one related to the Moment estimator (see

Remark 3). Under the null hypothesis, provided mild restrictions upon the growth of the intermediate

sequence k = k(n), Theorem 1 ascertains that T ∗
j behave as standard normal random variables, even-

tually. Corresponding rejection regions at a significance level α ∈ (0, 1) are thus allocated by fulfilling

|T ∗
j | > z1−α/2, for j = 1, 2, where zα = Φ←(α) denotes the α-quantile pertaining to the standard normal

distribution function Φ.

8
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The present section aims at illustrating the finite sample behavior of the proposed asymptotic test pro-

cedure by conducting Monte-Carlo simulations. In order to estimate the empirical rejection probabilities

(type I error and power) we generated 5000 samples (replicates) of size n = 1000 from several distribu-

tions satisfying condition (7). Hence we shall be interested in the relative frequency of replicates which

the null hypothesis was rejected for. Inevitably, the extreme value index γ is the most important design

factor here but the second order parameter ρ has also a relevant part since it determines the speed at

which T ∗
1 and T ∗

2 converge to their normal limits. The following models are taken as key examples:

• GPd (γ ≤ 0), with distribution function Fγ given in (4).

• Negative Fréchet distribution (γ = ρ = 0): we say that a random variable X has a negative Fréchet

distribution if X = −Y with Y a Fréchet random variable, that is, the distribution function of X is

given by

FX(x) = 1 − exp{−(x0 − x)−β }, x < x0, β > 0.

• Gumbel distribution (γ = 0, ρ = −1).

• Logistic distribution (γ = 0, ρ = −1), with distribution function

F (x) = 1 − 2
1 + exp(x)

, x > 0.

• Lognormal distribution (γ = 0 = ρ). A random variable Y is said to have a Lognormal distribution

if log Y is a normal random variable.

• Fréchet (γ > 0, ρ = −1), with distribution function

F (x) = exp{−x− 1
γ }, x > 0.

Figure 1 displays the empirical power of the aforementioned tests, at the nominal size α = 0.05, for the

underlying GPd by retaining the k+1 = 101 most extreme observations. The GPd, including the particular

case of the exponential distribution for γ = 0, satisfies the extreme value condition (3) but not the second

order relation (7). The GPd has tail quantile function (tγ − 1)/γ and we may read the convergence in

(7) as being so fast that ρ = −∞ can be assumed. On the light of the information shared by Figure 1,

we can ascertain superiority of the T ∗
1 –test as far as testing exponential-type against Beta-type models

is concerned mainly because T ∗
2 yields too many rejections for underlying distributions other than the

(exact) exponential. The latter in verified by Figure 2.

In Figure 2, we have depicted the estimated type I error of the two tests under study for the designated

light tailed distributions with infinite right endpoint. The somewhat conservative behavior expounded by

the test statistic T ∗
1 can be seen as a valuable complement to the T ∗

2 –test since this test unleashes high

number of wrong rejections for distributions with infinite endpoint that belong to the Gumbel domain of
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Figure 1: Empirical power of T ∗
1 and T ∗

2 with k = 100, at a significance level α = 0.05, on the basis of 5000 samples of size
n = 1000 from the GPd(γ), plotted against |γ|, γ ≤ 0.
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Figure 2: Estimated type I error probability of T ∗
1 (left) and T ∗

2 (right) plotted against k = 5, 6, . . . , 300. The solid straight line
stands for the significance level α = 0.05.
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Figure 3: Estimated power of T ∗
1 (left) and T ∗

2 (right) at a significance level α = 0.05 for GPd with γ = −0.05, −0.1, −0.3, plotted
against k = 5, 6, . . . , 300.

attraction corresponding to small deviations from the exponential distribution. In the particular case of

underlying lognormal distribution, the T ∗
2 –test performs rather poorly for almost all values of k, mainly

because this is already a moderately heavy tailed distribution, further away from the ideal exponential

model.

Figure 3 displays empirical power obtained by generating from the GPd with small negative values

of γ thus closer to the null hypothesis. According to both tests, the rejection of the null hypothesis is a

highly frequent event in case of the negative Fréchet (with x0 = β = 1), just like a distribution with finite

endpoint belonging to the Gumbel domain should determine. The Fréchet distribution is also included

for the purpose of illustration embracing the possibility of an underlying heavy-tailed distribution. We

have considered γ = 0.3 in this case which corresponds to a not so heavy-tailed distribution with finite

variance. For small values of k, the T ∗
2 –test leads to a prompt rejection of the hypothesis of infinite right

endpoint for all distributions but offers an overall erratic behavior for the Fréchet(0.3) distribution. On

the other hand, T ∗
1 places the Fréchet distribution where it should be in the graph: below all the others

by yielding the smallest relative number of rejections. However, the T ∗
1 –test is not very sharp in detecting

very small negative values of γ while the statistic T ∗
2 seems to perform relatively well in this respect.

4 An illustrative example

From the enormous amount of data available, comprising 3-hourly significant wave heights (Hs), collected

at a particular location in the coast off Portugal (Figueira da Foz) from 1958 up to 2001, arises the per-

ception that the assumption of independent data may be compromised by the latent tendency for extreme

conditions to linger over several observations. However, in the situation at hand, we may circumvent such
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Figure 4: Sample paths of the statistics T ∗
1 and T ∗

2 with respect to the Hs data, in companion critical lines z0.025 = −1.96 and
z0.975 = 1.96, all plotted against k.

difficulty in application of the tests by retaining only the k largest daily maxima above the threshold 5.

This leaves us with a sample comprising n = 1272 independent observations. Application of the testing

procedures under study yield the sample paths presented in Figure 4 which suggest the presence of a

distribution detaining finite right endpoint. The test supported on T ∗
2 returns values in the negative di-

rection leaning fast towards a light-tailed distribution in the Weibull domain (γ < 0). The latter comes as

no surprise from the high frequency of rejections that T ∗
2 has accounted for in the simulations presented

in Section 3: at a significance level α = 0.05 T ∗
1 –test is usually a bit more reluctant in rejection of the null

hypothesis in favor of the one-sided alternative pertaining to the Weibull domain. Now it yields a sample

path near the lower the critical level z0.025 = −1.96 for several values of k lying in the most stable region

of the graph that can be taken as intermediate and thus we can lean on our findings from the T ∗
2 –test .
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