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Some remarks on Lp dispersion orderings

López-Dı́az, Miguel

Abstract

New results on the class of Lp dispersion orderings are stated in
this paper. Namely we analyze different properties in relation with the
preservation of Lp dispersion orderings by monotone transformations,
truncation at the same quantile and order statistics, making emphasis
on the exponential distribution.

Keywords: Exponential distribution, Lp dispersion ordering, Monotone
transformation, Order statistic, Truncation at the same quantile.

1 Introduction

Different stochastic orderings have been proposed in the statistical litera-
ture to order probability distributions in terms of dispersion, in both the
univariate and the multivariate cases.

Perhaps the most studied stochastic ordering for comparing dispersion in
the univariate case is the ordering referred to as the dispersive ordering. So,
if F and G are two distribution functions, it is said that F is less dispersive
than G, denoted by F �Disp G, if

F −1(v) − F −1(u) ≤ G−1(v) − G−1(u) for all 0 < u < v < 1,

with F −1 and G−1 being the quantile functions of F and G respectively.
The reader is referred for instance to Lewis and Thompson (1981), Shaked

(1982), Rojo and He (1991), Müller and Stoyan (2002), Jeon et al. (2006) or
Shaked and Shanthikumar (2007) for different characterizations, properties,
examples and references to this concept.

The dispersive ordering has been weakened in Fernández-Ponce and
Suárez-Lloréns (2003) by means of the so called weakly dispersive order-
ing. Given F and G, which are continuous distribution functions, it is said
that F is less weakly dispersive than G, denoted by F �wd G, if for all ε > 0
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it holds that

sup
x∈R

|F (x + ε) − F (x)| ≥ sup
x∈R

|G(x + ε) − G(x)|.

In terms of continuous random variables the weakly dispersive ordering
reads that X �wd Y if for any ε > 0, and for any interval of length ε in
the support of the variable Y, let us denote such an interval by IY,ε, it is
possible to find IX,ε, an interval in the support of X with length ε, such
that P (X ∈ IX,ε) ≥ P (Y ∈ IY,ε).

The weakly dispersive ordering verifies some desirable properties that
the dispersive ordering does not satisfy. In particular, there is an anomaly
that the dispersive ordering suffers, that is, if X is a random variable then X
and −X are not necessarily equally dispersive or even ordered, which does
not occur in the weakly dispersive ordering.

The weakly dispersive order was generalized under mild conditions in
Carleos and López-D́ıaz (2010) by means of the so called Lp dispersion
orderings.

The weakly dispersive ordering is based on the concentration function of
a probability (see for instance Götze and Zaitsev (1998)). Given P a proba-
bility, its concentration function is defined by Q(P, ε) = supx∈R P ([x, x+ ε])
with ε > 0. Note that in some sense the concentration function is a kind
of L∞-type norm of the mapping x → F (x + ε) − F (x), where F is the
(continuous) distribution function of the probability P.

The weakly dispersive ordering could be too restrictive to rank distribu-
tions in some cases, as is seen in Carleos and López-D́ıaz (2010) in a problem
of genetics, namely in an analysis on the dispersive effect of continuous trait
genes. To illustrate such an idea let us consider the following distribution
functions given in Figure 1.

From an intuitive point of view it seems that the distribution of F is
less dispersive than that of G, but the slope of the non-horizontal part of G
is greater than that of F , and so F and G are not ordered by the weakly
dispersive ordering. It seems that in cases like this, the weakly dispersive
ordering could be too restrictive since it involves an L∞-type norm.

To smooth the behaviour of the weakly dispersive order it is possible
to consider Lp norms with p ∈ [1, ∞] instead of the L∞ norm to introduce
a more versatile family of dispersion orderings. Thus the Lp dispersion
orderings are introduced in the following way.

The symbol F will denote the class of continuous distribution functions
on R. If F ∈ F , then PF will stand for the probability induced by F on the
measurable space (R, B), where B is the Borel σ-field on R. If X is a random
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Figure 1: Distribution functions F and G.

variable, PX will indicate the probability induced by X on (R, B), and FX

its distribution function.
Given F ∈ F and ε > 0, we define the mapping W ε

F : R → R by
W ε

F (x) = F (x + ε
2) − F (x − ε

2 ).
Then, if F,G ∈ F and p ∈ [1, ∞], F is said to be less dispersive that G

in the Lp dispersion order, if for all ε > 0 it holds that

‖W ε
F ‖Lp(PF ) ≥ ‖W ε

G‖Lp(PG),

where ‖ · ‖Lp(P ) denotes the Lp-norm with respect to a probability P on
(R, B), that is, given f : R → R, then

‖f ‖Lp(P ) =
( ∫

R
|f |p dP

)1/p if p ∈ [1, ∞), and

‖f ‖L∞(P ) = inf {Sf (N) : N ∈ B, P (N) = 0}, where Sf (N) = sup
x∈R\N

|f(x)|.

We will denote the above relation by F �Lp G. As usual, if X and Y are
continuous random variables, X �Lp Y will indicate that FX �Lp FY .

The reader is referred to Carleos and López-D́ıaz (2010) for different
results, examples and interpretations of the class of Lp-dispersion orderings
and an application of such a class to the field of genetics, namely, to the
dispersive effect of continuous trait genes.

We should note that for distributions with convex support, the weakly
dispersive ordering and the L∞ order are the same (Proposition 7 in Car-
leos and López-D́ıaz (2010)). Thus under mild conditions, the class of Lp

dispersive orderings contains the weakly dispersive ordering as a particular
case.
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In the above reference it is shown that the dispersive order implies the
Lp ordering for any value of p ∈ [1, ∞] (Proposition 9 in Carleos and López-
D́ıaz (2010)). The converse of this result is false. It is enough to consider a
random variable X such that the relation X �Disp −X does not hold. Note
that the Lp orderings are sign-free (Proposition 2 in Carleos and López-D́ıaz
(2010)). As an example of distributions satisfying the L1 ordering and not
the dispersive order we can consider the distribution functions F and G
given by

F (x) =





0 if x ≤ 0,
x if 0 < x < 1,
1 otherwise,

G(x) =





0 if x ≤ 0,
x
8 if 0 < x < 2,
5x
2 − 19

4 if 2 ≤ x < 2.1,
x
8 + 1.9

8 if 2.1 ≤ x < 6.1,
1 otherwise.

It is easy to see that F and G are not ordered with respect to weakly
dispersive ordering since

sup
x∈R

|F (x + 1) − F (x)| = 1 > sup
x∈R

|G(x + 1) − G(x)| and

sup
x∈R

|F (x + 0.1) − F (x)| < sup
x∈R

|G(x + 0.1) − G(x)| = 1/4.

Therefore F and G are not ordered by the dispersive order since this implies
the weakly dispersive order. On the other hand, it is not hard to see that∫

R W ε
F (x) dPF ≥

∫
R W ε

G(x) dPG for all ε > 0, that is, F �L1 G.
In this paper we present new results on the family of Lp orderings. The

paper is structured as follows: Section 2 is devoted to establishing some
results on the preservation of such orderings, mainly by monotone transfor-
mations. Section 3 studies the case of truncation at the same quantile. The
analysis of order statistics is developed in Section 4, where special emphasis
is made on some results of the exponential distribution.

Throughout the paper we will consider random variables with distribu-
tion functions in F , that is, their distribution functions are continuous.

2 Preservation of Lp dispersion orderings by mono-

tone transformations

In this section we analyze some results on Lp dispersion orderings in relation
with the preservation of such orderings, especially by monotone transforma-
tions.

4
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First of all we should note that in the same way that the dispersive
ordering is not preserved by monotone functions (see for instance Shaked
(1982)), the Lp dispersive orderings are not preserved in general by monotone
transformations as the following example shows.

Example 2.1. Let Y ∼st U(0,1) (uniform distribution on the interval (0, 1))
and X ∼st U(10,10.5). Trivially X ∼st g(Y ), with g : R → R given by
g(x) = 10 + 0.5x. Note that g is a contraction, thus Theorem 1 in Carleos
and López-D́ıaz (2010) proves that X �Lp Y for all p ∈ [1, ∞].

Consider now the random variables eX and eY which obviously are
continuous with bounded supports. In accordance with Proposition 6 in
Carleos and López-D́ıaz (2010), if eX �Lp eY for some p ∈ [1, ∞], then
m(supp eX) ≤ m(supp eY ), where m denotes the Borel measure on R and
supp stands for the support of a distribution. However, m(supp eX) =
e10.5 − e10 and m(supp eY ) = e − 1.

We should note that this example also shows that the weakly dispersive
ordering is not preserved under monotone transformations since, in this case,
the orderings �wd and �L∞ are the same, note that the supports of X and
Y are convex.

In the first place we state a result on the preservation of Lp dispersion
orderings by the product of scalars that we will apply later in the paper.

Proposition 2.2. Let X,Y be random variables and a ∈ R. For any p ∈
[1, ∞] the relation X �Lp Y implies aX �Lp aY.

Proof. The case a = 0 is obvious. Let a > 0 and p < ∞. Then for all ε > 0
we have that

‖W ε
FaX

‖p
Lp(PaX) =

∫

R
W ε

FaX
(x)p dPaX =

∫

R

(
FaX(x+

ε

2
)−FaX(x− ε

2
)
)p

dPaX .

Let us consider the mapping T : R → R with T (x) = ax. Then the above
integral is equal to (see for instance Theorem 16.13 in Billingsley (1995))

∫

R

(
FaX(ax +

ε

2
) − FaX (ax − ε

2
)
)p

dPX

=
∫

R

(
FX(x +

ε

2a
) − FX(x − ε

2a
)
)p

dPX = ‖W
ε
a

FX
‖p

Lp(PX).

That is, ‖W ε
FaX

‖Lp(PaX) = ‖W
ε
a

FX
‖Lp(PX ), and the same formula holds for

the random variable Y .

5
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Since X �Lp Y, we have that ‖W
ε
a

FX
‖Lp(PX) ≥ ‖W

ε
a
FY

‖Lp(PY ) for all ε > 0,
and so ‖W ε

FaX
‖Lp(PaX) ≥ ‖W ε

FaY
‖Lp(PaY ), which proves the result when a > 0

and p ∈ [1, ∞).
If a < 0, the above development leads to −aX �Lp −aY . Proposition 2

in Carleos and López-D́ıaz (2010) states that the Lp orderings are sign-free,
which concludes the proof when p ∈ [1, ∞).

Now, let us analyze the case p = ∞. We have proved that for all
p ∈ [1, ∞) and ε > 0, it holds that ‖W ε

FaX
‖Lp(PaX) = ‖W

ε
a

FX
‖Lp(PX). As

a consequence we obtain that

‖W ε
FaX

‖L∞(PaX) = lim
p→ ∞

‖W ε
FaX

‖Lp(PaX) = lim
p→ ∞

‖W
ε
a

FX
‖Lp(PX) = ‖W

ε
a

FX
‖L∞(PX)

for all ǫ > 0, and we have the same relation for the random variable Y . This
obviously leads to the result when p = ∞.

Now we analyze the behavior of the Lp dispersion orderings when ran-
dom variables are transformed by means of monotone functions satisfying a
Lipschitz type condition.

Proposition 2.3. Let X be a random variable, let h : R → R be a monotone
mapping such that |h(y) − h(x)| ≤ k|y − x| for all x, y ∈ R, with k ∈ (0, ∞).
Then for all p ∈ [1, ∞] it holds that h(X) �Lp kX.

Proof. It is a consequence of Theorem 2.1 in Rojo and He (1991). Such a
result reads that h(X) �Disp kX if h is nondecreasing and h(X) �Disp −kX
when h is nonincreasing. Since the dispersive order implies the Lp ordering
for any value of p ∈ [1, ∞] (Proposition 9 in Carleos and López-D́ıaz (2010))
and the Lp orderings are sign-free (Proposition 2 in Carleos and López-D́ıaz
(2010)), we obtain the result.

In a similar way, an analogous result can be deduced when the inequality
of the Lipschitz condition is reversed.

Proposition 2.4. Let Y be a random variable, let h : R → R be a monotone
mapping such that |h(y) − h(x)| ≥ k|y − x| for all x, y ∈ R, with k ∈ (0, ∞).
Then it holds that kY �Lp h(Y ) for all p ∈ [1, ∞].

As a consequence of the preceding results we can make the following
statement.

Theorem 2.5. Let X,Y be random variables with X �Lp Y for some p ∈
[1, ∞]. Let h1, h2 : R → R be monotone mappings such that |h1(y) − h1(x)| ≤

6
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k1|y − x| and |h2(y) − h2(x)| ≥ k2|y − x| for all x, y ∈ R, with 0 < k1 ≤ k2.
Then it holds that

h1(X) �Lp k1X �Lp k2Y �Lp h2(Y ).

Proof. The first and the third relationships are direct consequences of Propo-
sition 2.3 and 2.4 respectively.

With respect to the second relationship, Proposition 2.2 implies that
k1X �Lp k1Y, but k1Y ∼st (k1/k2)k2Y and g : R → R with g(x) = (k1/k2)x
is a contraction, so Theorem 1 in Carleos and López-D́ıaz (2010) leads to
k1Y �Lp k2Y . The transitivity of the Lp dispersion orderings concludes the
result.

Now we analyze a result on random variables with symmetric distribu-
tion.

Lemma 2.6. Let X,Y be random variables with symmetric probability dis-
tribution about a ∈ R and b ∈ R respectively. Then for any p ∈ [1, ∞] it
holds that X �Lp Y if and only if |X − a| �Lp |Y − b|.
Proof. Since for any p ∈ [1, ∞] the Lp dispersion ordering is invariant under
translations (see Proposition 3 in Carleos and López-D́ıaz (2010)), we can
assume without loss of generality that a = b = 0.

Trivially, the symmetry condition of the probability distributions implies
that F|X|(x) = 2FX(x) − 1 for all x ∈ R, and the same relation is satisfied
by F|Y | and FY .

Thus for all p ∈ [1, ∞) and ε > 0 it holds that

‖W ε
F|X| ‖p

Lp(P|X|)
=

∫

R

(
F|X|(x +

ε

2
) − F|X|(x − ε

2
)
)p

dP|X|

= 2p

∫

R

(
FX(x +

ε

2
) − FX(x − ε

2
)
)p

dP|X|.

Let us take the mapping T : R → R with T (x) = |x|. We should note
that for all B ∈ B it holds that PX(T −1(B)) = P|X|(B). Thus the last
integral is equal to

2p

∫

R

(
FX(|x| +

ε

2
) − FX(|x| − ε

2
)
)p

dPX .

Now, the symmetry of the distribution of X with respect to 0 implies
that for all x ∈ R it holds that

FX(|x| +
ε

2
) − FX(|x| − ε

2
) = FX(x +

ε

2
) − FX(x − ε

2
),

7
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and so the last integral equals

2p

∫

R

(
FX(x +

ε

2
) − FX(x − ε

2
)
)p

dPX = 2p‖W ε
FX

‖p
Lp(PX).

Therefore, for all ε > 0 we have that ‖W ε
F|X|

‖Lp(P|X|) = 2‖W ε
FX

‖Lp(PX),
which leads to the result when p ∈ [1, ∞).

Now, since for all p ∈ [1, ∞) and ε > 0 we have that ‖W ε
F|X|

‖Lp(P|X|) =
2‖W ε

FX
‖Lp(PX), the same result holds when p = ∞, which proves the lemma

in this case.

3 Lp dispersion orderings and truncation at the
same quantile

In this section we study the behaviour of the Lp dispersion orderings in
relation to truncation at the same quantile.

Throughout this section, we will consider distribution functions having
unique quantiles.

The α truncation of a distribution function F , denoted by Fα, is deter-
mined by the distribution function

Fα(x) =





0 if x < xα/2,

(1 − α)−1(F (x) − α
2 ) if x ∈ [xα/2, x1−α/2],

1 if x > x1−α/2,

where xβ denotes the β-quantile of F , thus F (xα/2) = α/2 and F (x1−α/2) =
1 − α/2.

It is trivial that if F is continuous, then also Fα.
In general, the Lp dispersion orderings are not preserved by truncation at

the same quantile. That is, if F and G are distribution functions satisfying
that F �Lp G for some p ∈ [1, ∞], then the condition Fα �Lp Gα is not
necessarily true as the example below shows.

Although the Lp dispersion orderings are not preserved in general by
truncation at the same quantile, the converse result holds as is proved later
in the paper. That is, if we have the condition Fα �Lp Gα for values of α
close enough to 0, then F �Lp G is satisfied.

Now we show that the Lp dispersion orderings are not preserved in gen-
eral by truncation.

Example 3.1. Let us consider the distribution functions F and G given by
the graphics in Figure 2, where a, a′, b and b′ satisfy that b − a > b′ − a′,

8
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F (a) = G(a′) = α/2 and F (b) = G(b′) = 1 − α/2. Let us see that F �L∞ G,
but the relation Fα �L∞ Gα is false.

/2

/2

a a´ b b´  

F G

Figure 2: Distribution functions F and G in Example 3.1.

Since F and G are distribution functions with convex support, Proposi-
tion 7 in Carleos and López-D́ıaz (2010) reads that F �L∞ G if and only if
F �wd G.

By means of Theorem 4 in Fernández-Ponce and Suárez-Lloréns (2003),
we trivially obtain that F �L∞ G since F �st G (�st denotes the usual
stochastic ordering), G is concave and the infima of the supports of both
distribution are equal and finite.

On the other hand, it is easy to see that the α-truncation of both distribu-
tions satisfy that Fα ∼st U(a,b) and Gα ∼st U(a′,b′). The relation Fα �L∞ Gα

is false, observe that Fα �L∞ Gα would imply that the Borel measure of
the support of Fα should not be greater than the one of the support of Gα

(Proposition 6 in Carleos and López-D́ıaz (2010)), but b − a > b′ − a′.
Moreover, on the basis of this example we can guarantee that there exist

infinite values of p ∈ [1, ∞) such that the relation Fα �Lp Gα does not hold,
otherwise Fα �L∞ Gα should be true.

However if an Lp dispersive ordering holds for the truncations of two
distributions, such a dispersion ordering is satisfied for the distributions as
is proved now.

The cases p ∈ [1, ∞) and p = ∞ are analyzed in different statements.

Proposition 3.2. Let F,G ∈ F and let p ∈ [1, ∞). If there exists δ ∈
(0, 1/2) such that for all α ∈ (0, δ) it holds that Fα �Lp Gα, then we have
that F �Lp G.

Proof. By hypothesis we have that Fα �Lp Gα for all α ∈ (0, δ). In partic-
ular for all n ≥ n0 with 1/n0 < δ we have that F1/n �Lp G1/n.

Note that for all x ∈ R it holds that limn F1/n(x) = F (x). That implies
that the sequence of distribution functions {F1/n}n tends to F in the weak

9
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convergence. Obviously the same result holds when we consider {G1/n }n

and G.
Proposition 4 in Carleos and López-D́ıaz (2010) reads that the Lp dis-

persion orderings with p ∈ [1, ∞) are preserved by the weak convergence.
Therefore we obtain that F �Lp G.

Now the case p = ∞ is analyzed.

Proposition 3.3. Let F,G ∈ F with convex support. If there exists δ ∈
(0, 1/2) such that for all α ∈ (0, δ) it holds that Fα �L∞ Gα, then F �L∞ G.

Proof. The proof is similar to the above one. We only have to notice that
since F has convex support, F1/n verifies the same condition for any n ∈ N,
and the same holds for G and G1/n.

Proposition 5 in Carleos and López-D́ıaz (2010) reads that the L∞ dis-
persion ordering is preserved by the weak convergence when we consider
distributions with convex supports, which leads to F �L∞ G in the same
way as in Proposition 3.2.

Particular conditions which guarantee the preservation of the Lp dis-
persion orderings by truncation at the same quantile are now stated. The
following technical lemma is a supporting result which allows us to find such
conditions.

Lemma 3.4. Let F ∈ F and let f : R → [0, ∞) be a continuous mapping.
It holds that

∫

R
f dPFα = (1 − α)−1

∫

R
fI[xα/2, x1−α/2] dPF .

Proof. In the first place consider the map g =
∑n

i=1 aiI(li,li]
with ai ∈

[0, ∞), li, li ∈ R, li < li, 1 ≤ i ≤ n, where IC stands for the indicator
function of the set C ⊂ R.

Let us denote by Λ the set of indexes given by {1, . . . , n} \ {i : li ≤
xα/2 or li ≥ x1−α/2, 1 ≤ i ≤ n}.

Thus,

∫

R
g dPFα =

n∑

i=1

aiPFα

(
(li, li]

)
=

n∑

i=1

ai

(
Fα(li) − Fα(li)

)

=
∑

i∈Λ

ai

(
Fα(min {li, x1−α/2}) − Fα(max {li, xα/2})

)

10
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=
∑

i∈Λ

ai(1 − α)−1
(
F (min {li, x1−α/2}) − F (max {li, xα/2})

)

=
∑

i∈Λ

ai(1 − α)−1PF

(
(max {li, xα/2},min {li, x1−α/2}]

)

= (1 − α)−1

∫ x1−α/2

xα/2

n∑

i=1

aiI(li,li]
(x) dPF = (1 − α)−1

∫ x1−α/2

xα/2

g(x) dPF

= (1 − α)−1

∫

R
gI[xα/2,x1−α/2] dPF .

Now given f : R → [0, ∞) a continuous mapping, it is sufficient to
consider a sequence {sn}n with sn : R → [0, ∞), measurable mappings such
that limn→ ∞ sn(x) = f(x) for all x ∈ R, sn ≤ sn+1 for all n ∈ N, sn verifying
a functional expression similar to that of g in the above part of the proof,
and applying the monotone convergence theorem to derive the result. Note
that the existence of such a sequence is well-known when f is continuous.

The above lemma allows us to obtain conditions on the original distribu-
tions under which the Lp dispersion orderings are preserved by truncation
at the same quantile.

Proposition 3.5. Let F,G ∈ F . Given p ∈ [1, ∞], it holds that Fα �Lp Gα

if and only if ‖I[xα/2,x1−α/2]W
ε
Fα

‖Lp(PF ) ≥ ‖I[xα/2,x1−α/2]W
ε
Gα

‖Lp(PG) for all
ε > 0.

Proof. In the first place let p ∈ [1, ∞). In accordance with Lemma 3.4 we
have that

‖W ε
Fα

‖p
Lp(PFα) =

∫

R

(
Fα(x +

ε

2
) − Fα(x − ε

2
)
)p

dPFα

= (1 − α)−1

∫

R
I[xα/2,x1−α/2](x)

(
Fα(x +

ε

2
) − Fα(x − ε

2
)
)p

dPF

= (1 − α)−1‖I[xα/2,x1−α/2]W
ε
Fα

‖p
Lp(PF ),

which easily leads to the result in this case.
If p = ∞, then

‖W ε
Fα

‖L∞(PFα) = lim
p→ ∞

‖W ε
Fα

‖Lp(PFα)

= lim
p→ ∞

(1 − α)−1/p‖I[xα/2,x1−α/2]W
ε
Fα

‖Lp(PF ) = ‖I[xα/2,x1−α/2]W
ε
Fα

‖L∞(PF ),

which trivially proves the proposition.

11
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4 Lp dispersion orderings and the order statistics:
the case of the exponential distribution.

This section studies the behaviour of Lp dispersion orderings in relation to
order statistics. Special emphasis is placed on the exponential distribution.

Given X a random variable and a random sample of size equal to n from
such a variable, Xr:n will stand for the rth order statistic.

Lp dispersion orderings are not preserved in general by order statistics.
The following example shows this affirmation.

Example 4.1. Let us consider the random variables X and Y with distri-
bution functions

FX(x) =





0 if x ≤ 0,√
x if x ∈ (0, 1),

1 if x ≥ 1,
and FY (x) =





0 if x ≤ 0,
x if x ∈ (0, 1),
1 if x ≥ 1.

Theorem 4 in Fernández-Ponce and Suárez-Lloréns (2003) leads easily
to the condition X �wd Y . Since the support of X and Y are convex this
is equivalent to X �L∞ Y . On the other hand, it is trivial to see that the
relation Y �L∞ X, equivalently Y �wd X, is false.

Let us consider random samples of sizes equal to two from both distri-
butions. Then

FX2:2(x) =





0 if x ≤ 0,
x if x ∈ (0, 1),
1 if x ≥ 1,

FY2:2(x) =





0 if x ≤ 0,
x2 if x ∈ (0, 1),
1 if x ≥ 1.

Theorem 5 in Fernández-Ponce and Suárez-Lloréns (2003) proves that
Y2:2 �wd X2:2, or equivalently Y2:2 �L∞ X2:2, while X2:2 �L∞ Y2:2, equiva-
lently X2:2 �wd Y2:2, is clearly false. Thus, the �L∞ order is not preserved
by order statistics.

Note that this example shows that the weakly dispersive ordering is not
preserved in general by order statistics.

Moreover, this example also shows that the Lp dispersion orderings are
not preserved in general by order statistics even for values of p ∈ [1, ∞).
Note that if the Lp dispersion orderings were preserved when p ∈ [1, ∞),
then the same property should be verified when p = ∞.

In spite of this behavior, it is possible to study in depth some particular
distributions whose order statistics preserve Lp orderings as is the case of
the exponential distribution.

12
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In order to make the total proof of this result more readable, we now
state the following theorem.

Theorem 4.2. Let X and Y be exponential random variables with parame-
ters λX and λY respectively. Then, the following conditions are equivalent:

i) X �wd Y,
ii) λX ≥ λY ,
iii) X �Disp Y,
iv) X �Lp Y for all p ∈ [1, ∞],
v) there exists p ∈ [1, ∞], such that X �Lp Y.

Proof. We should note that for all ε > 0 it holds that

sup
x∈R

|FX(x + ε) − FX(x)| = sup
x∈(0,∞)

|e−λXx − e−λX(x+ε)|

= sup
x∈(0,∞)

|e−λXx(1 − e−λXε)| = (1 − e−λXε),

and analogously with the random variable Y. As a consequence, the condi-
tions i) and ii) are equivalent.

By Lemma 4.1 in Rojo and He (1991) we have that X �Disp Y if and
only if

fX(x)
1 − FX(x)

≥ λY ,

where fX stands for the density of X. Note that

fX(x)
1 − FX(x)

= λX ,

and so ii) and iii) are equivalent.
Regarding the condition iii), we should note that Proposition 9 in Car-

leos and López-D́ıaz (2010) states that the dispersive ordering implies the
Lp ordering for any value of p ∈ [1, ∞], therefore iii) implies iv).

Obviously iv) implies v).
Now, let us suppose that the statement v) holds.
In the first place consider the case p = ∞. Since the supports of X and

Y are convex, the orderings �wd and �L∞ are the same, and so we obtain
that v) implies i), which concludes the proof in this case.

Now let us consider the case p ∈ [1, ∞). By simple integration arguments
we have that

‖W ε
FX

‖Lp(PFX
) =

(eλX
ε
2

p + 1
(
(1 − e−λXε)p − (1 − e−λX

ε
2 )p+1

))1/p
,

13
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and obviously, the same formula holds for the random variable Y .
Since the mappings gε : (0, ∞) → R with

gε(z) =
ez ε

2

p + 1
(
(1 − e−zε)p − (1 − e−z ε

2 )p+1
)

are nondecreasing for all ε > 0, we deduce that the condition v) is equivalent
to the condition ii), and so we conclude the proof of the Theorem.

On the basis of the above theorem, some results for order statistics and
spacings on the Lp dispersion orderings and the exponential distribution are
immediately proved.

Theorem 4.3. Let X and Y be exponential random variables with parame-
ters λX and λY respectively. Then for any p ∈ [1, ∞], it holds that X �Lp Y
if and only if Xr:n �Lp Yr:n for all 1 ≤ r ≤ n.

Proof. Let us suppose that X �Lp Y for some p ∈ [1, ∞]. In accordance
with Theorem 4.2 we have that X �Disp Y.

Since the dispersive ordering is preserved by order statistics (see Lemma
3 in Bartoszewicz (1986)), we can conclude that Xr:n �Disp Yr:n for all 1 ≤
r ≤ n. On the other hand, the dispersive ordering implies the Lp orderings
for any p ∈ [1, ∞] (Proposition 9 in Carleos and López-D́ıaz (2010)), and so
Xr:n �Lp Yr:n for all 1 ≤ r ≤ n.

Let us see the converse result. If Xr:n �Lp Yr:n for all 1 ≤ r ≤ n with
p ∈ [1, ∞], in particular X1:n �Lp Y1:n. It is well-known that X1:n and Y1:n

have exponential distributions with parameters nλX and nλY respectively,
so Theorem 4.2 implies that nλX ≥ nλY , which leads to X �Lp Y.

A similar result for the exponential distribution can be obtained when
we consider spacings.

If X is a random variable and we consider a random sample of size
equal to n from such a distribution, V X

r:n will denote the rth sample spacing,
that is, V X

r:n = Xr:n − Xr−1:n, with 1 ≤ r ≤ n, where X0:n is equal to
inf {x ∈ R : FX(x) > 0} if this value is finite, and X0:n = 0 otherwise.

Theorem 4.4. Let X and Y be exponential random variables with param-
eters λX and λY respectively. Let p ∈ [1, ∞], then X �Lp Y if and only if
V X

r:n �Lp V Y
r:n for all 1 ≤ r ≤ n.

Proof. Theorem 4.2 in Rojo and He (1991) reads that X �Disp Y if and
only if V X

r:n �Disp V Y
r:n for all 1 ≤ r ≤ n when X and Y have exponential

14



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

distribution. On the other hand it is well-known that if X and Y have
exponential distribution, then V X

r:n and V Y
r:n, 1 ≤ r ≤ n, satisfy the same

property (see for instance Theorem 4.6.1 in Arnold et al. (1992)). Thus
Theorem 4.2 leads to the result.
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